
Computer Physics Communications 176 (2007) 694–700

www.elsevier.com/locate/cpc

Alignment of fiducial marks in a tomographic tilt series with
an unknown rotation axis ✩

Zachary H. Levine ∗, Alex Volkovitsky 1, Howard K. Hung

National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

Received 1 August 2006; accepted 24 January 2007

Available online 4 April 2007

Abstract

Alignment for tomography using a transmission electron microscopy frequently uses colloidal gold particles as fiducial reference marks. Typi-
cally, there is an implicit assumption that the tilt axis of the tomographic series is orthogonal to the beam direction. However, this may not be true,
either intentionally, if a tilt-rotate stage is used, or unintentionally, because of mechanical errors in the rotation stage or the sample fixture.

Here, we provide a computer code which takes as input a set of two-dimensional (2D) observations of fiducial reference marks at various tilt
angles and the values of those tilt angles. It produces as output a three-dimensional model of the observations, 2D shifts for each view, and the tilt
axis direction.

Program summary

Title of program: particleTilt
Catalogue identifier: ADYW_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYW_v1_0
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Computers: IBM2 compatible desktop PC; SGI2 Octane
Operating system: Red Hat2 WS 3 Linux (with 2.4.21-40.EL kernel); IRIX 6.5 IP30
Program language used: Fortran 90
No. of bits in a word: 32
No. of processors used: one
Has the code been vectorized: no
No. of lines in distributed program, including test data, etc.: 2397
No. of bytes in distributed program, including test data, etc.: 47 017
Distribution format: tar.gz
Peripherals used: one
Typical running time: 350 ms (larger included example, on 2.8 GHz 32-bit PC)
Nature of problem: The program is used to assist the alignment step in tomography. The samples should be prepared with spherical particles
(typically gold beads) which are observed in several views. (Not every particle need be observed in every view.) The program reports coordinates
of a 3D model of the particles as well as the direction of the tilt axis as a point on the unit sphere.
Method of solution: Our package minimizes an objective function whose free variables are a set of 3D model points and 2D shifts of the views as
well as two parameters characterizing of tilt axis as a point on the unit sphere. The objective function is decomposed into a pure quadratic form

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).

* Corresponding author.
E-mail address: zlevine@nist.gov (Z.H. Levine).

1 Present address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
2 Commercial organizations identified in this paper are for the purpose of identification only and are not endorsed by NIST. The associated equipment or software

identified is not necessarily the best available for the purpose.
0010-4655/$ – see front matter Published by Elsevier B.V.
doi:10.1016/j.cpc.2007.01.008

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADYW_v1_0
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:zlevine@nist.gov
http://dx.doi.org/10.1016/j.cpc.2007.01.008

Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700 695
which encompasses the model points and shifts, and a more complicated form which has only two degrees of freedom. The Broyden–Fletcher–
Goldfarb–Shanno algorithm is applied alternately and iteratively to minimize the objective function with respect to the two sets.
Published by Elsevier B.V.

PACS: 68.37.Lp; 06.90.+v
1. Introduction

Alignment is a critical phase of tomography on the microme-
ter or nanometer scale [1,2]. It contrast to, say, medical imaging,
where it is possible to hold the samples and detectors fixed on
the scale of the pixel (about 100 µm), this is impossible in mi-
crotomography where the pixels are about 1 nm for electron
microscopy or 10 nm for X-ray microscopy. In practice, every
image is subject to an arbitrary translation which must be re-
moved by an analysis of the scene or real-time control of the
instrument [3].

Solutions to the alignment problem either include or exclude
fiducials. If no fiducials are present, correlation or moment
techniques are used [4–6]. These require that the whole object
be imaged in every view. Here, we will consider the case of fidu-
cial marks which are usually implemented with colloidal gold
particles [3,7,8]. In addition, we assume rigid-body motion of
all the fiducials. The problem of radiation damage to a biologi-
cal cell and the attendant plastic flow has been addressed within
the IMOD package [7]. We also assume that the fiducial marks
may be distinguished from one another in each image and iden-
tified with a single three-dimensional object.

