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ABSTRACT
Recently there has been an increased focus on the environ-

mental aspects of the manufacturing industry across the world.
Boeing and the National Institute of Standards and Technology
(NIST) have studied the incorporation of Life Cycle Analysis
(LCA) parameters into Discrete Event Simulation (DES) as a
means to analyze sustainable performance in the manufacturing
area. For machining, accurate analysis of manufacturing pro-
cesses using Discrete Event Simulation requires detailed Com-
puter Numerical Control (CNC) production data. Using MTCon-
nect, production LCA data from Boeing shop floor machine tools
was acquired and was used as input to Discrete Event Simulation
models. We will discuss our implementation, and analyze results
of incorporating shop floor LCA data directly in DES models.

Keywords
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machine tool, sustainable manufacturing, Computer Numerical
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Nomenclature
CNC Computer Numerical Control
DES Discrete Event Simulation
FEPC Front End PC
FSM Finite State Machine
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HVAC Heating, Ventilating, and Air Conditioning

LCA Life Cycle Analysis
MTC MTConnect
MTBF Mean Time between Failure
MTTR Mean Time to Repair
OEE Overall Equipment Effectiveness
OMAC Open Modular Architecture Control
NC Numerical Control
PLC Programmable Logic Controller
RPM Revolutions per minute
XML eXtensible Markup Language

INTRODUCTION
There was a time in manufacturing when sustainability re-

ferred to lean and agile production in order to keep a business
profitable for the long term. Over time, the definition of man-
ufacturing sustainability has been broadened from a financial
viewpoint to also considering environmental integrity and social
equity. The U.S. Department of Commerce defines sustainable
manufacturing as “the creation of manufactured products that
use processes that are non–polluting, conserve energy and nat-
ural resources, and are economically sound and safe for employ-
ees, communities, and consumers.” To be sustainable, companies
must analyze their current processes, innovate, and identify new
sources of revenue and cost reduction, but with a broader social
and environmental agenda.

For machining applications, the question arises, “What does
it mean to be sustainable?” Life Cycle Analysis (LCA) is one of
several techniques to evaluate the sustainability of a system by
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classifying the consumption data into various impact categories,
(e.g., global warming, stratospheric ozone depletion, photochem-
ical smog, and energy consumption), and then perform analysis
and estimation of the magnitudes of potential impacts for each
impact category. The ISO standard for life cycle impact assess-
ment, ISO 14042 [1, 2], considers classification and character-
ization to be mandatory elements of LCA. More specifically, a
first step towards sustainability involves the identification and
accounting for materials, energy, and wastes, compliance with
regulations, and the reduction of toxics [3].

To develop metrics for in–house sustainable manufacturing,
companies must intelligently study their operations at a finer
granularity, such as on actual machines during production, within
processes, and over extended periods of time. For the discrete
parts industry this can be difficult as detailed process analysis on
the factory floor has been limited. This is primarily due to closed,
proprietary CNC architectures that make sustainable manufac-
turing assessment difficult. This paper will perform a baseline
LCA analysis of the energy and global warming aspects of a ma-
chine tool and its data requirements. Machine data acquisition
will be done in a non–intrusive manner, i.e., no extra equipment
or special metering, and thus will be easy and cost–effective for
companies wishing to perform LCA. For our test case using LCA
applied to a machine tool, we will use a five–axis machine tool
and its energy ratings found in a Boeing plant. After establishing
a model of instantaneous energy and emissions, we will compare
these findings to values computed from actual shop floor data and
also by projecting long–term LCA metrics using DES.

In manufacturing, Discrete Event Simulation (DES) simu-
lates a real or virtual model of production based on statistical
characterization of a shop floor process, such as cycle time, idle
time, failure rates. Once developed, the DES model can then be
used to simulate a prolonged length of operation, such as a pe-
riod of a year, in a short order of time to forecast expected long
term values. DES is aptly suited as a way to predict LCA met-
rics for long term energy consumption and Greenhouse gas emis-
sions. However, accurate DES projections require high–quality
data. For our DES models, the LCA estimations will be based on
actual data collected from production machine tools on a plant
floor. Collecting shop floor machine tool data can be difficult,
yet the advent of MTConnect, a new standard for data exchange
on the manufacturing floor, has made this easier.

