

1

Combinatorial Methods for Event Sequence Testing

D. Richard Kuhn*, James M. Higdon**, James F. Lawrence***, Raghu N. Kacker*

*National Institute of **US Air Force ***Dept. of Mathematics
Standards & Technology 46th Test Squadron George Mason Univ.

Gaithersburg, MD Eglin AFB, FL Fairfax, VA

Abstract
Many software testing problems involve

sequences. This paper presents an application of
combinatorial methods to testing problems for
which it is important to test multiple
configurations, but also to test the order in which
events occur. For example, the methods described
in this paper were motivated by testing needs for
systems that may accept multiple communication
or sensor inputs and generate output to several
communication links and other interfaces. We use
combinatorial methods to generate test sequences
which ensure that any t events will be tested in
every possible t-way order.

Sequence-Covering Arrays

In testing event-driven software, the critical
condition for triggering failures often is whether or
not a particular event has occurred prior to a
second one, not necessarily if they are back to
back. This situation reflects the fact that in many
cases, a particular state must be reached before a
particular failure can be triggered. For example, a
failure might occur when connecting device A
only if device B is already connected. The
methods described in this paper were developed to
address testing problems of this type, using
combinatorial methods to provide efficient testing.
Sequence covering arrays, as defined here, ensure
that any t events will be tested in every possible t-
way order.

For this problem we can define a sequence-
covering array, which is a set of tests that ensure
all t-way sequences of events have been tested.
The t events in the sequence may be interleaved
with others, but all permutations will be tested.
For example, we may have a component of a
factory automation system that uses certain
devices interacting with a control program. We
want to test the events defined in Table 1.

There are 6! = 720 possible sequences for these six
events, and the system should respond correctly
and safely no matter the order in which they occur.
Operators may be instructed to use a particular
order, but mistakes are inevitable, and should not
result in injury to users or compromise the
enterprise. Because setup, connections and
operation of this component are manual, each test
can take a considerable amount of time. It is not
uncommon for system-level tests such as this to
take hours to execute, monitor, and complete. We
want to test this system as thoroughly as possible,
but time and budget constraints do not allow for
testing all possible sequences, so we will test all 3­
event sequences.

With six events, a, b, c, d, e, and f, one subset of
three is {b, d, e}, which can be arranged in six
permutations: [b d e], [b e d], [d b e], [d e b], [e b
d], [e d b]. A test that covers the permutation [d b
e] is: [a d c f b e]; another is [a d c b e f]. A larger
example system may have 10 devices to connect,
in which case the number of permutations is 10!,
or 3,628,800 tests for exhaustive testing. In that
case, a 3-way sequence covering array with 14
tests covering all 10 ⋅9 ⋅8 = 720 3-way sequences is
a dramatic improvement, as is 72 tests for all 4­
way sequences (see Table 4).

Event Description
a connect air flow meter
b connect pressure gauge
c connect satellite link
d connect pressure readout
e engage drive motor
f engage steering control

Table 1. System events

Definition. We define a sequence covering array,
SCA(N, S, t) as an N x S matrix where entries are
from a finite set S of s symbols, such that every t-
way permutation of symbols from S occurs in at

least one row and each row is a permutation of the 2 Constructing Sequence Covering Arrays
s symbols. The t symbols in the permutation are
not required to be adjacent. That is, for every t-
way arrangement of symbols x1, x2, ..., xt, the
regular expression .*x1.*x2.*xt.* matches at least
one row in the array. Sequence covering arrays, as
the name implies, are analogous to standard
covering arrays, which include at least one of
every t-way combination of any n variables, where
t<n. A variety of algorithms are available for
constructing covering arrays, but these are not
usable for generating t-way sequences because
they are designed to cover combinations in any
order.

Example 1. Consider the problem of testing four
events, a, b, c, and d. For convenience, a t-way
permutation of symbols is referred to as a t-way
sequence. There are 4! = 24 possible permutations
of these four events, but we can test all 3-way
sequences of these events with only six tests (see
Table 2).

Test
1 a d b c
2 b a c d
3 b d c a
4 c a b d
5 c d b a
6 d a c b

Table 2. Tests for four events.

Example 2. A 2-way sequence covering array can
be constructed by listing the events in some order
for one test and in reverse order for the second
test:

1 a b c d
2 d c b a

To see that the procedure in Example 2 generates
tests that cover all 2-way sequences, note that for
2-way sequence coverage, every pair of variables x
and y, x..y and y..x must both be in some test
(where a..b means that a is eventually followed by
b). All variables are included in each test,
therefore any sequence x..y must be in either test 1
or test 2 and its reverse y..x in the other test.