Typically in tomography using a single-axis tilt series, the
experimentalist reports the tilt angle as a single value. How-
ever, the direction of the tilt axis itself is not reported. It is
typically assumed that the tilt axis is in the plane orthogonal to
the beam direction [7]. However, this need not be the case [9].
In the present work, the tilt axis may be in any direction on the
unit sphere (except aligned with the beam). To the best of our
knowledge, there is no publicly available software in the case
in which the beam and the tilt axis are not orthogonal.

2. Method

We seek a 3D model of the fiducials (as points in space) as
well as 2D shifts of each image and the direction of the tilt axis
as a point on the unit sphere. A suitable objective function is

(1)F =
∑
mj

(
rmj − δvj −

∑
ii′

PjiRii′(φvn̂)Xi′p

)2

,

where the symbols are defined in Table 1. What this objective
function says is: consider the projection of each 3D particle
onto every view in which it may be seen. (This is the third term
in parenthesis.) We wish to minimize the squared deviation of
the projected point from its observed location rmj subject to
the proviso that every image is subject to an unknown rigid
shift δvj . To clarify the minimization problem, we write

(2)F = F(X, δ, n̂;φ, r),
Table 1
Symbols used herein. Primed symbols have the same meaning as the initial one,
the prime meaning “another instance of”. If all particles were present in all the
views, m would simply be v × p. In our case, some particles are allowed to be
missing, so m determines both v and p, i.e. implicitly v = v(m) and p = p(m).
Note that Nm � NpNv

i 3D Cartesian index index 1 to 3
j 2D Cartesian index index 1 to 2
v index of the views (or, equivalently, tilts) index 1 to Nv

p index of the fiducial points (taken to be objects in 3D) index 1 to Np

m combined view and particle index index 1 to Nm

rmj coordinates of the fiducial marks as observed known

Pji projection matrix
(

1 0 0
0 1 0

)
Rii′ rotation matrix determined by φvn̂

φv tilt angles known
n̂ tilt axis 2 unknowns
Xip coordinates of the fiducial marks 3Np unknowns
δvj shifts of each image 2Nv unknowns
F objective function dependent variable

where the symbols appearing without their subscripts are to be
understood as arrays whose components are to be determined
and the arguments after the semicolon are fixed for a given
problem. (In the case of φ, these are independent variables in
the measurement; for r , these are the dependent variables.) Note
that the objective function is invariant under Xip → Xip − �i ,
δvj → δvj + ∑

ii′ PjiRii′(φvn̂)�i′ . There is sufficient flexibil-
ity in the co-ordinate systems of the views to accommodate
a translation of the 3D model. In practice, we will minimize
the objective function and then (optionally) normalize the solu-
tion at the end. We may set Xip = 0 for any one particle indexed
by p and all three Cartesian directions indexed by i, or set the
centroid to the origin via

∑
p Xip = 0.

The rotation matrix R(φvn̂) is conveniently computed from
the Rodrigues parameters φvn̂ for each v [10]. We construct
an antisymmetric matrix J

(3)J (�ω) =
(0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

)
.

Then the rotation matrix is given by

(4)R(�ω) = eJ (�ω),

where �ω is the generator of the rotation [10]. (As is standard,
vectors are denotes as �ω; their magnitude is denoted as ω = |�ω|;
and their associated unit vectors are denoted as ω̂ = �ω/ω.) The
matrix exponential need not be performed explicitly to con-
struct the rotation matrix [10]. Instead,

(5)R(ω) = I + sin(ω)J (ω̂) + 2 sin2
(

ω

2

)
J 2(ω̂),

where I is the identity matrix.

696 Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700
Whereas the Rodrigues parameterization is sufficiently rich
to carry one 3D co-ordinate system into another (as are the
matrices constructed from Euler angles), the problem here is
simpler. We are concerned with describing a 2D tilt axis (as
a direction on the unit sphere). Hence, it suffices to consider
a two-dimensional space of generators with ωz = 0. The tilt
axis is described in terms of a generator of a rotation

(6)n̂ = eJ (�ω)ẑ,

where ẑ is the unit vector in the Cartesian z direction. If n̂ is the
unit vector characterized by θ and ϕ in polar co-ordinates, i.e.

