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Abstract: We calibrated three models of commercially-manufactured, laminar flow meters 
(LFMs) with nitrogen at four pressures (100 kPa, 200 kPa, 300 kPa, and 400 kPa) over a 10:1 
flow range using NIST’s primary flow standards and a physical model.  Without additional 
calibration, each LFM was used to measure the flow of three process gases (Ar, He, and CO2) 
over the same pressure and flow ranges with a maximum error of only 0.5 %. The calibration and 
flow measurements used the gas-property data from NIST’s database REFPROP 8.0 and a 
physical model for each meter that accounts for the viscous pressure drop, compressibility and 
non-ideal gas behavior, slip flow effects, kinetic energy effects, gas expansion effects, and 
thermal effects. The three LFMs have design differences that illustrate the dependence of the 
model corrections on LFM construction and the gas used. The LFM model improves results for 
the conditions tested by a factor of 4 over the flow coefficient and viscosity coefficient plots 
commonly used to present LFM calibration data. 
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1. Introduction 
 
The users and manufacturers of flow meters for process gases often calibrate meters with one gas 
and use them to measure the flow of other gases.  Below, we show that this can be done with a 
maximum error of only 0.5 % for 3 different, commercially-manufactured, laminar flow meters 
(LFMs) by using nitrogen for calibrations and the 3 gases Ar, He, and CO2 as test gases.  For 
each meter and gas, the data span the pressure range 100 kPa to 400 kPa and a 10:1 flow range.  
Our results rely on NIST’s primary flow standards and the gas-property data in NIST’s database 
REFPROP 8.0.  [1

 

] We interpreted the calibration data for each LFM using a physical model that 
accounted for the viscous pressure drop, compressibility and non-ideal gas behavior, slip flow 
effects, kinetic energy effects, gas expansion effects, and thermal effects.  

In the near future, we hope to demonstrate that nitrogen calibrations can be used to measure the 
flow of additional process gases such as sulfur hexafluoride. The present measurements can be 
improved, particularly at low flows and pressures, by using better pressure instrumentation.  At 
any particular Reynolds number, the present data for N2, Ar, and CO2 are mutually consistent, 
generally within 0.2 %. However, the helium data differ by approximately 0.3 %.  A fraction of 
this 0.3 % difference might result from an imperfection of REFPROP 8.0.  However, the 
uncertainty of the viscosity of many reactive process gases is 0.5 % or larger. [2

 

] For these gases, 
better flow measurements and/or better models for LFMs will have limited value.  
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Our objective, in common with that of previous authors, is to increase the accuracy of flow 
measurements made with commercially manufactured LFMs without requiring extensive, gas-
specific calibrations.   Typical calibrations of LFMs account for laminar flow viscous effects (the 
Hagen-Poiseuille equation) and for kinetic energy effects.  Based on dimensional analysis, results 
are often displayed as a plot of the flow coefficient FC as a function of the viscosity coefficient 
VC [3,4

 

] with the definitions: 
( )3

2 1L P P
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Vη
−

≡
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   and    ( )2
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L P P
VC

ρ
η

−
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Here L is the length of the laminar flow path, P1 and P2 are the upstream and downstream 
pressures, η and ρ are the gas viscosity and density, and V is the volumetric flow.∗

 

  To the extent 
that the data collapse on a single curve, a plot of FC as a function of VC is a correlation that a 
user can represent with a convenient, analytic function.  In the present work we achieved higher 
accuracy by using a more elaborate physical model that accounts for slip, gas expansion, and 
several smaller effects. 

The starting point for our LFM models is the capillary model that Berg used to measure the 
viscosities of the gases He, N2, Ar, C3H6, and SF6 with a k = 1 uncertainty of 0.04 % [5

 

]. Berg’s 
capillary model accumulates the work of predecessors to include: geometric parameters (the 
length and the radius of the capillary), gas-dependent parameters, and a surface-dependent 
parameter.  Commercially-manufactured LFMs have complex geometries that we model using 
the simple cross sections and lengths sketched in Table 1.  For these simple shapes, we estimated 
all of the geometric parameters except for the smallest transverse dimension in each cross section 
that roughly corresponds to the radius of a capillary.  In principle, one could fit this small 
dimension using a single calibration measurement, for example from the flow of nitrogen at 
ambient temperature and pressure, but in practice, we fit to the nitrogen data for all flows and 
pressures. From these one-parameter fits, we can predict the response of each LFM within 1.5 % 
for the three test gases over the full range of pressures and flows.  Alternatively, we can replace 
the approximate, calculated values of certain LFM model parameters with values fitted to 
nitrogen calibration data spanning the complete range of pressure and flow.  Then, we can predict 
the response of each of these LFMs within 0.5 %.  This factor-of-3 improvement motivated us to 
present both the 1-parameter and multi-parameter results in the body of this paper. 

