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Combinatorial Methods for Event Sequence Testing 
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Abstract 
Many software testing problems involve 

sequences. This paper presents an application of 
combinatorial methods to testing problems for 
which it is important to test multiple 
configurations, but also to test the order in which 
events occur. For example, the methods described 
in this paper were motivated by testing needs for 
systems that may accept multiple communication 
or sensor inputs and generate output to several 
communication links and other interfaces. We use 
combinatorial methods to generate test sequences 
which ensure that any t events will be tested in 
every possible t-way order. 

Sequence-Covering Arrays 

In testing event-driven software, the critical 
condition for triggering failures often is whether or 
not a particular event has occurred prior to a 
second one, not necessarily if they are back to 
back. This situation reflects the fact that in many 
cases, a particular state must be reached before a 
particular failure can be triggered. For example, a 
failure might occur when connecting device A 
only if device B is already connected. The 
methods described in this paper were developed to 
address testing problems of this type, using 
combinatorial methods to provide efficient testing. 
Sequence covering arrays, as defined here, ensure 
that any t events will be tested in every possible t-
way order. 

For this problem we can define a sequence-
covering array, which is a set of tests that ensure 
all t-way sequences of events have been tested. 
The t events in the sequence may be interleaved 
with others, but all permutations will be tested. 
For example, we may have a component of a 
factory automation system that uses certain 
devices interacting with a control program. We 
want to test the events defined in Table 1. 

There are 6! = 720 possible sequences for these six 
events, and the system should respond correctly 
and safely no matter the order in which they occur. 
Operators may be instructed to use a particular 
order, but mistakes are inevitable, and should not 
result in injury to users or compromise the 
enterprise. Because setup, connections and 
operation of this component are manual, each test 
can take a considerable amount of time. It is not 
uncommon for system-level tests such as this to 
take hours to execute, monitor, and complete. We 
want to test this system as thoroughly as possible, 
but time and budget constraints do not allow for 
testing all possible sequences, so we will test all 3­
event sequences. 

With six events, a, b, c, d, e, and f, one subset of 
three is {b, d, e}, which can be arranged in six 
permutations: [b d e], [b e d], [d b e], [d e b], [e b 
d], [e d b]. A test that covers the permutation [d b 
e] is: [a d c f b e]; another is [a d c b e f]. A larger 
example system may have 10 devices to connect, 
in which case the number of permutations is 10!, 
or 3,628,800 tests for exhaustive testing. In that 
case, a 3-way sequence covering array with 14 
tests covering all 10 ⋅9 ⋅8 = 720 3-way sequences is 
a dramatic improvement, as is 72 tests for all 4­
way sequences (see Table 4). 

Event Description 
a connect air flow meter 
b connect pressure gauge 
c connect satellite link 
d connect pressure readout 
e engage drive motor 
f engage steering control 

Table 1. System events 

Definition. We define a sequence covering array, 
SCA(N, S, t) as an N x S matrix where entries are 
from a finite set S of s symbols, such that every t-
way permutation of symbols from S occurs in at 



 

           
          

          
         

      
          
       

        
        

         
       

      
        

   
 

         
           

         
        

          
         

    
 

  
     
     
     
     
     
     

       
 

        
         
          

   
     
     

 
         

         
        

           
         

         
          

             
 
 
 
 
 

     
 

      
           

         
       

        
      

        
       

         
            
        

       
         

       
          

          
         

   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
 
 
 

     
            

         
          
         
                                   
            

          
   

           
       

  
         

       
       
          

     
       
         
              

  
    

  
 

least one row and each row is a permutation of the 2 Constructing Sequence Covering Arrays 
s symbols. The t symbols in the permutation are 
not required to be adjacent. That is, for every t-
way arrangement of symbols x1, x2, ..., xt, the 
regular expression .*x1.*x2.*xt.* matches at least 
one row in the array. Sequence covering arrays, as 
the name implies, are analogous to standard 
covering arrays, which include at least one of 
every t-way combination of any n variables, where 
t<n. A variety of algorithms are available for 
constructing covering arrays, but these are not 
usable for generating t-way sequences because 
they are designed to cover combinations in any 
order. 