(7)n̂ = sin θ cosϕx̂ + sin θ sinϕŷ + cos θ ẑ,

then

(8)�ω = −θ sinϕx̂ + θ cosϕŷ.

Following Taylor and Kriegman [11], we will minimize with
respect to �ω, with ωz = 0, instead of using alternative descrip-
tions such as the polar angles of the tilt axis or Euler angles
which have problems of discontinuities. Eq. (5) is used at two
distinct stages in the code: once to find the tilt axis in terms of
the parameter �ω itself and a second time with φvn̂ playing the
role of �ω to generate the rotation matrices R(φvn̂).

With the tilt axis direction fixed, the objective function is
a quadratic function of the other variables. Moreover, we an-
ticipate all of the eigenvalues of the Hessian of the objective
function will be positive except for three zero eigenvalues cor-
responding to the arbitrary center of coordinates of the particles.
Rapidly convergent algorithms such as the one due to Broyden–
Fletcher–Goldfarb–Shanno (BFGS) exist for this case [12].
(The presence of the zero eigenvalues at the minimum leads the
algorithm to converge to an arbitrary point in the 3D space of
minima. However, as discussed above, the solutions represent
translations of the model and a normalization can be imposed.)
With the particle coordinates and the shifts fixed, the objective
function may be expanded in spherical harmonics with � � 4
(i.e. is limited to a fourth-degree polynomial in the cosine of
the polar angle and the sine and cosine of the azimuthal angle).
Early attempts to minimize all variables jointly were dismal
failures. However, the following algorithm emerged:

Set n̂ from input.
Xip = 0
δvj = 0
Loop {

minimize F(Xip, δvj ; n̂(�ω))

update Xip and δvj for all (i,p) and (j, v)

minimize F(n̂(�ω);Xip, δvj)

update n̂

}
Arguments to the right of the semicolon are treated as parame-
ters. The parameters fixed for the whole problem, rmj and φv

are suppressed. In practice, although the second minimization
is over a somewhat complicated function, it seems to have two
minima. One corresponds to the rotation axis. A second corre-
sponds to its negative. We have not explored this in detail. The
user is required to specify an initial guess for the tilt axis which
has some positive projection along the correct solution.

To converge, there must be at least as many input constraints
as degrees of freedom. The former are the number of observa-
tions Nm ≈ 2NpNv , where the approximate equality assumes
there is not too much missing data, and the 2 comes from the
2 co-ordinates per observation. Excluding translational invari-
ance, there are 3(Np − 1)+ 2Nv + 2 degrees of freedom. If Nm

exceeds the number of degrees of freedom only slightly, the
algorithm converges slowly. If there are about twice as many
constraints as degrees of freedom, the objective function is re-
duced by approximately a factor of 2 per iteration.

The work in this paper is similar to that of Díez et al. [9].
They also propose an algorithm, with an experimental imple-
mentation in their case, for determining the extent to which a
tilt axis is not orthogonal do the direction of projection. They
use 1-parameter to describe the direction of the tilt axis, allow
for an additional rotation of each image but do not allow for a
rigid shift of each image, allow for a magnification of each im-
age, and they require every particle to be present in every view.
In the present work, we use two-parameters to describe the di-
rection of the tilt axis, we do not allow for additional rotation of
each image but do allow for a rigid shift of each image, do not
allow for magnification of each image, and do not require every
particle to be present in every view. Technically, our algorithms
are similar in that our objective functions are very similar, and
we both split out the minimization objective function with re-
spect to the angular variable(s) from the other variables. We
differ in that we use the Rodrigues parameterization for the ro-
tation matrices whereas they use the Euler form.