2. Physical Model for the Laminar Flow Meters 
 
The simplest model for a laminar flow meters is the Hagen-Poiseuille equation 

 ( )4
1 2

8
r P P

m
L

πρ
η

−
= , (2) 

which relates the mass flow rate of an incompressible fluid through a capillary of circular cross 
section to the density ρ and viscosity η of the fluid, the capillary radius r and length L, and the 
pressure drop P1 – P2 along the capillary. The assumptions of the Hagen-Poiseuille equation are 
[6

1. the capillary is straight and has a uniform circular cross section 
]: 

2. the fluid is incompressible and its density is constant 
3. the fluid is Newtonian 
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4. the temperature of the fluid is constant and heat generation due to viscous dissipation is 
negligible 

5. the flow is laminar and steady 
6. there is no slip at the wall of the capillary  

The first assumption is invalid when the flow meter has a noncircular cross section. Fortunately, 
hydrodynamic equations have been derived for a variety of cross sections; see, for example, Shah 
and London [7] or White [8

Further improving the accuracy requires corrections for the following five effects: 

]. The second assumption of incompressibility is of course invalid for 
gases, but combining the incompressible equation with the ideal gas law gives an expression that 
is simple and accurate to within a few percent for most LFMs. 

• Density dependence of the gas viscosity and departures from the ideal gas law. 
• Slip at the capillary wall, which increases the flow. This effect is proportional to the Knudsen 

number, Kn, which is the gas mean free path divided by a length that characterizes the 
capillary cross section. 

• Gas expansion along the capillary, which increases the kinetic energy and decreases the flow. 
• The increase of kinetic energy near the capillary entrance, which also decreases the flow. This 

correction is needed because the upstream pressure is measured by a tap located in a chamber 
before the capillary, in which the flow velocity is much smaller than in the capillary. 

• The transverse temperature distribution in the fluid due to the imperfect cancellation of 
cooling due to gas expansion and viscous heating due to shearing. 

The models used here include corrections for these effects. Two of the models are similar to 
previously published models [5,9

Table 1. Cross section geometry (not to scale), full scale flow, and dimensions of the laminar flow 
meters. For each geometry, the dimension that was fitted to the data is underlined. 

], except they do not include a correction for centrifugal effects 
because the commercial LFMs had straight flow paths.  

Flow meter Geometry Flow Full Scale 
(sccm)∗ Dimensions  

Circular 

 

 
 

1000 

n = 12 
r = 0.21 mm 
L = 75 mm 
L/r = 350 

Annular 

 

 
 

1000 

a = 3.947 mm 
a - b = 0.035 mm 

L = 60 mm 
( )/L a b− = 1720 

Circular segment 

 

100 

H = 0.089 mm  
W = 1.2 mm 
L = 60 mm 
L/H = 674 

 
                                                           
∗ sccm = standard cubic centimeter per minute with reference conditions of 101.325 kPa and 0 °C. 
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Table 1 characterizes the three LFMs used in this study. The circular LFM is a bundle of 12 tubes 
with no flow passage in the interstitial spaces. The LFM with the annular cross section was 
constructed by centering a solid cylinder of radius b inside a hollow cylinder of a slightly larger 
diameter a. The circular segment LFM was constructed by placing a solid cylinder of diameter D 
with a small flat ground along its length inside a hollow cylinder of the same diameter. The 
resulting cross section is a shallow circular segment whose width W and maximum height H are 
related, in the limit of small W/D, by H = W2/(2D). 
 