Example 1. Consider the problem of testing four 
events, a, b, c, and d. For convenience, a t-way 
permutation of symbols is referred to as a t-way 
sequence. There are 4! = 24 possible permutations 
of these four events, but we can test all 3-way 
sequences of these events with only six tests (see 
Table 2). 

Test 
1 a d b c 
2 b a c d 
3 b d c a 
4 c a b d 
5 c d b a 
6 d a c b 

Table 2. Tests for four events. 

Example 2. A 2-way sequence covering array can 
be constructed by listing the events in some order 
for one test and in reverse order for the second 
test: 

1 a b c d 
2 d c b a 

To see that the procedure in Example 2 generates 
tests that cover all 2-way sequences, note that for 
2-way sequence coverage, every pair of variables x 
and y, x..y and y..x must both be in some test 
(where a..b means that a is eventually followed by 
b). All variables are included in each test, 
therefore any sequence x..y must be in either test 1 
or test 2 and its reverse y..x in the other test. 

For t-way sequence test generation, where 
t > 2, we use a greedy algorithm that generates a 
large number of tests, scores each by the number 
of previously uncovered sequences it covers, then 
chooses the highest scoring test. This simple 
approach produces surprisingly good results, and 
we use an additional heuristic to improve its 
efficiency. After each choice from candidate tests, 
the sequence just selected is reversed and output as 
the next test. The basis for this heuristic is that the 
test selected from a candidate pool covered the 
largest number of uncovered sequences, and we 
want to produce a new test with as many 
sequences as possible that do not duplicate 
previous ones. Creating the second test as the 
reversal of the first ensures that test2 will have just 
as many new sequences covered as test1, as shown 
below. 

Algorithm t-seq(int t, int n) 
// t = interaction strength; n = # parameters, n > t; 
N = # candidate tests to generate 
initialize test set ts to be an empty set; 

n × (n − 1) × ... × (n − t + 1)initialize set chk of 
bits to 0; 

while (all t-way sequences not marked in chk) { 
1.	 tc := set of N test candidates generated with 

random values 0..n-1 
2.	 test1 := test from set tc that covers the greatest 

number of sequences not marked as covered 
in chk; 

3.	 for each new sequence covered in test1, mark 
corresponding bit in set chk to 1; 

4. ts := ts U test1 ; 
5. if (all t-way sequences not marked in chk) { 

test2 := reverse(test1); 
ts := ts U test2 ; 
for each new sequence cover in test2, 

mark corresponding bit in set chk to 1; 
} 

} 
return ts; 

Figure 1. Algorithm t-seq 



 

          
          

     
 

         
        

        
        

           
         

         
         

        
        

         
           

         
        

              
         

        
        

        
      

 
         
      

        
          

         
 
 
   

 
         

        
       

         
        
          

       
     
        

        
           
          

         
         

         
         

 

     
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

        
    

 
  

      
          

        
       

           
        

         
       

             
        

       
           

        
       

   
 

       
         

       

3 

Proof of reversal step. Each test2, produced at step 
5 by reversing test1, will cover the same number of 
previously uncovered sequences as test1. 

It will be shown that for any sequence covered 
prior to test1, its reverse sequence was also 
covered before generation of test1, and for any 
sequence newly covered by test1, its reverse has 
not been covered prior to generation of test2. For 
each loop of the algorithm, two tests are produced, 
and any sequence in test1 is accompanied by its 
reverse in test2. The sequences covered in test1 

can be divided into sets C, sequences covered 
before test1 was generated, and U, new sequences 
that were not covered before test1 was generated. 
For any sequence s in C, its reverse s-1 will be 
generated in test2. Because s had been generated 
previously, its reverse also was generated by step 
5 at an earlier point. For a sequence s in U, its 
reverse must also not have been covered prior to 
this point, because if s-1 had been generated 
previously, then the algorithm ensures that s must 
also have been generated, which would be a 
contradiction. (end of proof) 

Table 3 shows the number of 3-way sequence and 
4-way sequence tests generated using this 
algorithm. Note that the algorithm produces an 
even number of tests for all except n=5 for 4-way 
sequences, a consequence of step 5. 