For t-way sequence test generation, where
t > 2, we use a greedy algorithm that generates a
large number of tests, scores each by the number
of previously uncovered sequences it covers, then
chooses the highest scoring test. This simple
approach produces surprisingly good results, and
we use an additional heuristic to improve its
efficiency. After each choice from candidate tests,
the sequence just selected is reversed and output as
the next test. The basis for this heuristic is that the
test selected from a candidate pool covered the
largest number of uncovered sequences, and we
want to produce a new test with as many
sequences as possible that do not duplicate
previous ones. Creating the second test as the
reversal of the first ensures that test2 will have just
as many new sequences covered as test1, as shown
below.

Algorithm t-seq(int t, int n)
// t = interaction strength; n = # parameters, n > t;
N = # candidate tests to generate
initialize test set ts to be an empty set;

n × (n − 1) × ... × (n − t + 1)initialize set chk of
bits to 0;

while (all t-way sequences not marked in chk) {
1.	 tc := set of N test candidates generated with

random values 0..n-1
2.	 test1 := test from set tc that covers the greatest

number of sequences not marked as covered
in chk;

3.	 for each new sequence covered in test1, mark
corresponding bit in set chk to 1;

4. ts := ts U test1 ;
5. if (all t-way sequences not marked in chk) {

test2 := reverse(test1);
ts := ts U test2 ;
for each new sequence cover in test2,

mark corresponding bit in set chk to 1;
}

}
return ts;

Figure 1. Algorithm t-seq

3

Proof of reversal step. Each test2, produced at step
5 by reversing test1, will cover the same number of
previously uncovered sequences as test1.

It will be shown that for any sequence covered
prior to test1, its reverse sequence was also
covered before generation of test1, and for any
sequence newly covered by test1, its reverse has
not been covered prior to generation of test2. For
each loop of the algorithm, two tests are produced,
and any sequence in test1 is accompanied by its
reverse in test2. The sequences covered in test1

can be divided into sets C, sequences covered
before test1 was generated, and U, new sequences
that were not covered before test1 was generated.
For any sequence s in C, its reverse s-1 will be
generated in test2. Because s had been generated
previously, its reverse also was generated by step
5 at an earlier point. For a sequence s in U, its
reverse must also not have been covered prior to
this point, because if s-1 had been generated
previously, then the algorithm ensures that s must
also have been generated, which would be a
contradiction. (end of proof)

Table 3 shows the number of 3-way sequence and
4-way sequence tests generated using this
algorithm. Note that the algorithm produces an
even number of tests for all except n=5 for 4-way
sequences, a consequence of step 5.

Algorithm Analysis

The algorithm is dominated by the selection of a
candidate test that covers the greatest number of
previously uncovered sequences. An array of bits
for each possible t-way sequence is used so that
marking and testing the array for a particular
sequence can be done in constant time for each of
the t-way sequences This selection process checks
each of the n × (n − 1) × ... × (n − t + 1) possible
t-way sequences to determine if the sequence has
previously been covered or is newly covered by
the candidate test. The check is done for each of
the N candidate tests, with constant N, so the time
complexity of the algorithm is O(nt). Storage
required for the algorithm is O(nt) also, because of
the set chk for keeping track of which sequences
have been covered at each step.

Events 3-seq Tests 4-seq Tests
5 8 29
6 10 38
7 12 50
8 12 56
9 14 68

10 14 72
11 14 78
12 16 86
13 16 92
14 16 100
15 18 108
16 18 112
17 20 118
18 20 122
19 22 128
20 22 134
21 22 134
22 22 140
23 24 146
24 24 146
25 24 152
26 24 158
27 26 160
28 26 162
29 26 166
30 26 166
40 32 198
50 34 214
60 38 238
70 40 250
80 42 264

Table 3. Number of tests for combinatorial 3­
way and 4-way sequences.

The number of tests generated grows
logarithmically with n. We show that at each step,
a greedy algorithm that selects the test which
covers the largest number of previously uncovered
sequences will progress at a rate of at least 1/t! of
the remaining sequences at each iteration. Thus
uncovered sequences are reduced as Ui+1 = Ui(1 ­
1/t!), and after k iterations, remaining uncovered
sequences will be U0(1 - 1/t!)k . Initially, U0 =
n × (n − 1) × ... × (n − t + 1) . For small n, it may be
possible to implement an optimal greedy algorithm
that tests all n! possible tests. For larger values of
n, the algorithm may be reasonably close to
finding an optimal next test, with sufficient
candidates.