Equation 3 gives the model for mass flow for a single circular tube that accounts for the effects 
listed in Section 2 [5]: 

( ) expent exit therm 2
0 virial 1 2 slip

1

1 , 4 ln
16 8 16

KK K K Pr rm m g P P K Kn Re Re
L L P

   +
= + + + + +   

    
  . (3) 

  
The corresponding equations for the LFMs with annular and circular-segment cross sections have 
the same functional form with different geometric parameters.  To emphasize this, we rewrite Eq. (3) 
in the generalized form  

( ) ( ) ( ) 2
0 virial 1 2 slip ent exit exp therm

1

1 , 2 ln Pm m g P P K Kn K K Re K K Re
P

α β γ
  

= + + + + + +  
  

   (4) 

where the geometrical parameters α, β, and γ  for the 3 LFMs are listed in Table 2.  Similarly, the 
uncorrected mass flow for a circular cross section is generalized as 

 
( )

( )
( )

( )

4 2 2 2 2
1 2 1 2

0 16 ,0 ,0

r P P P P
m

T LRT T LRT
π

δ
η η

− −
= ≡

M M
. (5) 

where the geometrical parameter δ  in the generalized version is also listed in Table 2.  In Eq. (5), 
r and L are the LFM radius and length, R is the universal gas constant, T is the temperature, M is 
the molar mass, and η(T,0) is the gas viscosity evaluated at temperature T in the limit of zero 
pressure.  
 

Table 2. The parameters of the generalized LFM model (Equations 4, 5, 6, and 8) for each tube 
geometry. 

 
 
The five corrections in Eq. (4) depend on the Reynolds number Re, the Knudsen number Kn, and 
the function gvirial, which corrects for the density dependence of the gas viscosity and departures 
from the ideal gas law. In previous work [5, 9], the values of Kslip, Kent, Kexit, Kexp and Ktherm were 
determined analytically, computationally, or experimentally. As described in Appendix A, we 

 α β γ δ PW Dh 

Circular 4 1
16

r
L

 1
16

r
L

 
4

16
rπ  2 rπ  2r  

Annular 6 ( )1
12

a b
L
−

 ( )1
20

a b
L
−

 ( )3

6
a a bπ −

 ( )2 a bπ +  ( )2 a b−  

Circular 
Segment 4 1

24
H
L

 9
140

H
L

 
3

96
WH  2W H 



15th Flow Measurement Conference (FLOMEKO)  October 13-15, 2010 Taipei, Taiwan 
 

5 
 Copyright @ FLOMEKO 2010 

used such estimates as a starting point (“assumed K values”). We also adjusted the K values 
based on the nitrogen calibration data (“fitted K values”). The LFM models were tested with both 
sets of K values using flow data for the three other gases: Ar, He, and CO2. 
 
For all three LFM geometries, the length scale used in the Reynolds number is the hydraulic 
diameter, h W4D A P= , where A is the flow area and PW is the “wetted perimeter” of the flow 
path. The Reynolds number for an LFM is 

 
( )W

4
,

mRe
P T Pη

=


, (6) 

where values of the geometric parameter PW and Dh for each cross section are listed in Table 2.  
In Eq. (6), ( ),T Pη  is the viscosity evaluated at the pressure averaged along the length of the 
capillary: 

 
( )
( )

3 3
1 2

2 2
1 2

2
3

P P
P

P P

−
≅

−
. (7) 

Note that the equations for mass flow and Reynolds number given above are for a single flow 
path, and the model flow for a single tube must be multiplied by the total number of tubes, e.g. 
n = 12 for the circular LFM shown in Table 1.  
 
The Knudsen number is defined as 
 1/ 2

h / 2
Kn

D
λ

= , (8) 

where 

 ( )1/2
1/2

1/2
1/2

,2 T PRT
P

η
λ  =  

 M
 (9) 

is the mean free path evaluated at P1/2 ≡ (P1 + P2) / 2. 
 
 
The expressions for the annular and circular segment models are approximations that are valid in 
the respective limits H << W and (a – b) << a. For the annular model, the exact solution for δ is 
[7, 8] 

 
( )

( )
22 2

4 4

8 ln

a b
a b

a
b

πδ
 − = − −
 
  

, (10) 

which simplifies to the expression listed in Table 2 that shows that the flow depends on the cube 
of the gap between the cylinders. Appendix B explains the derivation of the circular segment 
model. 
 