Algorithm Analysis 

The algorithm is dominated by the selection of a 
candidate test that covers the greatest number of 
previously uncovered sequences. An array of bits 
for each possible t-way sequence is used so that 
marking and testing the array for a particular 
sequence can be done in constant time for each of 
the t-way sequences This selection process checks 
each of the n × (n − 1) × ... × (n − t + 1) possible 
t-way sequences to determine if the sequence has 
previously been covered or is newly covered by 
the candidate test. The check is done for each of 
the N candidate tests, with constant N, so the time 
complexity of the algorithm is O(nt). Storage 
required for the algorithm is O(nt) also, because of 
the set chk for keeping track of which sequences 
have been covered at each step. 

Events 3-seq Tests 4-seq Tests 
5 8 29 
6 10 38 
7 12 50 
8 12 56 
9 14 68 

10 14 72 
11 14 78 
12 16 86 
13 16 92 
14 16 100 
15 18 108 
16 18 112 
17 20 118 
18 20 122 
19 22 128 
20 22 134 
21 22 134 
22 22 140 
23 24 146 
24 24 146 
25 24 152 
26 24 158 
27 26 160 
28 26 162 
29 26 166 
30 26 166 
40 32 198 
50 34 214 
60 38 238 
70 40 250 
80 42 264 

Table 3. Number of tests for combinatorial 3­
way and 4-way sequences. 

The number of tests generated grows 
logarithmically with n. We show that at each step, 
a greedy algorithm that selects the test which 
covers the largest number of previously uncovered 
sequences will progress at a rate of at least 1/t! of 
the remaining sequences at each iteration. Thus 
uncovered sequences are reduced as Ui+1 = Ui(1 ­
1/t!), and after k iterations, remaining uncovered 
sequences will be U0(1 - 1/t!)k . Initially, U0 = 
n × (n − 1) × ... × (n − t + 1) . For small n, it may be 
possible to implement an optimal greedy algorithm 
that tests all n! possible tests. For larger values of 
n, the algorithm may be reasonably close to 
finding an optimal next test, with sufficient 
candidates. 

Define a sequence as above, a t-way 
arrangement of t symbols x1, x2, ..., xt, possibly 
embedded within a longer arrangement of symbols 



 

       
          

      
          

    

     

         

      

 
            

          

     
 

          

       
            

        

         

               

     

      

         
        

 

        

        
    

  
          

         
         

        

            

          

         
         

         
        
          

         
           

        
 

         
          

              
              

            
           

           
          

         
        

          
  

 
        

         
            

            
             

               
              

             
  
     

 
     

      
       

          
      

       
     

       
        

       
        

      
     

       
        
       
 
 

such that the regular expression .*x1.*x2.*xt.* will 
match. A test sequence will be defined as a 
particular sequence within a particular possible 
test. Thus for n symbols, there are n! possible

⎛ ntests, n!⎜⎜⎝ 
⎞⎟⎟⎠ 

test sequences, 
t 

⎛
 n(n − 1)...( n − t + 1) = ⎜⎜⎝ 
n 
⎟⎟⎠ 
⎞ 
t! t-way sequences to be 

t 

n! 
covered, and tests per sequence, i.e., each 

t! 
n! 

sequence occurs in tests. 
t! 

Proof of coverage rate. At the start of iteration i, 
1there must be at least one test that covers Uit! 

previously uncovered sequences. 

At the start of generating test i, we have Ui 

uncovered sequences and n!−i possible tests that 
have not been added to ts. Initially, we have U0 = 
⎛ n 

⎟⎟⎠t! 
uncovered sequences. Any test selected for⎜⎜⎝ 

⎞
 
t 

⎛ n 1test 0 will cover sequences, so U1 =⎜⎜⎝ 
⎞⎟⎟⎠ = U 0t t! 

U0(1 - 1/t!)1 prior to generation of test 1. For Ui 

remaining uncovered sequences, there are 
n!