3. Implementation details

We have implemented the code in Fortran 90. The princi-
ple language features of Fortran 90 which we used are dynamic
storage allocation, modules, and implicit loop on array indices.
The main program (“particleTiltMain.f90”) directs the input
to be read, the problem to be solved, and the solution to be
printed. The principle module (“findTiltSolnMod.f90”) is only
loosely coupled to the main program. It would be relatively
simple to use the principle module in another program so the
user is not necessarily dependent on the interface described be-
low. This module does not read or write any files (other than
some messages about the solution progress which are not essen-
tial to its operation). A companion program, “particleTiltData-
Gen.f90”, generates test data for “particleTiltMain.f90” based
on a known 3D model, shifts, tilt angles, and tilt axis. It also
allows Gaussian random noise to be added to the projected po-
sitions using the ziggurat method [13]. The main code relies
on the routine “lbfgs.f” [12]. The companion code uses random
number generator from the code “ziggurat.f90” [13].

The executable is created by invoking “make” after the file
is unzipped (on some systems, using the command “gunzip
particleTilt.tar.gz”) and untarred (on some systems, using the
command “tar -xlf particleTilt.tar”). The user’s system should
have a compiler whose name is “f90”, or the variable “FORT”

Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700 697
in the file “Makefile” may be set to the name of the Fortran 90
compiler.

3.1. User interface

The main code, whose executable is “particleTilt.x”, re-
quires three fixed-name files: “tilt.in”, “particle.in”, and “con-
trol.in” all of which are read by subroutines in the module
“particleTiltInMod.f90”. The file “tilt.in” contains

fmtGot the number 20060614 which serves as a file identi-
fier (i).

nTilt the number of tilt angles in the file (i).
tiltDeg the tilt angles in degrees (nTilt*f).

The symbols in parenthesis give the number and type of vari-
ables with i for integer and f for real. The input is read with free
format conventions. Each item may be on one or more lines, but
two different items may not share a line. The file “particle.in”
contains

fmtGot the number 20060209 (i).
nm the number of observations (i).
pp(m), vv(m), rObs(:,m) the particle index, the view index,

and the 2D position of each observation [(2*i,2*f), for m =
1, . . . ,nm].

The 1-based indices pp and vv may be in any order, but it is
assumed that every particle appears in at least 1 observation and
every view has at least one particle in it. The file “control.in”
contains

fmtGot the number 20060621 (i).
nHat the initial estimate of the tilt axis direction (3*f).
convFactor if the objective function is reduced by this factor

from the initial guess, the program halts (f).
nIterOuter if this many iterations of the loop described in the

method section occurs, the program halts (i).
iShift normalization convention for the solution. −1: omit nor-

malization; 0: set
∑

p Xip = 0; 1 � p � Np: set Xip = 0.
mBFGS parameter which controls how large the Hessian ma-

trix is in the lbfgs algorithm; see comments in lbfgs.f; rec-
ommended value: 7.

iPrint print control; see comments in lbfgs.f (2*i).
epsBFGS controls how close to 0 the gradient must be for

BFGS to be considered converged; see comments in lbfgs.f;
recommended value: 1.e–5 (f).

xTolBFGS estimate of machine tolerance; see comments in
lbfgs.f; recommended value: 1.e–15 (f).

In addition to the human-readable output file generated to the
standard output, the solution is summarized using free-format
write statements in its own file called “particleTiltSoln.out”
which may be read by a program written by the user, possibly in
another language. See “subroutine prtSoln” in “findParticleTilt-
Soln.f90” for details.
The companion code, whose executable is “particleTiltData-
Gen.x”, requires one input file called “particleTiltDataGen.in”.
The file contains

fmtGot the number 20060622 (i).
seed a seed for the random number generator (i).
sigma the standard deviation of the observations (i).
uHatUnnorm the direction of the tilt axis (an unnormalized

vector used as a unit vector) (3*f).
np the number of particles (i).
xPart the co-ordinates of the particle (3*np*f); the 3D Carte-

sian index is the fast index.
nv the number of views or, equivalently, tilt angles.
tiltDeg the tilt angles in degrees (nv*f).
deltaView the shifts added to each view (2*nv*f); the 2D

Cartesian index is the fast index.
nSkip number of observations to skip (can be 0).
pSkip(iSkip), vSkip(iSkip) particle and view indices to omit

(2*i, for iSkip = 1, . . . ,nSkip).