3. Description of Measurements 
 
A pressure regulator and mass flow controller were used to set the flow of gas at the laminar flow 
meter. A back-pressure regulator or a throttling valve was used to maintain a nominal pressure at 
the exit of the LFM despite downstream pressure changes, e.g. due to the filling of the collection 
tank. With this equipment, each LFM was tested at flows of 10 %, 25 %, 50 %, 75 %, and 100 % 
of full scale and the nominal pressures at the LFM exit were 100 kPa, 200, kPa, 300 kPa, and 
400 kPa. This arrangement gave at least 20 combinations of flow and pressure for each flow 
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meter and each gas. The gases used were nitrogen, argon, helium, and carbon dioxide. The data 
plotted herein are averages of 10 or more individual flow measurements made at each set point 
condition. 
 

 

Figure 1. Schematic of the test arrangement to calibrate the laminar flow meters against the 
PVTt and RoR flow standards. 

 
For the circular segment LFM and the annular LFM, P1 and P2 were measured with two absolute 
pressure sensors with a full scale of 550 kPa. The differential pressures ranged from 2 kPa to 63 
kPa. Periodic taring of the two sensors kept differential pressure standard uncertainties within 
5 Pa, i.e. 0.25 %∗

 
 of the minimum differential pressure.  

For the circular LFM, P1 was measured with a 1400 kPa full scale sensor (0.02 % uncertainty). 
The differential pressure P1 – P2 ranged from 0.1 kPa to 2.6 kPa, and it was measured with a 
10 kPa full scale sensor with standard uncertainty of 1 Pa, i.e. 1 % of the minimum differential 
pressure. LFM gas temperature (0.04 % uncertainty) was measured by placing sensors in good 
contact with the LFM body. 
 
Three flow standards were used to calibrate the LFMs and to evaluate the LFM physical model: 
 
1) PVTt: The 34 L PVTt standard determined the mass of gas accumulated in a collection tank 
over a measured period of time. Details about this standard and its uncertainty of 0.013 % can be 
found in reference [10
 

]. 

2) Rate-of-Rise: At 10 sccm, it takes 57 h to make a single PVTt flow measurement that fills the 
34 L collection tank from vacuum to 100 kPa. Fortunately, the Rate-of-Rise technique allows the 
same tank and instrumentation to be used more efficiently. This method acquires time-stamped 
pressure and temperature values for the gas in the collection tank as the tank is filling. The 
pressure and temperature are used to calculate the density of gas. The mass of gas at each time 
step is obtained by multiplying the density by the collection volume. At each time ti, the slope of 
the accumulated mass with respect to time is the mass flow rate, i.e.: 
 

 ( ) ( ) ( )1 1

1

, ,
, i i i i

i i

P T P Tdm V P T V
dt t t

ρ ρ
ρ + +

+

 −
 = ≅    − 

 . (11) 

Our analysis for this technique gives a standard uncertainty of 0.027 %. 
 

                                                           
∗ Uncertainties herein are standard, k = 1 with a 67 % confidence level unless otherwise stated. 
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3) Dynamic Gravimetric: A commercial dynamic gravimetric flow standard was used to measure 
the mass of a pressurized gas cylinder as a function of time while discharging through the LFM. 
The standard uncertainty of the gravimetric flow standard is 0.05 % [11
 

]. 

Comparisons between the three flow standards agreed within 0.05 %. 
 
4. Results and Discussion 
 
For each LFM, the model was fit to the data in two ways. The first way assumed that the values 
of Kslip, Kent, Kexit, and Kexp had the values indicated in Table 3. As explained in Appendix A, each 
value was based on either a calculation or a simple physical assumption, so that the model’s only 
free parameter was the transverse (smallest) dimension underlined in Table 1 (r, a-b, or H). The 
second way added one or two free parameters by allowing Kent, Kexit, and Kexp to vary from their 
assumed values. For both ways, the fitted coefficients given in Table 4 and the transverse 
dimensions listed in Table 1 were determined by minimizing the differences between the LFM 
model and reference flow measurements in nitrogen.  
 

Table 3. When the model’s only free parameter was the LFM transverse dimension (underlined in 
Table 1), these values were assumed for the model coefficients. 

 Kslip Kent Kexit Kexp 
circle [5] 1 -1.14 0 1 
annulus [9] 1 -0.90 0 1 
circle segment 1 -1.00 0 1 

 

Table 4. When Kent, Kexit, and Kexp were used as free parameters, the underlined values were 
obtained. 