This paper will study the use of shop–floor data in the LCA
of the energy and environmental aspects of a machine tool. Sec-
tion 2 will give a brief overview of LCA and then do a baseline
data analysis for the cutting aspects of a CNC milling machine
tool. Section 3 will investigate a case study of LCA for machine
tools in a production workcell at a Boeing plant. The calcula-
tion of the LCA machine tool metrics for energy and emissions
machine tool LCA metrics using MTConnect and DES will be
discussed. Finally, a discussion of the results and future direc-
tions will be given.

LIFE CYCLE ANALYSIS
In the current paradigm, sustainability has become the

catch–all phrase when referring to production improvements and
covers numerous techniques. The complexity and interaction
of all the sustainable constituent elements, such as profit, envi-
ronmental, life cycle, user experience, recyclability, etc., make
it very difficult to measure and assign numbers in evaluating
sustainability. Clearly, applying logical measurement strategies
with better evaluation benchmarks would help deepen the under-
standing of how sustainable manufacturing works. One of the
more popular methodologies in evaluating sustainability is LCA,
which is a technique to assess the environmental aspects and po-
tential impacts associated with a product, process, or service, by:

• compiling an inventory of relevant energy and material in-
puts and environmental releases;
• evaluating the potential environmental impacts associated
with identified inputs and releases;
• interpreting the results to help make a more informed de-
cision [4].

Figure 1 shows the stages of a LCA manufacturing prod-
uct: material extraction and production, manufacturing, packag-
ing and shipping, use phase, and end–of–life phase. In the LCA
approach, the product perspective is extended beyond the tradi-
tional total cost of ownership, i.e., cost of acquisition, operation,
maintenance, and disposal, to include the product’s environmen-
tal impact and energy consumption during all product phases -
from raw materials extraction to disposal. The LCA emphasis on
environmental impact attempts to rectify such issues as build–
up of greenhouse gas, ozone layer depletion, de–forestation, ex-
hausting non–renewable energy sources, water and air contami-
nation, and dealing with hazardous waste.

There are many processes used by the metalworking indus-
tries each with its own energy and emissions profile [5]. The fo-
cus of this paper will be on the real–time ongoing LCA analysis
of energy and emissions for the cutting process on CNC milling
machines. We assume a semi–automated production scenario re-
lying heavily on automated machining with a full compliment of
auxiliary equipment such as tool changers, chillers, etc. Produc-
tion machining covers a wide spectrum of different activities, and
the focus will be on subset of potential processes aimed at five–
axis milling of prismatic and contoured non–prismatic parts. In
contrast to many of the findings in literature, performing sustain-
ability analysis of the material removal process, the calculated
LCA metrics in this paper will be based on actual production
data. Given the current data monitoring capabilities, the produc-
tion data may only provide some of the necessary parameters for
a thorough LCA analysis. Part of the goal of the paper is to iden-
tify the missing data elements that would help assist machine
in–situ sustainability analysis.

LCA presents an extensive system view of the machining
process and includes activities such as material production, ma-
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FIGURE 1. Life Cycle Model

terial removal, tooling, setup, coolant, among others. Material
removal will be the primary focus of the analysis in this paper.
Material extraction and processing is covered here [6]. Issues
relating to coolant and dry or near dry machining is covered
here [7–9]. A significant amount of work has been conducted
on sustainable machining with a great deal of effort being fo-
cused on the study of energy consumption and environment im-
pact [10–13]. These papers discuss energy consumption and pro-
vide models that were validated by research experiments. Most
research has been conducted using a test and measure model that
yields a linear model relationship between material removal rate
and power consumption. There is little research on achieving
machining sustainability that is cost–effective, implemented in a
timely manner, and has been studied under actual production op-
eration. Our preliminary work has focused on developing a sus-
tainable model validated by factory testing that will help under-
stand the implications of a continuous, on–line machining sus-
tainability system.