Define a sequence as above, a t-way
arrangement of t symbols x1, x2, ..., xt, possibly
embedded within a longer arrangement of symbols

such that the regular expression .*x1.*x2.*xt.* will
match. A test sequence will be defined as a
particular sequence within a particular possible
test. Thus for n symbols, there are n! possible

⎛ ntests, n!⎜⎜⎝
⎞⎟⎟⎠

test sequences,
t

⎛
 n(n − 1)...(n − t + 1) = ⎜⎜⎝
n
⎟⎟⎠
⎞
t! t-way sequences to be

t

n!
covered, and tests per sequence, i.e., each

t!
n!

sequence occurs in tests.
t!

Proof of coverage rate. At the start of iteration i,
1there must be at least one test that covers Uit!

previously uncovered sequences.

At the start of generating test i, we have Ui

uncovered sequences and n!−i possible tests that
have not been added to ts. Initially, we have U0 =
⎛ n

⎟⎟⎠t!
uncovered sequences. Any test selected for⎜⎜⎝

⎞

t

⎛ n 1test 0 will cover sequences, so U1 =⎜⎜⎝
⎞⎟⎟⎠ = U 0t t!

U0(1 - 1/t!)1 prior to generation of test 1. For Ui

remaining uncovered sequences, there are
n!

Tu = Ui test sequences occurring in n!−i
t!

remaining possible tests, so there must be at least
one test with Tu/(n!-i) or more uncovered
sequences:

n!
U i ! n!U i 1t = ≥ U . Thus there is at least one
n!−i (n!−i)t! t! i

test that will cover 1/t! of the remaining
sequences. (end of proof)

Lower bounds on number of tests. If K(n, t)
denotes the smallest number of tests in a t-way
sequence covering array for n events. Clearly K(n,
t) ≥ t!, since each test covers ⎛⎜⎜⎝

n ⎞ arrangements⎟⎟⎠
t

⎛
 and we need to cover a total of ⎜⎜⎝
n
⎟⎟⎠
⎞
t!. A lower

t

bound can also be identified in relation to the size

of a conventional covering array. It is shown
below that K(n, 3) ≥ CAN(n-1, 2) for conventional
covering arrays CAN(n, t). Since CAN(n-1,2) is a
lower bound, the size of the sequence covering
array has to grow logarithmically in n, so by this
measure the algorithm performs well. For larger t,
K(n, t) > K(n, 3), so this provides a lower bound
for other values of t also.

Proof of lower bound relation. Suppose rows p1,
…, pk form a 3-way sequence covering array for n
events, of size K = K(n, 3). For each i = 1..k, form
a 0-1 vector vi of length n-1 by letting vi[j] = 1 if j
occurs to the left of n in pi, and 0 otherwise.
Given any two j1 and j2, the three numbers j1, j2,
and n must occur in all possible orders in the rows
p1, …, pk, and clearly all four possibilities for the
entries in the j1-th and j2-th positions must occur
among the corresponding vectors vi. Therefore v1,
…, vk form a binary pairwise covering array. (end
of proof)

Example. We will construct a binary pairwise
covering array from the sequence array in Table 2,
letting a, b, c, d, be represented by 1, 2, 3, 4
respectively. For the first row, 1, 4, 2, 3, note that
1 occurs before 4, so v1[1] = 1, while 2 and 3 occur
after 4, so v1[2] = 0 and v1[3] = 0. Then, v2[2] = 1,
v2[1] = 1, and v2[3] = 1, since 2, 1, 3 all occur to
the left of 4 in test 2, and so on.

4 Using Sequence Covering Arrays

Sequence covering arrays have been
incorporated into operational testing for a mission-
critical system that uses multiple devices with
inputs and outputs to a laptop computer. For this
system, earlier attempts at covering event
sequences was accomplished through the use of
Latin-Square designs. A Latin-Square design
(developed for testing the effect of different
treatments to different plots in agriculture) has as
many test-cases as treatments and each treatment
appears exactly once in every row and column.
Latin-Squares were proposed not for their
effective sequence-coverage, but for their
convenience in designing test cases where each
event can only appear once per-row and each
event occurs at every possible step-location.

Test
1 a b c d
2 d a b c
3 c d a b
4 b c d a

Table 4. Latin-Square for four events.

A by-product of Latin-Squares (LS) is 2­
way coverage of all pairs, but in the example in
Table 4, the array only achieves 50% 3-way
coverage in four cases. Compare the sequences
covered per test-case (SPTC) to sequence covering
array performance for a 4-event test (with 12
unique 2-way sequences and 24 unique 3-way
sequences), as shown in Table 5. In short, a
sequence covering approach dominated previous
methods in effectiveness and efficiency.