 Kslip Kent Kexit Kexp 
circle  1 -1.30 0 1 
annulus  1 -0.90 0.60 1 
circle segment 1 -1.00 0.23 0.55 

 
Figures 2, 4, and 6 plot the ratios of the modeled flow to the reference flow versus the Reynolds 
number. Each plot includes all of the flow and pressure combinations for all four gases. The left 
half is a plot using the assumed coefficients listed in Table 3. The right half shows the results 
when the coefficients underlined in Table 4 were allowed to be free parameters. 
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Figure 2. Flow ratio versus Reynolds number for the circular LFM for literature and fitted K values. 

 
Figure 2 shows the results for the circular LFM, and Figure 3 demonstrates the significance of the 
model’s correction terms. The corrections are plotted versus flow for low pressure helium and 
high pressure carbon dioxide.  The entrance correction is as large as 11 % due to the small aspect 
ratio (L/r = 357). The largest virial correction, 2 %, occurred for carbon dioxide at 400 kPa.  
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b) CO2 at 400 kPa
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Figure 3. Corrections applied for the circular LFM for a) helium at P2 ≈ 100 kPa and b) carbon 
dioxide at P2 ≈ 400 kPa. 

 
Figure 2 shows that using the expected value for the entrance correction coefficient, Kent = -1.14, 
caused deviations of the model that depend only on Reynolds number. The expected value of Kent 
had been calculated for a single capillary, so we speculated that the deviations were caused by the 
collective effect of the 12 capillaries on the flow field near the capillary entrances. In that spirit, 
we allowed Kent to be a free parameter. The right side of Figure 2 shows that the value 
Kent = -1.30 significantly reduced the deviations. (The curvature of the deviations could not be 
reduced because the entrance correction term in Eq. (3) is linear in Re.) 
 
Figure 4 shows the results for the annular LFM. With only one free parameter, the gap dimension 
a-b, the deviations were less than 0.5 %. The right side of Figure 4 shows that allowing Kexit to be 
a free parameter reduced the deviations significantly. As explained in Appendix A, the geometry 
of the duct suggests that a nonzero value of Kexit is reasonable, and its fitted value falls in the 
physically allowed range 0 < Kexit  < |Kent|. 
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Figure 4.  Flow ratio versus Reynolds number for the annular LFM. 
 
Figure 5 shows the model corrections for nitrogen at 400 kPa and helium at 100 kPa. The 
relatively large aspect ratio, ( )/L a b− = 1720, yields small entrance and exit corrections 
(< 0.3 %). However, the relatively small transverse dimension (a - b) leads to a large Knudsen 
number, particularly for low pressure helium, and it gives slip corrections as large as 3.5 %. At 
fixed exit pressure, the slip correction decreases with flow because the average pressure 
increases, which shortens the mean free path. 
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b) He at 100 kPa
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Figure 5. Corrections applied for the annular LFM for a) nitrogen at P2 ≈ 400 kPa and b) helium 
at P2 ≈ 100 kPa. 

 
Figure 6 shows the results for the circular segment LFM. As with the annular LFM, allowing Kexit 
to be a free parameter yielded a plausible value for Kexit and corrected much of the Reynolds 
number dependence seen on the left side of Figure 6. However, adjusting Kexit could not remove 
the pressure dependence seen at low pressures and high Re because the associated correction term 
depends only on Re. In contrast, the expansion correction term depends on the pressure ratio 
P2/P1 as well as Re, and the right side of Figure 6 shows that reducing Kexp from 1 to 0.55 
significantly reduced the pressure dependence. We have no explanation for why the fitted value 
should differ from the value Kexp = 1 implied by the calculation in Appendix C. 
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Figure 6. Flow ratio versus Reynolds number for the circular segment LFM. 
 
Figure 7 shows the model corrections for nitrogen at two exit pressures. The expansion correction 
is more significant at the lower pressure because, as the exit pressure increases, P2→P1 and the 

( )2 1ln P P  dependence of this correction term approaches zero. At the largest flow, entrance and 
exit corrections are approximately twice as large as any other correction. 
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b) N2 at 500 kPa
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Figure 7. Corrections applied for the circular segment LFM for nitrogen at a) P2 ≈ 200 kPa and 
b) P2 ≈ 500 kPa. 