Tu = Ui test sequences occurring in n!−i 
t! 

remaining possible tests, so there must be at least 
one test with Tu/(n!-i) or more uncovered 
sequences: 

n!
U i ! n!U i 1t = ≥ U . Thus there is at least one 
n!−i (n!−i )t! t! i 

test that will cover 1/t! of the remaining 
sequences. (end of proof) 

Lower bounds on number of tests. If K(n, t) 
denotes the smallest number of tests in a t-way 
sequence covering array for n events. Clearly K(n, 
t) ≥ t!, since each test covers ⎛⎜⎜⎝ 

n ⎞ arrangements⎟⎟⎠
t 

⎛
 and we need to cover a total of ⎜⎜⎝ 
n 
⎟⎟⎠ 
⎞ 
t!. A lower 

t 

bound can also be identified in relation to the size 

of a conventional covering array. It is shown 
below that K(n, 3) ≥ CAN(n-1, 2) for conventional 
covering arrays CAN(n, t). Since CAN(n-1,2) is a 
lower bound, the size of the sequence covering 
array has to grow logarithmically in n, so by this 
measure the algorithm performs well. For larger t, 
K(n, t) > K(n, 3), so this provides a lower bound 
for other values of t also. 

Proof of lower bound relation. Suppose rows p1, 
…, pk form a 3-way sequence covering array for n 
events, of size K = K(n, 3). For each i = 1..k, form 
a 0-1 vector vi of length n-1 by letting vi[j] = 1 if j 
occurs to the left of n in pi, and 0 otherwise. 
Given any two j1 and j2, the three numbers j1, j2, 
and n must occur in all possible orders in the rows 
p1, …, pk, and clearly all four possibilities for the 
entries in the j1-th and j2-th positions must occur 
among the corresponding vectors vi. Therefore v1, 
…, vk form a binary pairwise covering array. (end 
of proof) 

Example. We will construct a binary pairwise 
covering array from the sequence array in Table 2, 
letting a, b, c, d, be represented by 1, 2, 3, 4 
respectively. For the first row, 1, 4, 2, 3, note that 
1 occurs before 4, so v1[1] = 1, while 2 and 3 occur 
after 4, so v1[2] = 0 and v1[3] = 0. Then, v2[2] = 1, 
v2[1] = 1, and v2[3] = 1, since 2, 1, 3 all occur to 
the left of 4 in test 2, and so on. 

4 Using Sequence Covering Arrays 

Sequence covering arrays have been 
incorporated into operational testing for a mission-
critical system that uses multiple devices with 
inputs and outputs to a laptop computer. For this 
system, earlier attempts at covering event 
sequences was accomplished through the use of 
Latin-Square designs. A Latin-Square design 
(developed for testing the effect of different 
treatments to different plots in agriculture) has as 
many test-cases as treatments and each treatment 
appears exactly once in every row and column. 
Latin-Squares were proposed not for their 
effective sequence-coverage, but for their 
convenience in designing test cases where each 
event can only appear once per-row and each 
event occurs at every possible step-location. 



 

  
     
     
     
     

       
 

      
          

        
       

       
        

       
         

     
     

 
                    

     
 
 

     
            

 
          

       
         
        

        
         

         
         

         
      

       
        
     

       
         

        
         

        
           

         
        

       
        

       
           

      
    

 

        
    
    
    
    
    
    
    
    
    
    
    
    

      
 

        
      

      
       

         
       

         
          

          
          

        
            

        
          
        

         
         

        
        

             
 
 
 

   
 

       
        
      
           

          
       

Test 
1 a b c d 
2 d a b c 
3 c d a b 
4 b c d a 

Table 4. Latin-Square for four events. 

A by-product of Latin-Squares (LS) is 2­
way coverage of all pairs, but in the example in 
Table 4, the array only achieves 50% 3-way 
coverage in four cases. Compare the sequences 
covered per test-case (SPTC) to sequence covering 
array performance for a 4-event test (with 12 
unique 2-way sequences and 24 unique 3-way 
sequences), as shown in Table 5. In short, a 
sequence covering approach dominated previous 
methods in effectiveness and efficiency. 

DDDDeeeessssiiiiggggnnnn SSSSttttrrrreeeennnnggggtttthhhh CCCCaaaasssseeeessss CCCCoooovvvveeeerrrraaaaggggeeee SSSSPPPPTTTTCCCC 
SSSSCCCCAAAA 2 2 100% 6 

3 6 100% 4 

LLLLSSSS 
2 4 100% 3 
3 4 50% 3 

Table 5. Comparison of SCA and LS designs. 

