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A vortex gyrating in a magnetic disk has two regimes of motion in the presence of disorder. At
large gyration amplitudes, the vortex core moves quasi-freely through the disorder potential. As
the amplitude decreases, the core can become pinned at a particular point in the potential and
precess with a significantly increased frequency. In the pinned regime, the amplitude of the gyration
decreases more rapidly than it does at larger precession amplitudes in the quasi-free regime. In part,
this decreased decay time is due to an increase in the effective damping constant and in part due to
geometric distortion of the vortex. A simple model with a single pinning potential illustrates these
two contributions.

PACS numbers: 75.78.Fg, 75.70.Kw, 75.78.Cd

I. INTRODUCTION

In disks of magnetic material, the ground-state mag-
netic configuration is commonly a magnetic vortex state
which forms due to the interplay between magnetostatic
and exchange energies. In the vortex structure the mag-
netization in the wall curls around a vortex core and
points out of the plane at the core region, as illustrated
in Fig. 1. Alignment of the magnetization parallel to the
edge of the disk minimizes the magnetostatic energy and
the magnetization pointing out of the plane in the core
avoids a singularity in the exchange energy. In the vortex
state, the excitation spectrum is significantly modified
compared to that of a uniform magnetization. In partic-
ular, there is a low-frequency gyration mode, in which the
vortex core orbits around its minimum energy location.

The dynamics of a vortex state have been studied ex-
perimentally by time-resolved Kerr microscopy,1–4 time-
resolved scanning transmission x-ray microscopy,5–7 and
microwave reflection technique8 and theoretically us-
ing a collective coordinate approach or micromagnetic
simulations,9–11 which show gyration frequencies typi-
cally in the subgigahertz range. If the vortex structure
is excited strongly enough, the vortex core switches mag-
netization direction. Vortex core switching has been ob-
served using time-resolved scanning transmission x-ray
microscopy12,13 and modeled using a collective coordi-
nate approach or micromagnetic simulations.14–17 These
studies show a reversal of the vortex core magnetization
with a relatively low threshold magnetic field on the order
of milliteslas by an in-plane oscillating external magnetic
field. Recent experiments have also studied vortex gyra-
tion and core reversal under excitation by current in the
plane of the disk.13,18–22 Excitation by current perpendic-
ular to the disk has bee studied theoretically.23–26 Cur-
rent induced motion is beyond the scope of the present
article.

Of particular interest here are experiments that mea-
sure the dynamics of vortices in disordered samples,27

FIG. 1: (Color online). (a) A typical vortex structure in
a Ni80Fe20 disk with 400 nm diameter and 10 nm thickness
calculated as described in Sec. II B. The color indicates the
in-plane angle of the magnetization, and the arrows indicate
the approximate magnetization direction. (b) Cross section of
the z-component magnetization along the center of the vortex
core in (a).

particularly the recent experiments by Compton et al.,3,4

who measured vortex gyration in the presence of disor-
der. In these experiments, the vortex core is displaced
by a static in-plane magnetic field and then a magnetic
field pulse is applied to excite the vortex motion. At
small magnetic-field-pulse amplitudes, the vortex gyrates
about its equilibrium position with a frequency that is
characteristic of the local disorder potential. At large
pulse amplitudes, the vortex gyrates with a frequency
determined by the magnetostatic energy of the disk. Be-
tween the two amplitudes, sharp transitions in the gyra-
tion frequency correspond to pinning or depinning of the
vortex at local defects.

The collective coordinate approach mentioned above
readily explains many aspects of these experiments.3,4

Here, we address an aspect that has not yet been con-
sidered; that is, whether disorder changes the effective
damping constant needed for a description of the behav-
ior in terms of collective coordinates. This approach is
motivated by our recent theoretical demonstration28 that
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when a magnetic domain wall propagates along a mag-
netic nanowire in the presence of disorder, the effective
damping is enhanced as disorder increases, leading to in-
creased or decreased domain wall velocity depending on
the conditions. As a domain wall moves through disorder,
internal degrees of freedom get excited, increasing the en-
ergy dissipation rate and thus the effective damping. The
results of Compton et al. provide much more detailed
information about the interaction of vortices with disor-
der than is typically accessible in experiments on domain
wall motion in nanowires. This detail suggests that it
might be possible to quantitatively connect theory and
experiment relating enhanced damping.

In this article, we describe micromagnetic simulations
of vortex gyration both in the complex case of random
disorder and also in the simple case of a single pinning
potential. Our results indicate that disorder, which exists
inevitably in real experiments, affects the vortex dynam-
ics in a way that can be interpreted as an enhancement
of the effective damping. In Sec. II we describe the the-
oretical approach, in particular the micromagnetic sim-
ulations and the description of the dynamics in terms of
a reduced set of degrees of freedom. In Sec. III we com-
pare our simulations with the results of Ref. 3 and Ref. 4
showing the transition between quasi-free gyration and
pinned gyration. In Sec. IV, we study this transition in a
system with a single pinning potential to make clear the
origin of various effects. Finally, in Sec. V, we discuss
the implications of these results.