 
The experimental results in this paper are based on measurements of absolute pressure, 
differential pressure, temperature, and mass flow, plus REFPROP values of compressibility, 
density, and viscosity. The most significant associated uncertainties are for the measurements of 
differential pressure at low flows (10 % of LFM full scale) and for the REFPROP values of 
viscosity.There are opportunities for improving the measurements by using better pressure 
instrumentation. The uncertainty of the REFPROP viscosity values is estimated to be 0.5 % at 
k = 2, or 95 % confidence level [12

 

]. At any particular Reynolds number, the agreement between 
nitrogen, argon, and carbon dioxide is better than that, generally < 0.2 %. However, the helium 
data are approximately 0.3 % higher for all three LFMs. 

5. Summary 
 
Equation (4) gives a physical model for the laminar flow meter based on the Hagen-Poiseuille 
equation, generalized for various flow path geometries, with corrections for non-ideal gas effects, 
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slip flow, end effects, gas expansion through the meter, and thermal effects. For three 
commercially produced LFMs, the coefficients of the LFM model were established based on 
literature values and calibrations of the LFMs in nitrogen. The LFMs were also calibrated in 
argon, helium, and carbon dioxide for a range of flows 10% to 100 % of full scale flow) and 
pressures (100 kPa to 400 kPa). The LFM model was evaluated by plotting the ratio of the model 
predicted flows to flows from reference flow standards with uncertainty < 0.1 %. The NIST 
properties database REFPROP was used for density and viscosity values. The spread of the 
results for all three LFM geometries was < ± 1.5 % when the assumed values of K were used. 
When the K values were based on fits to nitrogen data, the model gave flows within ± 0.5 % of 
the flow standards for the 4 gases tested. 
 
It is clear from the circular LFM results that the current model does not capture all of the physical 
phenomena when kinetic energy effects are large, i.e. when L/r is small. The pressure dependence 
observed for the circular segment LFM, which we corrected using Kexp, also requires explanation 
and may be due to missing physics in the present LFM model. 
 
Figure 8 shows the results when fits to the viscosity and flow coefficients [defined in Eq. (1)] are 
applied to the data collected with two of the LFMs. For the circular segment LFM, the neglect of 
slip for the helium data at 100 kPa causes errors up to 1.5 %. Residuals due to slip effects in the 
annular LFM (not shown) are as large as 2.7 %. The large entrance and exit effects for the 
circular LFM are accounted for in the FC versus VC fits, but the neglect of other corrections leads 
to residuals up to 1.2 % (see right side of Figure 8). 
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Figure 8. Flow ratios when commonly used flow coefficient versus viscosity coefficient plots are 
applied to two of the three LFMs. Residuals are as much as 4 times worse than the LFM model. 

 
The results are instructive to those who use LFMs with multiple gases, and it motivates us to 
move beyond FC versus VC fits. We anticipate that laboratories that calibrate LFMs will design 
data collection protocols optimized to determine the LFM model parameters, i.e. transverse 
dimension, Kent + Kexit, and Kexp. This protocol is likely to be one gas, tested at different values of 
P1/2. 
 
Appendix A: Constants in the Flow Models  
The constant Kslip is a measure of momentum accommodation, and previous experience [9,13

5

] 
found that Kslip = 1.00 for impedances with metal surfaces. The only exception seen previously 
was a value as large as 1.2 for helium flowing through a quartz capillary [ ].  The values of Kent 
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and Kexp expected for the circle and the annulus were obtained from [5] and [9]. Appendix C 
gives the derivation of these constants for the circular segment. 
 
The parameter Kexit describes the recovery of pressure from the kinetic energy of fluid leaving the 
exit of the LFM. For the circular LFM, Kexit ≅ 0 was expected because the exiting fluid is dissipated 
as heat when it jets out of a small duct into a much larger chamber. (See the discussion in [2?]).  
 

 
Figure 9. Longitudinal cross section of the annular LFM. The gas flowed through the small gap 

between concentric cylinders. The tapered end of the inner cylinder reduced turbulence in the gas 
exiting the gap. The inner cylinder used in the circular segment LFM cylinder had a similar 

taper. 
 