As noted in Section 1, it was the case with 
this system that system functionality depended on 
the order in which events occurred, though it did 
not matter whether events occurred adjacent to one 
another (in any sub-sequence), nor did it matter 
which step an event fell under (without regard to 
the other events). The test procedure for this 
system has 8 steps: boot system, open application, 
run scan, connect peripherals P-1 through P-5. It 
is anticipated that because of dependencies 
between peripherals, the system may not function 
properly for some sequences. That is, correct 
operation requires cooperation among multiple 
peripherals, but experience has shown that some 
may fail if their partner devices were not present 
during startup. Thus the order of connecting 
peripherals is a critical aspect of testing. In 
addition, there are constraints on the sequence of 
events: can't scan until the app is open; can't open 
app until system is booted. There are 40,320 
permutations of 8 steps, but some are redundant 
(e.g., changing the order of peripherals connected 
before boot), and some are invalid (violates a 
constraint). Around 7,000 are valid, and non-
redundant, but this is far too many to test for a 

system that requires manual, physical connections 
of devices. 

TTTTeeeesssstttt EEEEvvvveeeennnnttttssss 
1111 0 1 2 3 4 5 6 
2222 6 5 4 3 2 1 0 
3333 2 1 0 6 5 4 3 
4444 3 4 5 6 0 1 2 
5555 4 1 6 0 3 2 5 
6666 5 2 3 0 6 1 4 
7777 0 6 4 5 2 1 3 
8888 3 1 2 5 4 6 0 
9999 6 2 5 0 3 4 1 

11110000 1 4 3 0 5 2 6 
11111111 2 0 3 4 6 1 5 
11112222 5 1 6 4 3 0 2 

Table 6. Seven-event test set. 

The system was tested using a seven-step 
sequence covering array, removing boot-up from 
test sequence generation. The initial test 
configuration (Table 6) was generated using the 
algorithm given in Sect. 2. Some changes were 
made to the pre-computed sequences based on 
unique requirements of the system test. If 
6='Open App' and 5='Run Scan', then cases 1, 4, 6, 
8, 10, and 12 are invalid, because the scan cannot 
be run before the application is started. This was 
handled by swapping items when they are adjacent 
(1 and 4), and out of order. For the other cases, 
several were generated from each that were valid 
mutations of the invalid case. A test was also 
embedded to see whether it mattered where each 
of three USB connections were placed. The last 
test case ensures at least strength 2 (sequence of 
length 2) for all peripheral connections and 'Boot', 
i.e., that each peripheral connection occurs prior to 
boot. The final test array is shown in Table 7. 

5 Related Work 

To our knowledge, the notion of sequence 
covering arrays has not been discussed in the 
computer science or mathematics literature. Event 
sequence testing has a long history [2, 3, 6, 7, 10, 
11], but existing work in this area has focused on 
coverage or program control flow graphs or 



 

        
       

      
 

      
       

       
         
        

         
       

       
         

  
 

       
        
         

          
         
        

        
        
        

       
        

         
         

          
 

     
       

       
       

         
        

      
 

 
     

       
      

       
         

        
        

       
      

      
      

          

        
       

     
 

 
 

        
     

      
    

   
    

     
       

     
    
     

  
      

     
        

  
     

     
      

       
     

    
      

      
       

     
         

    
     

        
      

      
    

        
      

    
     

       
        

       
     

       
 

     
    

sequences derived from state transitions [3, 9, 10], 
syntax expressions [2, 6], or other formal 
descriptions of program behavior. 

Of previous investigations, the most closely 
related to ours includes applications of covering 
arrays and combinatorial testing to graphical user 
interface (GUI) testing. Wang et al. [12, 13] 
describe a method of testing all 2-way sequences 
in the navigation graph of a web application. The 
method presented in this paper covers general t-
way, rather than strictly 2-way pairwise testing, 
but does not deal with issues of navigation graph 
coverage. 