II. METHOD

A. Collective coordinate approach

Magnetization dynamics in a magnetic field can be de-
scribed by the Landau-Lifshitz-Gilbert equation

Ṁ = γHeff × M +
αG

Ms

M × Ṁ, (1)

where Heff is the effective magnetic field including the ex-
ternal, exchange, demagnetization, and anisotropy fields;
γ is the gyromagnetic ratio; Ms is the saturation magne-
tization; and αG is the Gilbert damping constant. In the
calculations described below, we study the dynamics of
vortex gyration with Eq. (1) using a fixed value of αG.
We discuss an effective damping parameter α in the con-
text of a description of the motion in terms of collective
coordinates, which we describe next.

Vortex motion is frequently studied in models that
adopt a description of vortex structures in terms of a lim-
ited number of collective coordinates.29–33 For the sim-
plest approximation, the vortex gyration is described by
a two-dimensional vector X = (X1,X2) describing the
vortex core position in a plane. Then Eq. (1) reduces
to29–33

αDẊ = F + Ẋ × G, (2)

where

Dij =
1

M2
s

∫

dV
∂M

∂Xi
·

∂M

∂Xj
, (3)
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γ

Ms

∫
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∂M
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γ

µ0Ms

∂E

∂X
,

G = ẑ
1

M3
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(

∂M

∂X1
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∂M

∂X2

)

,

and E is a total energy functional whose derivative gives
µ0Heff ≡ − δE

δM . Note that αD is a symmetric matrix
which characterizes viscous friction, F is a generalized
force, and G is a gyrotropic tensor (Ẋ × G is the gy-
rotropic force) which characterizes magnetization preces-
sion. Thus the dynamic properties of the vortex state are
similar to that of a two-dimensional massless charged par-
ticle moving through a medium with a viscosity tensor
αD in the presence of an in-plane electric field F and a
perpendicular magnetic field G.33 The “masslessness” of
the dynamics is inherited from Eq. (1). In the absence of
disorder, such a dynamics can be solved analytically by
assuming harmonic oscillation for the vortex core.9–11,34

Assume that E has a quadratic dependence on the ra-
dial position of the vortex core r so that F = −krr̂,
where k is a constant which characterizes the shape of
the potential in which the vortex core gyrates. In po-
lar coordinates, Eq. (2) can be expressed in the following
matrix form

α

(

Drr Drφ

Drφ Dφφ

)(

ṙ

rφ̇

)

=

(

−kr + Grφ̇
−Gṙ

)

, (4)

where φ is the azimuthal angle of the vortex core position
from the gyration center.

Assuming r = r0 exp(−t/τ) and φ = 2πft, and by
eliminating k, we have

2πfτCα = 1, (5)

where C = Dφφ/(G + αDRφ). These four parameters,
the gyration frequency f , the decay time τ , the effective
damping parameter α, and the geometrical factor C, are
the focus of the subsequent analysis. A related analysis
was carried out by Compton et al.

3,4 to model behavior
of the precession frequency f in the presence of a pinning
potential. They assumed that D and G were constant.
Here, we focus on the decay time, τ , which is also mea-
surable and examine the extent it is modified by changes
in D, G, and the effective damping, α. The geometrical
factor C is related to the deformation of a vortex struc-
ture, which is hard to measure but can be evaluated in a
simulation using Eq. (3). In analyzing measurements of
the decay time, it would be tempting to assume that C is
constant and ascribe the observed changes in fτ as due
to changes in α. Here, we test the degree to which that
would be correct. Note that Eq. (5) is explicitly indepen-
dent of k, thus independent of a specific potential shape
in which a vortex gyrates. However, each of the param-
eters in Eq. (5) depends on k. In particular C depends
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on the vortex shape, and hence does depend weakly on
k for the disks of interest here.

Now imagine a vortex gyration experiment in a disk
with a pinning potential at the center. When a large
enough field pulse is applied, a vortex gyrates outside
of the pinning potential and as the orbit decays, it is
eventually trapped by the potential. The frequency of
the precession f and its decay time τ change when the
vortex becomes pinned

f0τ0

fτ
=

αeff

α0

C

C0

, (6)

where αeff , f , τ , and C indicate values in the trapped
region while those with the subscript 0 indicate values in
free region. The frequency and decay time can be mea-
sured so if the vortex geometry stays the same, that is
if C remains constant, measurements of f and τ could
be used to infer the change in the effective damping con-
stant. In Sec. IV, however, we will show that C is not
constant in the presence of disorder.