The underpinning of the sustainability work is the develop-
ment of a finite–state–machine (FSM) model to model all LCA
involved in machining production. But first, the scope of sus-
tainability is narrowed to understand and categorize energy and
emissions during the material removal process, as these are per-
ceived as having the largest benefits. The FSM can then be used
to categorize energy data during material removal to be later used
by DES [14]. Figure 2 shows the LCA using FSM to understand
material removal on a machine tool. The process contains phys-
ical inputs: raw or forged stock, tools and coolant, lubricants,
and compressed air. The primary output is the part. The pri-
mary consumable is energy, typically electrical, which powers
the machine servo drives, related auxiliary equipment and CNC
computer. Indirect energy consumption includes such items as
factory lights, HVAC, and miscellaneous plant functions and is
out of scope for our analysis. Electrical energy can be some com-

bination of renewable or non–renewable sources, and we will use
table lookup to approximate emissions based on the energy gen-
eration in a specific region.

FIGURE 2. Product LCA involving Machine Tool

During part production there are instantaneous wastes that
accumulate while machining and periodic wastes that occur in-
termittently. Instantaneous wastes consist of material chips, vi-
bration, heat, and possibly compressed air. Over time, peri-
odic waste would include disposal and recycling of accumu-
lated chips, coolant/cutting fluid, tools, fixtures, and lubricants.
The machining emissions include air emissions and noise emis-
sions. Any potential water emissions would be a by–product
from coolant operational loss and disposal. Most emissions are
by–products from energy consumption and the energy to make
stock material (e.g., casting or blank) and tools.

Next we map the FSM formalism of the energy states of
the machine tool during material removal process into a DES
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model. From [15], the basic definition of a controlled discrete–
event process is

G = (∑,Q,δ ,q0) (1)

where “Q” is the set of states, “q0” is the initial state, “δ” is
a finite set of output symbols, and δ : ∑×Q→ Q is the state
transition function. For a material removal process, “G” defines
a function that starts in the state q0 and generates a sequence of
events, i.e. state transitions, subject to the range of transitions
permitted by the function “σ”. Each event results in an output
from the set δ . This DES model of the machine tool behavior
can be equivalently described as a Finite State Machine (FSM),
which is a more common paradigm to modeling machine control
logic. A FSM model is a set of finite states together with a set of
state transitions, a machine controller as being in one of a finite
set of the possible states, known as the state–space, at any given
time.

The machining energy models found in the literature hint at
the FSM methodology, establishing an “Idle” or “Ready” ma-
chine energy baseline for power consumption, and implicitly as-
sume a “Machining state” as well. We will attempt to formalize
the Machine component based on enumerating the states required
for the machine removal process. Inside the Material Removal
Process box shown in Figure 2, the basic FSM formalism is given
as these states: OFF, DOWN, IDLE, MISC, and MACHINING.

OFF refers to the machine being off due to inactivity.
DOWN refers to the machine being idle/off due to an alarm or

fault.
IDLE refers to the state where the material removal process is

in manual mode during setup and takedown.
MACHINING refers to the state where the material removal

process is occurring.
MISC refers to CNC maintenance and other intermittent activ-

ities.

Adopting hierarchical state machine terminology, MISC is a
superstate that contains nested substates for tool changes, lubri-
cation cycles and other miscellaneous intermittent activities, and
is out of scope for detailed analysis. As a point of reference, the
FSM formalism could be adapted to a more detailed sustainabil-
ity analysis by including substates for machining such as DRY
MACHINING, WET MACHINING, HIGH SPEED MACHIN-
ING, ROUGHING, FINISHING, HOGGING, etc.