Yuan, Cohen, and Memon [14] use covering 
arrays to improve the efficiency of GUI testing 
where each node in the sequence can contain one 
of a set of events, such as Clear Canvas, Draw 
Circle, or Refresh. That is, each test contains 
several steps, but events may be repeated, for 
example Clear Canvas – Refresh – Refresh – 
Draw Circle. Covering arrays are employed to 
ensure coverage of all t-way sequences of events 
in sequence, with nodes in the sequence 
represented as factors and possible events at each 
node represented as levels of the covering array. 
In our applications, events may not be repeated, so 
covering arrays do not apply in the same manner. 

Apilli, Richardson, and Alexander [1] 
introduce a fault-based testing method that uses t-
way combinations of potential faults in web 
services, making it possible to detect interaction 
faults. As in Yuan et al., combinatorial methods 
are applied to the configuration of inputs, rather 
than their sequence. 

Conclusions 
Sequence covering arrays can have 

significant practical value in testing. Because the 
number of tests required grows only 
logarithmically with the number of events, t-way 
sequence coverage is tractable for a wide range of 
testing problems. Using a sequence covering array 
for system testing described here made it possible 
to provide greater confidence that the system 
would function correctly regardless of possible 
dependencies among peripherals. Because of 
extensive human involvement, the time required 
for a single test is significant, and a small number 

of random tests or scenario-based ad hoc testing 
would be unlikely to provide t-way sequence 
coverage to a satisfactory degree. 

References 

1.	 Apilli, B. S., L. Richardson, C. Alexander, 
Fault-based combinatorial testing of web 
services. In Proc. 24th ACM SIGPLAN 
Conference Companion on Object 
Oriented Programming Systems 
Languages and Applications (Orlando, 
October 25 - 29, 2009). 

2.	 G. V. Bochmann, A. Petrenko, “Protocol 
Testing: Review of Methods and 
Relevance for Software Testing,” 
Softw.Eng. Notes, ACM SIGSOFT, pp. 
109-124, 1994. 

3.	 S. Chow, “Testing Software Design 
Modeled by Finite-State Machines,” IEEE 
Trans. Softw. Eng., vol. 4, no. 3, pp. 178­
187, 1978. 

4.	 Dalal, S.R., C.L. Mallows, Factor-
covering Designs for Testing Software, 
Technometrics, v. 40, 1998, pp. 234-243. 

5.	 M. Grindal, J. Offutt, S.F. Andler, 
Combination Testing Strategies: a Survey, 
Software Testing, Verification, and 
Reliability, v. 15, 2005, pp. 167-199. 

6.	 K.V. Hanford, “Automatic Generation of 
Test Cases”, IBM Systems Journal, vol. 9, 
no. 4, pp. 242-257, 1970. 

7.	 W. E. Howden, G. M. Shi: Linear and 
Structural Event Sequence Analysis. 
ISSTA 1996: pp. 98-106, 1996. 

8.	 M. Memon and Q. Xie. Studying the fault-
detection effectiveness of GUI test cases 
for rapidly evolving software. IEEE Trans. 
Softw. Eng., 31(10):884–896, 2005. 

9.	 J. Offutt, L. Shaoying, A. Abdurazik, and 
P. Ammann, “Generating Test Data From 
State-Based Specifications,” J. Software 
Testing, Verification and Reliability, vol. 
13, no. 1, pp. 25-53, March, 2003. 

10. D.L.	 Parnas, “On the Use of Transition 
Diagrams in the Design of User Interface 
for an Interactive Computer System,” 
Proc. 24th ACM Nat’l Conf., pp. 379-385, 
1969. 

11. B.	 Sarikaya, “Conformance Testing: 
Architectures and Test Sequences,” 



 

     
      

 
              

     
     

    
    

        
   

         
      

     
    

     

     
  

       
      
     
   

       
    

     
         

       
       

    
    

    
 
 

              
              

                
     

Computer Networks and ISDN Systems, 
vol.17, no. 2, North-Holland, pp. 111-126, 
1989. 

12. W. Wang	 Sampath, S. Yu Lei, Kacker, 
R., An Interaction-Based Test Sequence 
Generation Approach for Testing Web 
Applications, High Assurance Systems 
Engineering Symposium, 2008. HASE 
2008. Nanjing, 3-5 Dec. 2008 pp. 209­
218. 