DDDDeeeessssiiiiggggnnnn SSSSttttrrrreeeennnnggggtttthhhh CCCCaaaasssseeeessss CCCCoooovvvveeeerrrraaaaggggeeee SSSSPPPPTTTTCCCC
SSSSCCCCAAAA 2 2 100% 6

3 6 100% 4

LLLLSSSS
2 4 100% 3
3 4 50% 3

Table 5. Comparison of SCA and LS designs.

As noted in Section 1, it was the case with
this system that system functionality depended on
the order in which events occurred, though it did
not matter whether events occurred adjacent to one
another (in any sub-sequence), nor did it matter
which step an event fell under (without regard to
the other events). The test procedure for this
system has 8 steps: boot system, open application,
run scan, connect peripherals P-1 through P-5. It
is anticipated that because of dependencies
between peripherals, the system may not function
properly for some sequences. That is, correct
operation requires cooperation among multiple
peripherals, but experience has shown that some
may fail if their partner devices were not present
during startup. Thus the order of connecting
peripherals is a critical aspect of testing. In
addition, there are constraints on the sequence of
events: can't scan until the app is open; can't open
app until system is booted. There are 40,320
permutations of 8 steps, but some are redundant
(e.g., changing the order of peripherals connected
before boot), and some are invalid (violates a
constraint). Around 7,000 are valid, and non-
redundant, but this is far too many to test for a

system that requires manual, physical connections
of devices.

TTTTeeeesssstttt EEEEvvvveeeennnnttttssss
1111 0 1 2 3 4 5 6
2222 6 5 4 3 2 1 0
3333 2 1 0 6 5 4 3
4444 3 4 5 6 0 1 2
5555 4 1 6 0 3 2 5
6666 5 2 3 0 6 1 4
7777 0 6 4 5 2 1 3
8888 3 1 2 5 4 6 0
9999 6 2 5 0 3 4 1

11110000 1 4 3 0 5 2 6
11111111 2 0 3 4 6 1 5
11112222 5 1 6 4 3 0 2

Table 6. Seven-event test set.

The system was tested using a seven-step
sequence covering array, removing boot-up from
test sequence generation. The initial test
configuration (Table 6) was generated using the
algorithm given in Sect. 2. Some changes were
made to the pre-computed sequences based on
unique requirements of the system test. If
6='Open App' and 5='Run Scan', then cases 1, 4, 6,
8, 10, and 12 are invalid, because the scan cannot
be run before the application is started. This was
handled by swapping items when they are adjacent
(1 and 4), and out of order. For the other cases,
several were generated from each that were valid
mutations of the invalid case. A test was also
embedded to see whether it mattered where each
of three USB connections were placed. The last
test case ensures at least strength 2 (sequence of
length 2) for all peripheral connections and 'Boot',
i.e., that each peripheral connection occurs prior to
boot. The final test array is shown in Table 7.

5 Related Work

To our knowledge, the notion of sequence
covering arrays has not been discussed in the
computer science or mathematics literature. Event
sequence testing has a long history [2, 3, 6, 7, 10,
11], but existing work in this area has focused on
coverage or program control flow graphs or

sequences derived from state transitions [3, 9, 10],
syntax expressions [2, 6], or other formal
descriptions of program behavior.

Of previous investigations, the most closely
related to ours includes applications of covering
arrays and combinatorial testing to graphical user
interface (GUI) testing. Wang et al. [12, 13]
describe a method of testing all 2-way sequences
in the navigation graph of a web application. The
method presented in this paper covers general t-
way, rather than strictly 2-way pairwise testing,
but does not deal with issues of navigation graph
coverage.

Yuan, Cohen, and Memon [14] use covering
arrays to improve the efficiency of GUI testing
where each node in the sequence can contain one
of a set of events, such as Clear Canvas, Draw
Circle, or Refresh. That is, each test contains
several steps, but events may be repeated, for
example Clear Canvas – Refresh – Refresh –
Draw Circle. Covering arrays are employed to
ensure coverage of all t-way sequences of events
in sequence, with nodes in the sequence
represented as factors and possible events at each
node represented as levels of the covering array.
In our applications, events may not be repeated, so
covering arrays do not apply in the same manner.

Apilli, Richardson, and Alexander [1]
introduce a fault-based testing method that uses t-
way combinations of potential faults in web
services, making it possible to detect interaction
faults. As in Yuan et al., combinatorial methods
are applied to the configuration of inputs, rather
than their sequence.