Given this state model, the energy consumption of machine
tool states computed over the time interval in that state is calcu-
lated as follows.

Edown = 0 (2)
Eidle = Em +Esp (3)

Emachining = Em +Esp +Ecp +Ecs (4)
Emisc = Eidle +(Ecc|Etc|El p) (5)

(6)

where:
Em: energy consumption of servo motors [kWh]
Esp: energy consumption of spindle motor [kWh]
Ecs: energy consumption of cooling system of spindle [kWh]
Ecp: energy consumption of coolant pump [kWh]
Etc: energy consumption of tool changer [kWh]
Ecc: energy consumption of chip conveyor [kWh]
El p: energy consumption of lubrication pump [kWh]

CASE STUDY
The goal of the Boeing/NIST work was to combine MT-

Connect and DES modeling to derive sustainable manufacturing
LCA benchmarks and cost projections based on plant floor data.
For our initial sustainability analysis, we concentrated on under-
standing the machining process within an integrated workcell at
Boeing that is primarily dedicated to making aluminum plane
shims, brackets and body joints. The workcell operates on batch
lots of aluminum parts with part runs ranging from one shim to
hundreds of brackets with assorted milling, drilling, facing and
probing operations. Cycle times for these parts vary from twenty
minutes for a bracket to approximately five hours for a body joint.
Each CNC features a high–speed spindle and other options for
high–speed machining. Production volume varies, generally a
little under 24/7 capacity, with most machines running 3 shifts a
day.

MTConnect
Closed architecture machine tools force the gathering of pro-

duction knowledge at a higher level of operation. In this scenario,
workorders enter the shop floor and then overall performance is
measured upon completion. Intermediary analysis of the process
steps and costs involved are then generally estimated. Clearly
for any system of reasonable complexity, the farther the data is
gathered from the real world, the greater the difficulty in analyz-
ing the data. Further, it is difficult to improve systems if they
cannot be accurately measured and quantitatively characterized.
In order to reduce costs, increase interoperability, and maximize
enterprise integration, the MTConnect standards have been de-
veloped to “open” machine tools and factory floor devices for
the manufacturing industry [16–18].

One of the major machine tool suppliers for Boeing added
MTConnect functionality to their machine tools making shop
floor data acquisition possible. The MTConnect Version 1.0
specification, which we used, provides data models for: position,
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feeds, speeds, program, control logic, and some tooling. The
goal was to supplement this basic device knowledge in order to
couple sustainability energy consumption data with DES model
parameters: cycle time, setup time, and downtime. To implement
these sustainability requirements, Boeing requested the machine
tool vendor add the data items: 1) part count to understand cycle
time and 2) servo and spindle loads to assist in energy manage-
ment.

Figure 3 shows the DES–MTConnect data flow as deployed
at Boeing. On the shop floor, the MTConnect Agent runs con-
tinuously as a Windows Service on a Front End PC (FEPC) as
constrained by the network security within the factory. MTCon-
nect Agent collects CNC data from an MTConnect Adapter that
outputs TCP/IP socket data messages that was provided by ma-
chine tool vendor.

FIGURE 3. MTConnect Data Flow

For our initial tests, we relied on the ease of MTConnect
remote connectivity to perform the data collection. Using VB-
Script, data was collected every 10 seconds over the course of
several weeks and was logged to Excel files. The Excel file
contained data for timestamp, machine state, program info, part
count, servo loads, tool info, alarms and feeds/speeds.

Discrete Event Simulation
DES was used to project long–term LCA metrics based on

production statistics. DES models a system as a chronological
sequence of discrete events and is especially popular where the
complexity of real world makes analytical “closed–form” solu-
tions impossible. It was necessary to transform the raw MTCon-
nect data into DES production model data. Figure 4 shows the
sequence of events to transform raw Excel data into projected
LCA metrics.