The variable sigma tells the standard deviation of the zero-mean
Gaussian noise to be added to the observed particle positions. It
may be set to 0. The companion code produces the files “tilt.in”
and “particle.in” as output. The companion code may be used
to generate test data for the main code. Of course, the main
code may take observed data as input. In particular, if the IMOD
code [7] is used, model positions generated using the command
“imodinfo -a modelFile” can be converted to the format re-
quired by “particle.in” with a small script, perhaps written in
a language such as AWK or Perl.

3.2. Code structure

Only the main program “particleTiltMain.f90” is described
in this section, the companion program “particleTiltData-
Gen.f90” being fairly simple. The modules of “particleTilt-
Main.f90” are

constantMod.f90 Contains global constants.
findTiltSolnMod.f90 Contains the heart of algorithm as well

as code for finding the objective function and its gradient
which is contained in the included file “objFtn.f90” which
also includes code to normalize the solution. Code to print
the solution is also included, but is invoked by the main
program.

lbfgs.f Subroutine for BFGS solution (by J. Nocedal).
particleTiltInMod.f90 Module for data reading.
particleTiltMain.f90 Main program. Calls for data reading,

solution, and printing of solution.
printMod.f90 Formats array printing.
rodriguesMod.f90 Contains code to generate rotation matri-

ces from their Rodrigues parameters.
vecMod.f90 Contains low-level routine for manipulation of

vectors, including one which uses the Rodrigues represen-
tation.

698 Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700
4. Test runs

4.1. Test case 1: 4 particles

The first test case places particles at the origin and (1,0,0),
(0,1,0), and (0,0,1) and the tilt axis in the x̂ direction. These
particles are viewed at 5 tilt angles, whose values are given in
“tilt.in”.

20060614 fmtGot
5 nTilt then tiltDeg
0.
90.
180.
270.
45.

The words each the input files are not read by the program; they
are in effect comments.

Next “particle.in” is presented.

20060209 fmtGot
20 nv then pp vv rObs
1 1 0. 0.
1 2 0. 0.
1 3 0. 0.
1 4 10. 0.
1 5 0. 0.
2 1 1. 0.
2 2 1. 0.
2 3 1. 0.
2 4 11. 0.
2 5 1. 0.
3 1 0. 1.
3 2 0. 0.
3 3 0. -1.
3 4 10. 0.
3 5 0. 0.70710678118654752440
4 1 0. 0.
4 2 0. -1.
4 3 0. 0.
4 4 10. 1.
4 5 0. -0.70710678118654752440 0.

The view at the fourth tilt angle is shifted by (10,0). Note
1/

√
2 ≈ 0.707

Finally, “control.in” contains

20060621 fmtGot
+1. +1. +1. nHat
1.e-20 convFactor
270 nIterOuter
+1 iShift (-1: no shift, 0: avg to

origin, 1:np, ip to origin)
7 mBFGS
1 1 iPrint (see lbfgs.f90 comment)
1.d-07 epsBFGS (see lbfgs.f90 comment)
1.d-15 xTolBFGS (see lbfgs.f90 comment)

The program prints to standard output. The final few lines in-
clude
findTiltSoln: iIterOuter 179 funcVal after
omega minimization 4.00067E-18

Tilt axis direction cosines 1.00000 0.00000
0.00000

Particle 1 0.00000 0.00000 0.00000
Particle 2 1.00000 0.00000 0.00000
Particle 3 0.00000 1.00000 0.00000
Particle 4 0.00000 0.00000 1.00000
Shift 1 0.00000 0.00000
Shift 2 0.00000 0.00000
Shift 3 0.00000 0.00000
Shift 4 10.00000 0.00000
Shift 5 0.00000 0.00000

4.2. Test case 2: 11 particles

A more realistic test case includes 11 particles viewed in
20◦ intervals between ±70◦. The positions of the particles were
generated as random triples of integers from 0 to 9, except
for the final particle which was placed at the origin. In addi-
tion, each particle was omitted from some view, chosen at ran-
dom. The input files “particle.in” and “tilt.in” were generated
by “particleTiltDataGen.x” from its input file “particleTiltData-
Gen.in” which contains