However, dissipation at the exit seemed to be smaller for the annular and circular segment LFMs.  
As indicated by Figure 9, the duct for the annular LFM was defined by a central cylinder with 
tapered ends. The resulting smooth opening of the duct likely reduced jetting and dissipation in the 
exit chamber and thereby required the use of Kexit ≠ 0 as a second free parameter.  The circular 
segment LFM had a duct with a similar taper, but its value of Kexit had a smaller magnitude. Perhaps 
this occurred because flow exiting a circular segment is more likely to jet than flow exiting an 
annulus.  
 
The value of Ktherm depends on both the gas and the shape of the LFM’s cross section. Appendix 
A of [5] gives the general expression for a circular cross section, 

 therm
11
3

T RK
T
η η

η κ
  ∂

= − +  ∂   M
, (12) 

where M and κ are respectively the molar mass and thermal conductivity of the gas. The nature of 
the thermal correction suggests that the value of Ktherm is insensitive to the shape of the LFM’s cross 
section. We therefore assigned the value of Ktherm for the circle to that for the other two shapes, and 
we assumed the thermal correction was half that of the expansion correction, as was the case for the 
circular cross section.  

Table 5. Values of Ktherm. 

Gas Ktherm 
He -0.33 
N2 -0.26 
Ar -0.34 

CO2 -0.22 
 
 
Appendix B: The Function gvirial  
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The function gvirial, which accounts for the density dependence of the gas viscosity and departures 
from the ideal gas law, can be derived as follows. For a circular cross section the differential form 
of Poiseuille’s Law is 

 ( ) ( )
4

8 , ,T P Q T P
dP dz

r
η

π
= − , (13) 

where Q is the volume flow and z is the length along the capillary. For an ideal gas whose viscosity 
is pressure-independent, integrating Eq. (13) gives the uncorrected flow, 0m  of Eq. (5). Integrating 
Eq. (13) for a nonideal gas and dividing by 0m  gives the following ratio. 

 ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( )

2

21

2 1

1

1 2 2 2
1 2ideal

, / , / ,21 ,
, / ,0, / ,0

P

PP
virial P P

P

T P T P dP P Z T P
g P P dP

T P TP PT P T dP

ρ η

η ηρ η

  
+ = =

−  

∫
∫

∫
 (14) 

For a gas that is nearly ideal, this integral can be approximated by a function of the virial 
coefficients for pressure and viscosity [5]. In this work we instead obtained values of the 
integrand from REFPROP and calculated the integral numerically. Simpson’s rule, which 
required property values at only three pressures, P1, P1/2, and P2, was sufficiently accurate, and it 
was easy to implement in a spreadsheet: 

 ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

1 1 1/ 2 1/ 2 2 2
1 2

1/ 2 1 1/ 2 2

/ , / , / ,1 1 4 11 ,
2 3 , / ,0 3 , / ,0 3 , / ,0virial

P Z T P P Z T P P Z T P
g P P

P T P T T P T T P Tη η η η η η
 

+ = + + 
  

 (15) 

 
Appendix C: Derivation of the Flow Model for the Circular segment  
Laminar flow through a duct whose cross section is a circular segment has been calculated 
previously by numerical means [7]. Here we approximated the circular segment by a very obtuse 
isosceles triangle, which gave two advantages. First, as shown in Figure 10, the triangle could be 
further approximated by many pairs of parallel plates, which eased the calculations of the slip, 
entrance, and expansion corrections. Second, the parallel-plate calculation could be checked 
against an exact solution. Both calculations are described below, followed by the adjustment for 
compressible flow. The last three calculations derive the corrections for slip, flow near the 
entrance, and expansion. 

 

Figure 10. The flow through the very obtuse triangle is approximately the sum of a set of flows 
through parallel plates. 