FIGURE 4. DES Data Flow

The Excel data contained controller state and mode infor-
mation such as power on/off, manual/automatic mode, execut-

ing/paused program execution, program status, and loads. First,
Excel macros were developed to filter the raw ten–second data
into DES compatible event data to assist in calculations that were
required in order to translate the data into OEE statistics for
breakdowns, repair times, cycle times and process related times.
The OEE data used a change of the MTConnect Part Count data
item as the basic cycletime discriminator. Although not perfect,
the change of the Part Count value was used as a reasonable ap-
proximation to the end of one part program and the beginning of
the next.

Table 1 summarizes the MTConnect data collected and the
logic used to calculate the DES model parameters, where E(x)
means the expected value and t = T (a,b) means the elapsed time
t from the beginning of event “a” until the occurrence of event
“b” and t = T (a) means time t spent in state “a”. Cycle Time per
part was calculated based on the time spent between increments
of the MTConnect “PartCount” data item.

The OEE statistics for machining time, setup time, and idle
time were calculated based upon subinterval time spent in the
part cycle time. The machining time per part was calculated
as the summation of time spent while the mode was auto, and
the feed and speed were greater than zero. The monitoring of
setup time was triggered by the change of MTCprogram from
a unique machine pallet load/unload program to a machining
part program. After this event transpired, setup was determined
as the amount of time spent while the MTCmode was manual.
This would include activities such as setting a work offset. The
Idle time was calculated as the amount of time spent while the
Execution status was Paused. The Off time was calculated as
the amount of time spent while the MTCpower was Off. The
Down time was calculated as the amount of time spent while
the MTCalarm was active. Mean Time between Failure (MTBF)
was also derived from the spreadsheet as estimated by the time
spent with the Alarm data set to Active. Likewise, Mean Time to
Repair (MTTR) was estimated from the time spent in the Alarm
state.

For our initial experiments, energy consumption for Off,
Down, Idle and Machining states were used in the DES anal-
ysis. Intermittent and periodic energy consumption (e.g., tool
change, chip conveyor, pallet shuttle, lubrication cycle) were not
addressed. Emissions were calculated based on the energy con-
sumption of the process and the material processing. It is desir-
able for emission estimate to be a single number, but character-
izing emissions is challenging due to uncertainties as they can
vary over time and from one source to another and because of
differences in design, ambient conditions, and maintenance and
repair [22].

In DES, statistical distributions are models used to create
sequences of events while simulating. A good statistical distri-
bution fit to the data is essential in the analysis, since an erro-
neous distribution will yield inaccurate results, leading to flawed
decisions. In order to better characterize the machine tool OEE
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TABLE 1. Mapping Data into Sustainability Metrics

Data Item Mapping

MTConnect Data Timestamp(ts), Machine, Power, Mode,
Execution, Program, Line, Sload, Xload,
Yload, Zload, Aload, Bload, Cload, Tool-
num, RPM, Alarm, AlarmState, Alarm-
Severity, PartCount, Feedrate

Cycle Time MTCmode = Auto and MTCrpm >
0 and MTC f eed > 0

Setup Time MTCprogram(t) 6= MTCprogram(t − 1) →
T (MTCmode = Manual) excluding pal-
lete shuttle program

Machining Time Cycle Time

Off Time MTCpower = O f f

Down Time MTCalarm = active

Idle Time T (MTCexecution = Paused or MTCmode =
Manual)

Misc Time Not addressed in this analysis

Mean Time Between
Failure

E(x), where x = T (MTCalarm 6=
active, MTCalarm = active)

Mean Time To Re-
pair

E(x), where x = T (MTCalarm =
active, MTCalarm 6= active)

Power kWh =
∫ t

0(MTCspindle × 15.0 + MTCXload ×
3.5 + MTCY load × 3.5 + MTCZload ×
3.5 + MTCAload × 1 + MTCCload ×
1)/(100.0+10.0)+Ecp +Baseline

Coolant Energy MTCmode = Auto & MTCrpm > 0 →
Coolant max rated kW load, else 0.0

Aluminum 7075
Density

0.00273 g/mm3 [19] or 0.0975 lb/in3

Aluminum Primary,
Ingot Energy Con-
sumption

13.2 kWh/kg of alumina [20]

CO2 Emissions 0.588 kg CO2 per kWh [21]

NOx Emissions 0.00181 kg NOx/kWh [21]

Waste - chips,
coolant, heat, etc.