20060622 fmtGot
12345 seed
0. sigma
0.999949999 0. 0.01 uHatUnnorm
11 np
8 3 0
9 4 8
9 5 4
9 9 4
7 2 8
7 1 3
1 6 2
0 7 2
4 7 7
2 1 9
0 0 0 xPart
8 nv
-70.
-50.
-30.
-10.
+10.
+30.
+50.
+70. tilt
4 1
4 4
0 3
-1 4
1 -3
2 -4
2 2
3 -3 deltaView
0 nSkip
1 1

Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700 699
2 6
3 3
4 3
5 1
6 2
7 2
8 5
9 1
10 4
11 4

The file “control.in” contains

20060621
+1. +1. +1. nHat
1.e-20 convFactor
125 nIterOuter
11 iShift (-1: no shift, avg to
0: origin, 1:np, ip to origin)
7 mBFGS
-1 0 iPrint (see lbfgs.f90 comment)
1.d-05 epsBFGS (see lbfgs.f90 comment)
1.d-15 xTolBFGS (see lbfgs.f90 comment)

The output file has the following lines near the end:

findTiltSoln: iIterOuter 102 funcVal
after omega minimization 8.48246E-17

Tilt axis direction cosines 0.99995 0.00000
0.01000

Particle 1 8.00000 3.00000 0.00000
Particle 2 9.00000 4.00000 8.00000
Particle 3 9.00000 5.00000 4.00000
Particle 4 9.00000 9.00000 4.00000
Particle 5 7.00000 2.00000 8.00000
Particle 6 7.00000 1.00000 3.00000
Particle 7 1.00000 6.00000 2.00000
Particle 8 0.00000 7.00000 2.00000
Particle 9 4.00000 7.00000 7.00000
Particle 10 2.00000 1.00000 9.00000
Particle 11 0.00000 0.00000 0.00000
Shift 1 4.00000 1.00000
Shift 2 4.00000 4.00000
Shift 3 0.00000 3.00000
Shift 4 -1.00000 4.00000
Shift 5 1.00000 -3.00000
Shift 6 2.00000 -4.00000
Shift 7 2.00000 2.00000
Shift 8 3.00000 -3.00000

It is important to recall that the program works with real num-
bers and the integers are chosen only to make it easier for
the reader to verify the input and final output agree. Note also
that the 10 mrad out-of-plane tilt axis was accurately found by
the program, admittedly working with noise-free data. The PC
computer (32-bit, 2.8 GHz) required 350 ms to do the larger ex-
ample. Although an example is not provided here, the program
degrades gracefully in the presence of noise if the number of re-
dundant constraints is substantial (e.g., at least 50 % more than
the minimum).
5. Concluding remarks

The code presented here has two applications within tomog-
raphy using a transmission electron microscope. In the case in
which the tilt axis is supposed to be orthogonal to the beam di-
rection, this code enables the user to estimate whether a partic-
ular set of observations is consistent with such an assumption.
It is important to be aware of the possibility of a nonorthogonal
tilt axis because a code such as IMOD [7] might misinterpret
the effects of a nonorthogonal tilt axis as a plastic flow [9].

Second, a tilt series might be acquired with the tilt axis in-
tentionally nonorthogonal to the beam direction. This could be
implemented with a tilt-rotate holder. If the sample were held
at a fixed angle (say 45◦) from the beam direction, and rotated
about the azimuth of the holder, a slab-shaped sample would
have a constant thickness in contrast to the usual case in which
the thickness varies as the reciprocal of the cosine of the tilt an-
gle [8]. Three-dimensional Bayesian codes for tomography are
becoming available to process such data [14,15].

Acknowledgements

The authors gratefully acknowledge correspondence with
David Mastronarde and funding from the NIST Director and
the NIST Office of Microelectronic Programs.