Conclusions
Sequence covering arrays can have

significant practical value in testing. Because the
number of tests required grows only
logarithmically with the number of events, t-way
sequence coverage is tractable for a wide range of
testing problems. Using a sequence covering array
for system testing described here made it possible
to provide greater confidence that the system
would function correctly regardless of possible
dependencies among peripherals. Because of
extensive human involvement, the time required
for a single test is significant, and a small number

of random tests or scenario-based ad hoc testing
would be unlikely to provide t-way sequence
coverage to a satisfactory degree.

References

1.	 Apilli, B. S., L. Richardson, C. Alexander,
Fault-based combinatorial testing of web
services. In Proc. 24th ACM SIGPLAN
Conference Companion on Object
Oriented Programming Systems
Languages and Applications (Orlando,
October 25 - 29, 2009).

2.	 G. V. Bochmann, A. Petrenko, “Protocol
Testing: Review of Methods and
Relevance for Software Testing,”
Softw.Eng. Notes, ACM SIGSOFT, pp.
109-124, 1994.

3.	 S. Chow, “Testing Software Design
Modeled by Finite-State Machines,” IEEE
Trans. Softw. Eng., vol. 4, no. 3, pp. 178­
187, 1978.

4.	 Dalal, S.R., C.L. Mallows, Factor-
covering Designs for Testing Software,
Technometrics, v. 40, 1998, pp. 234-243.

5.	 M. Grindal, J. Offutt, S.F. Andler,
Combination Testing Strategies: a Survey,
Software Testing, Verification, and
Reliability, v. 15, 2005, pp. 167-199.

6.	 K.V. Hanford, “Automatic Generation of
Test Cases”, IBM Systems Journal, vol. 9,
no. 4, pp. 242-257, 1970.

7.	 W. E. Howden, G. M. Shi: Linear and
Structural Event Sequence Analysis.
ISSTA 1996: pp. 98-106, 1996.

8.	 M. Memon and Q. Xie. Studying the fault-
detection effectiveness of GUI test cases
for rapidly evolving software. IEEE Trans.
Softw. Eng., 31(10):884–896, 2005.

9.	 J. Offutt, L. Shaoying, A. Abdurazik, and
P. Ammann, “Generating Test Data From
State-Based Specifications,” J. Software
Testing, Verification and Reliability, vol.
13, no. 1, pp. 25-53, March, 2003.

10. D.L.	 Parnas, “On the Use of Transition
Diagrams in the Design of User Interface
for an Interactive Computer System,”
Proc. 24th ACM Nat’l Conf., pp. 379-385,
1969.

11. B.	 Sarikaya, “Conformance Testing:
Architectures and Test Sequences,”

Computer Networks and ISDN Systems,
vol.17, no. 2, North-Holland, pp. 111-126,
1989.

12. W. Wang	 Sampath, S. Yu Lei, Kacker,
R., An Interaction-Based Test Sequence
Generation Approach for Testing Web
Applications, High Assurance Systems
Engineering Symposium, 2008. HASE
2008. Nanjing, 3-5 Dec. 2008 pp. 209­
218.

13. W. Wang, Y. Lei, S. Sampath, R. Kacker,
D. Kuhn, J. Lawrence, "A Combinatorial
Approach to Building Navigation Graphs
for Dynamic Web Applications",
Proceedings of 25th IEEE International

Conference on Software Maintenance, pp.
211-220, 2009.

14. X.	 Yuan, M.B. Cohen, A. Memon,
“Covering Array Sampling of Input Event
Sequences for Automated GUI Testing”,
November 2007

15. ASE	 '07: Proceedings of the 22nd
IEEE/ACM Intl. Conf. Automated
Software Engineering, pp. 405-408.

16. X.	 Yuan and A. M. Memon. Using GUI
run-time state as feedback to generate test
cases. In ICSE’07, Proceedings of the 29th
International Conference on Software
Engineering, pages 396–405, Minneapolis,
MN, USA, May 23–25, 2007.

Disclaimer: We identify certain software products in this document, but such identification does
not imply recommendation by the US National Institute for Standards and Technology or other
agencies of the US government, nor does it imply that the products identified are necessarily the
best available for the purpose.

1
2
3
4
5

 6
 7
 8
 9

10
 11
 12

13
 14
 15

 16
 17
 18 - - ca on an - - - - - -

Original
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8

1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan
2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT)
3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4
4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK)
5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan

6A Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5
6B Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5
6C Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5
6D Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5
7 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4

8A Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK)
8B Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT)
9 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK)

10A Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan
10B Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT)
11 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan

12A Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT)
12B Boot P 2 (USB RIGHT) Appli ti Sc P 5 P 4 P 1 (USB LEFT) P 3 (USB BACK)