Not addressed in this analysis

data, the DES software calculated the statistical distributions for
the Machining State, the Idle State, while the Down state was
calculated using MTTF and MTBF. Currently the statistical dis-
tribution fitting is done in a separate software package and then
loaded into Excel. Underway in the next phase of our research
is to embed the statistical and LCA analysis directly into the ma-
chine tool to allow MTConnect to provide in situ OEE and sus-

tainability data.

TABLE 2. MACHINE TOOL POWER RATINGS
Mechanism Output (kW)
Spindle 15.0
X-axis 3.5
Y-axis 3.5
Z-axis 3.5
A-axis 1.0
C-axis 1.0
Hydraulic Pump 1.5
Coolant Pump 0.37
Chiller

Spindle 0.4
Chiller unit 1.1
Fan 0.15

Chip Conveyor 0.2
Magazine Rotational Motor 0.6
ATC drive motor 0.4
CNC Computer Electronics 0.2

Energy for Idle and Machining were derived by using the
load data from MTConnect computed as a percentage of the max-
imum servo power rating, as shown in Table 2. We assume all
motors comply with the Energy Policy Act of 1992 (EPACT) that
requires that many commonly used motors comply with NEMA
“energy efficient” ratings if offered for sale in the United States.
This compliance gives an energy efficiency rating of about 90 %.
Baseline machine ready–state energy loading and energy loss el-
ements were added into the power calculations.

Analysis of the actual energy consumption reveals that ma-
chining costs are around 50 cents per hour given the Seattle area
industrial power rates of 5 cent per kWh. Inspecting the data,
we found the spindle was generally never highly loaded. The
lower loads can be attributed to the use of high–speed machin-
ing, where the machine tool takes small depth of cuts using high
feeds and speeds.

With the DES model in place, longitudinal simulations were
performed to analyze energy and emissions for extended peri-
ods of time. The breakdown of parameters to calculate the DES
energy and emission is as follows. First, the Parts Parameters
model was characterized by the expected overall machining per-
centage and the average weight of the aluminum stock in grams.
The weight was calculated based on the average size of the size
per part type (shim, bracket or body joint) and multiplied by the
nominal density for the material type from Table 1. The CNC
model was characterized by the cycle time per part type, the fail-
ure and recovery rate, and the energy consumption for the differ-
ent machine states. Part of the longitudinal sustainability calcu-
lation accounts for the production of the virgin aluminum stock
as indirect energy costs and emissions.

Table 3 shows the DES longitudinal estimations for 1 day,
1 week, 1 month, 3 months, and 1 year ignoring major machine
breakdowns and preventive maintenance. To make the DES num-
bers more transparent to the reader, zero variance was used for
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TABLE 3. DES LONGITUDINAL ESTIMATES

part cycle times. Other data such as idle energy and down times
were omitted for space consideration. The first set of data in
the longitudinal table was generated assuming a 7 day/week, 3
shifts/day machine operations with a single part mix (brackets),
no operator breaks, and 100 % capacity. In our DES model, any
combination of 5/6/7 days/week, 1/2/3 shifts/days, multiple parts
mixes were allowed, and the second set of data in the longitudi-
nal table shows 6 days/week, 2 shifts/day machine operations
with single part mix (brackets), 50 minute operator break/shift,
and 90 % capacity. The independent nature of the part to machine
scheduling at the Boeing plant means that multiple machine tools
can be simulated simultaneously, with mix and match schedul-
ing assignments used to understand factory capacity on a larger
scale.