13. W. Wang, Y. Lei, S. Sampath, R. Kacker, 
D. Kuhn, J. Lawrence, "A Combinatorial 
Approach to Building Navigation Graphs 
for Dynamic Web Applications", 
Proceedings of 25th IEEE International 

Conference on Software Maintenance, pp. 
211-220, 2009. 

14. X.	 Yuan, M.B. Cohen, A. Memon, 
“Covering Array Sampling of Input Event 
Sequences for Automated GUI Testing”, 
November 2007 

15. ASE	 '07: Proceedings of the 22nd 
IEEE/ACM Intl. Conf. Automated 
Software Engineering, pp. 405-408. 

16. X.	 Yuan and A. M. Memon. Using GUI 
run-time state as feedback to generate test 
cases. In ICSE’07, Proceedings of the 29th 
International Conference on Software 
Engineering, pages 396–405, Minneapolis, 
MN, USA, May 23–25, 2007. 

Disclaimer: We identify certain software products in this document, but such identification does 
not imply recommendation by the US National Institute for Standards and Technology or other 
agencies of the US government, nor does it imply that the products identified are necessarily the 
best available for the purpose. 



 

 

 
 
 

 
          

1       
2       
3       
4       
5      

 6       
 7       
 8       
 9       

10       
 11       
 12       

13       
 14       
 15       

 16       
 17       
 18         - - ca on an - - - - - -

Original 
Case Case Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 

1 Boot P-1 (USB-RIGHT) P-2 (USB-BACK) P-3 (USB-LEFT) P-4 P-5 Application Scan 
2 Boot Application Scan P-5 P-4 P-3 (USB-RIGHT) P-2 (USB-BACK) P-1 (USB-LEFT) 
3 Boot P-3 (USB-RIGHT) P-2 (USB-LEFT) P-1 (USB-BACK) Application Scan P-5 P-4 
4 Boot P-4 P-5 Application Scan P-1 (USB-RIGHT) P-2 (USB-LEFT) P-3 (USB-BACK) 
5 Boot P-5 P-2 (USB-RIGHT) Application P-1 (USB-BACK) P-4 P-3 (USB-LEFT) Scan 

6A Boot Application P-3 (USB-BACK) P-4 P-1 (USB-LEFT) Scan P-2 (USB-RIGHT) P-5 
6B Boot Application Scan P-3 (USB-LEFT) P-4 P-1 (USB-RIGHT) P-2 (USB-BACK) P-5 
6C Boot P-3 (USB-RIGHT) P-4 P-1 (USB-LEFT) Application Scan P-2 (USB-BACK) P-5 
6D Boot P-3 (USB-RIGHT) Application P-4 Scan P-1 (USB-BACK) P-2 (USB-LEFT) P-5 
7 Boot P-1 (USB-RIGHT) Application P-5 Scan P-3 (USB-BACK) P-2 (USB-LEFT) P-4 

8A Boot P-4 P-2 (USB-RIGHT) P-3 (USB-LEFT) Application Scan P-5 P-1 (USB-BACK) 
8B Boot P-4 P-2 (USB-RIGHT) P-3 (USB-BACK) P-5 Application Scan P-1 (USB-LEFT) 
9 Boot Application P-3 (USB-LEFT) Scan P-1 (USB-RIGHT) P-4 P-5 P-2 (USB-BACK) 

10A Boot P-2 (USB-BACK) P-5 P-4 P-1 (USB-LEFT) P-3 (USB-RIGHT) Application Scan 
10B Boot P-2 (USB-LEFT) P-5 P-4 P-1 (USB-BACK) Application Scan P-3 (USB-RIGHT) 
11 Boot P-3 (USB-BACK) P-1 (USB-RIGHT) P-4 P-5 Application P-2 (USB-LEFT) Scan 

12A Boot Application Scan P-2 (USB-RIGHT) P-5 P-4 P-1 (USB-BACK) P-3 (USB-LEFT) 
12B Boot P 2 (USB RIGHT) Appli ti Sc P 5 P 4 P 1 (USB LEFT) P 3 (USB BACK) 