 
Incompressible Flow: Parallel-Plate Approximation 
Figure 3 approximates the obtuse triangle as many pairs of parallel plates of height h(x) and 
differential width dx, where x is the distance along the triangle base from the corner to the 
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middle. To simplify the derivation, assume for now that the fluid is incompressible. The volume 
flow through the rectangle defined by one pair of plates is 

 
3

12
h dxdQ

Lη
= . (16) 

and the total volume flow through the entire triangle is 

 
( )

/2 /23 3 31 2 1 2
0 0 0

43/2 3
1 2 1 2

2 sin
12 6

/ 22
6 4 48

W WP P P PQ h dx x dx
L L

WP P P PH WH
L W L

θ
η η

η η

   − −
= =   

   

   − − ≅ =    
    

∫ ∫
 (17) 

 
Incompressible Flow: Exact Solution 
This parallel-plate calculation was checked against a solution that combined analytical and 
numerical results for incompressible Poiseuille flow through a duct of triangular cross section and 
length L. Mortensen et al. [14

 

] found that the volume flow is 

( ) 2
1 2

0
D

P P AQ
Lη α

−
= , (18) 

where A is the area of the triangle and α is a geometric factor that characterizes the effective 
hydraulic radius. Using Mortensen et al.’s result for αD with a very obtuse isosceles triangle with 
sides (U,U,W), as shown in Figure 10, yields 

 
( )

3
1 2

0 800 /17
P P WHQ

Lη
 −

≅  
 

. (19) 

Eq. (19) validates the accuracy of the integral calculation of Eq. (17) because the two results 
disagree by a factor of only 51/50. 
 
Compressible Flow 
Accounting for the gas’s compressibility amounts to multiplying Eq. (17) by a factor of 
(P1 + P2) / (2RT) [5], yielding 

 
( )

( )

3 2 2
1 2

0 96 ,0

WH P P
m

T LRTη

−
=

M
. (20) 

Slip Correction 
Adding a slip correction to the model requires changing the argument of the integral in the first 
line of Eq. (17) from h3 to h3(1 + 6λ/h). The factor of 6 is the value appropriate for flow through 
parallel planes [9]. The relative correction for slip is then 

 

( )

( )

/2 3 2
slip 0

/2 33
0

0

1 6 / 6
1

6 / 3 4
/ 2 sin / 4 / 2

W

W

h h dx h dxm
m h dxh dx

W H

λ λ

λ λ
θ

+∆
= − =

= ≅

∫ ∫
∫∫




 (21) 

 
Entrance Correction 
The kinetic energy change near the entrance causes a pressure drop of 

 
2

2 1
1 ent 1 1 ent 1

QP K v K
A

ρ ρ  ∆ = =  
 

, (22) 
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where ρ1 and v1 = Q1/A are respectively the density and average velocity at the entrance, and 

 
( )
( )

3 2 2
1 20

1
1 196 ,0

WH P PmQ
T LPρ η

−
= =


 (23) 

is the uncorrected volume flow at the entrance. The relative change of flow due to ∆P1 is 

 ( )2 2
1 1 2ent 1 1

2 2 2 2
0 1 2 1 2

21
P P Pm P P

m P P P P
+ ∆ −∆ ∆

= − ≅
− −




. (24) 

Substituting Eqs. (22) and (23) into Eq (24), using the area A = WH/2, and defining Re from Eq. (6) 
yields 

 
2

ent ent1 1
ent 12 2

0 1 2

2
24

m KP Q HK Re
m P P A L

ρ∆    = =   −    




. (25) 

This expression is analogous to the entrance corrections for the circle and the annulus, for which 
Kent = -1.14 and -0.9 respectively. Due to the similarity of Kent for those very different cross 
sections and the intermediate aspect ratio of the circular segment, we assumed that 
Kent = 1.0 ± 0.1 for the circular segment. 
 
Expansion Correction 
Adding an expansion correction to the model requires using the expansion correction for the 
rectangular duct [9] to modify the argument of the integral in the first line of Eq. (17). The 
relative correction for expansion is then 

 
( ) ( ) ( ) ( ){ }/2 3

expRectangle local 2 1exp 0
/2 3

0
0

1 / 5 / 2 ln /
1

W

W

h K h L Re x P P dxm
m h dx

+  ∆  = −∫
∫




, (26) 

where KexpRectangle = 9/7 is the parallel-plate value for Kexp [9]. Using Eqs. (3), (4), and (9) of [9] gives 
an expression for the local Reynolds number:  

 ( ) ( ) 3
local 2

Re x h x
Re H

 
=  

 
, (27) 

where Relocal(x) is the Reynolds number for a thin rectangle as defined by Eq. (9) of [9]. Using 
Eq. (27) in Eq. (26) gives 
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/23 33
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0
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θ
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


. (28) 
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