The immediate impact of DES analysis is to provide an as-
sessment of the machine tool sustainability, which although pos-
sible, is not readily amenable to other types of analysis. The
importance of evaluating the machine tool with DES is the abil-
ity to now optimize the process based not only on throughput or
bottleneck performance, but also based on sustainability criteria.
More importantly, the integration of DES with the sustainabil-
ity data provides not only a single–point solution to optimize the
machine tool, but also scales well, as it can be incorporated into a
larger DES simulations that model the entireplant operations. Fi-
nally, DES plant models can be integrated to assess the enterprise
sustainability.

The DES analysis has established feasibility of performing
real–time machine tool sustainability analysis. While this is a
first step, the DES model could be enhanced if additional MT-
Connect data were available from the machine tool. Currently,
several material aspects were hard–coded due to the limitations
of the “M&G” CNC programming sophistication: part material
and part size. Regarding tool changes, MTConnect specifically
provides for NC blocks, but our implementation did not support
this parameter so we could not establish the time frame when

tool changes occurred. However, long–term LCA for tool life
would require a globally unique tool identification scheme that
was not available. Coolant energy was only approximated as
“on” for spindle positive RPM during Auto mode. Dry machin-
ing or air cuts during warm up cycles would require more de-
tailed data to understand the nuances of coolant use. The en-
ergy consumption of the auxiliary equipment, such as lubrica-
tion cycle or chiller, could be accessed through the PLC, but this
is something MTConnect would not be expected to support, un-
less there is deemed a large enough payback which could lead to
widespread adoption of this sustainability metric.

DISCUSSION
LCA is a technique to assess environmental aspects asso-

ciated with a product or process by identifying energy, mate-
rials, and emissions over its life cycle. Although important, a
set of principles does not necessarily help companies take tangi-
ble steps towards attaining sustainability. With the use of MT-
Connect, real–time shop floor data was collected to understand
sustainability while monitoring manufacturing. With the FSM–
based Material Removal model in place, data for the major rel-
evant sustainable issues on a machine tool energy consumption
and its relationship to greenhouse gas emissions was collected.
The importance of the DES is the ability to change various pro-
duction parameters and see the effect of throughput and capac-
ity on energy and emission. It must be noted that this work is
based on a small sample of energy data, and thus provides only
preliminary results of actual energy use. We did not measure
the energy use of the machine tool at the power source, but have
confirmed that the machine tool energy data correlates with other
related NIST work [23]. Strategically however, due to the cost
and inconvenience to instrument machine tools with energy man-
agement equipment, it is important to develop a non–invasive
energy–monitoring approach that is in–situ as well as cost effec-
tive.

There are other benefits to real–time energy and emission
data that could lead to more sustainability successes. The pro-
cess monitoring as it relates to quality and scrap offers a most
compelling benefit. By comparing energy and process numbers
over a long time period, one can determine if there is any corre-
lation to quality, scrap, and energy consumption. For example,
an unexpected rise in energy consumption could indicate an un-
derlying process error. Risk avoidance could also be performed
using the Sustainable DES model to understand the impact of
rising energy prices or the negative effect of material or energy
shortages.

In general, we have seen that Life Cycle studies are often
unnecessarily difficult because of differences and unclarity with
regard to methodology and reporting process. This confusion
could be remedied by assigning formal state–based energy mod-
els to specific pieces of equipment that could be reused or refined
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depending on the quantitative data required. Couple the library
of formal LCA state energy models with automated data acquisi-
tion, and the facility to calculate hard LCA numbers is in place.
Only with hard LCA, can informed sustainability decisions be
made.

DISCLAIMER
Commercial equipment and software, many of which are

either registered or trademarked, are identified in order to ade-
quately specify certain procedures. In no case does such identi-
fication imply recommendation or endorsement by the National
Institute of Standards and Technology or Boeing Aerospace, nor
does it imply that the materials or equipment identified are nec-
essarily the best available for the purpose.
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