References

[1] V. Lucic, F. Forster, W. Baumeister, Structural studies by electron to-
mography: From cells to molecules, Ann. Rev. of Biochem. 74 (2005)
833–865.

[2] R. McIntosh, D. Nicastro, D. Mastronarde, New views of cells in 3d: and
introduction to electron tomography, Trends in Cell Biol. 15 (2005) 43–
51.

[3] U. Ziese, A.H. Janssen, J.L. Murk, W.J.C. Geerts, T. Van der Krift, A.J.
Verkleij, A.J. Koster, Automated high-throughput electron tomography by
pre-calibration of image shifts, J. Microscopy-Oxford 205 (2002) 187–200
(Part 2).

[4] C.H. Owen, W.J. Landis, Alignment of electron tomographic series by
correlation without the use of gold particles, Ultramicroscopy 63 (1996)
27–38.

[5] S. Lanzavecchia, F. Cantele, P. Luigi, Alignment of 3d structures of macro-
molecular assemblies, Bioinformatics 17 (2002) 58–62.

[6] H. Winkler, K.A. Taylor, Accurate marker-free alignment with simulta-
neous geometry determination and reconstruction of tilt series in electron
tomography, Ultramicroscopy 106 (2006) 240–254.

[7] J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization
of three-dimensional image data using imod, J. Struct. Biol. 116 (1996)
71–76; see also http://bio3d.colorado.edu/imod/.

[8] H.B. Zhang, C. Yang, A. Takaoka, Measuring the top-bottom effect of
a tilted thick specimen in an ultrahigh-voltage electron microscope, Rev.
Sci. Inst. 76 (2005) 056106.

[9] D.C. Díez, A. Seybert, A.S. Frangakis, Tilt-series and electron microscope
alignment for the correction of the non-perpendicularity of beam and tilt-
axis, J. Struct. Biol. 154 (2006) 195–205.

[10] S.L. Altmann, in: Rotations, Quaternions, and Double Groups, Clarendon,
New York, 1986, p. 74ff.

[11] C.J. Taylor, D.J. Kriegman, Yale University Technical Report No. 9405,
1994; http://www.cis.upenn.edu/~cjtaylor/.

[12] D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale
optimization, Math. Programming (Ser. B) 45 (3) (1989) 503–528;
J. Nocedal, lbfgs.f90. We have included the version lbfgs from netlib,
http://www.netlib.org to avoid licensing issues. A more advanced ver-

http://bio3d.colorado.edu/imod/
http://www.cis.upenn.edu/~cjtaylor/
http://www.netlib.org

700 Z.H. Levine et al. / Computer Physics Communications 176 (2007) 694–700
sion, L-BFGS-B, may be obtained for certain purposes at http://www.ece.
northwestern.edu/~nocedal/lbfgs.html.

[13] G. Marsaglia, W.W. Tang, The ziggurat method for generating random
variables, J. Statist. Software 5 (8) (2000); http://www.jstatsoft.org/v05/
i08;
Fortran 90 code by A. Miller http://www.netlib.org/random/ziggurat.f90.
[14] Z.H. Levine, A.J. Kearsley, J.G. Hagedorn, Bayesian tomography for pro-
jections with an arbitrary transmission function with an application in
electron microscopy, J. Res. Nat. Inst. of Stand. and Technol. 111 (2006)
411–417.

[15] K. Thielemans, Software for Tomographic Image Reconstruction, http://
stir.hammersmithimanet.com/, Version 1.4, 2006.

http://www.ece.northwestern.edu/~nocedal/lbfgs.html
http://www.ece.northwestern.edu/~nocedal/lbfgs.html
http://www.jstatsoft.org/v05/i08
http://www.jstatsoft.org/v05/i08
http://www.netlib.org/random/ziggurat.f90
http://stir.hammersmithimanet.com/
http://stir.hammersmithimanet.com/

	Alignment of fiducial marks in a tomographic tilt series with an unknown rotation axis
	Introduction
	Method
	Implementation details
	User interface
	Code structure

	Test runs
	Test case 1: 4 particles
	Test case 2: 11 particles

	Concluding remarks
	Acknowledgements
	References