When the motion of the vortex is well described by the
collective coordinates, we expect that αeff = α0 = αG.
However, if other modes of the system are excited, the
total energy dissipation rate would increase leading to
an increase in the effective values of α and faster decay
(smaller τ). One of the goals of this work is to charac-
terize this increase and to compare it to the increase ob-
served in the modeled motion of vortex domain walls.28

In the subsequent sections, we use micromagnetic sim-
ulations to study how the effective damping is changed
during the gyration motion and how it affects the decay
time of the gyration. We stress that the “real” damping
constant does not change, but the value consistent with
the collective coordinate description does.

B. Micromagnetic simulation

We compute the dynamics of the vortex state through
numerical solution of Eq. (1) using the Object Oriented
MicroMagnetic Framework (OOMMF).35 We set up a
Ni80Fe20 disk with a 400 nm diameter and a 10 nm thick-
ness, as shown in Fig. 1(a). We use computational cells
that are uniform through the thickness and have an in-
plane size of 2.5 nm. For material constants, we use
the saturation magnetization Ms=800 kA/m, damping
constant αG=0.01 and either a fixed value of the ex-
change stiffness constant A=13 pJ/m or the exchange
length lex = 5.7 nm. Note that

lex ≡
[

2A/(µ0M
2
s )
]1/2

. (7)

We tested the cell size dependence by studying a sys-
tem with reduced size – 200 nm diameter and 5 nm thick-
ness – and compared the results of simulations with cell
sizes 1.25 nm and 2.5 nm. We found that these simula-
tions agree to within 5 % with no qualitative differences.
Thus, for the bigger system we treat in this article, with

FIG. 2: (Color online). (a) A typical disorder image with
10 nm spatial correlation length, and (b) contour maps of
the gyration frequency as a function of position. (a) Part
of the saturation magnetization within a Ni80Fe20 disk with
a 400 nm diameter and a 10 nm thickness. White indicates
maxima in the magnetization and black minima. These re-
sults are based on a model of the disorder with D = 0.05 and
a fixed exchange stiffness constant A. (b) The gyration fre-
quency according to the color scale on the right. To move the
vortex positions, in-plane static magnetic fields from −10 mT
to +10 mT along the x and y directions were applied. The
gyration frequency is obtained by applying a field pulse of
0.1 mT for 200 ps along the y direction. The final location of
the vortex core determines the real space position used in the
figure.

400 nm diameter and 10 nm thickness, we use a 2.5 nm
cell size.

C. Disorder model

We motivate our model for disorder on the measure-
ments in Ref. 3. The article shows magnetic force mi-
croscopy images that reveal thickness fluctuations with a
characteristic length scale of about 10 nm. Rather than
dealing with a full-fledged model of thickness fluctua-
tions, we introduce disorder by varying the saturation
magnetization Ms while fixing either A or lex. In the
main text, we fix A and, in the Appendix, we discuss the
quantitative but not qualitative changes that occur when
we fix lex. We generate a random, white-noise model for
the variation of Ms and convolute it with a Gaussian that
has a width of 10 nm. A typical disorder image is shown
in Fig. 2(a), showing the smooth variation of Ms guaran-
teed by the convolution. Regions with reduced magneti-
zation, intended to model thin parts of the sample, are
shown in black and tend to create pinning centers for the
vortex core and locally increase the gyration frequency
as shown in Fig. 2(b).

To estimate realistic disorder amplitudes, we compute
the variation of the gyration frequencies to be compared
with the measurements in Ref. 3, which show a factor
of 2 to 3 variation in resonance frequency as a vortex
is scanned over a disk-shaped sample. We compute the
precession frequency in the limit of low precession am-
plitudes as a function of Hx and Hy, in correspondence
with the experimental procedure. In distinction to the
experiment, we can view the equilibrium position of the
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FIG. 3: (Color online). (a) Time evolution of gyration ra-
dius r for the disordered sample in Fig. 2 at points A, B and
C for D = 0.05 with fixed A. To excite a vortex state, a
Gaussian-type field pulse of 20 mT with 1 ns of the full width
at half maximum along the y direction is applied. The black
line is for the case without disorder. The small amplitude
oscillations are due to the excitation procedure, which does
not produce purely circular precession. (b) The gyration fre-
quency averaged from t = 2 ns to 12 ns as a function of field
pulse amplitude at the points A, B and C.

vortex in real space and plot the frequency as a func-
tion of position to see the correlations with the disorder
image. The mapping from applied field to vortex posi-
tion is responsible for the irregular grid seen in Fig. 2(b).
For these calculations, we characterize the size of the
disorder by the ratio of the standard deviation of the
fluctuations in the magnetization to the saturation mag-
netization, D=

√

〈(M(r) − Ms)2〉/Ms. We limit the size
of the fluctuations to ensure that the magnetization stays
positive. We find that for a fixed A, a disorder value of
D = 0.05 gives roughly the same gyration frequency vari-
ation as the experiment. The modeled frequency varia-
tion is shown in Fig. 2(b).

III. VORTEX GYRATION IN A DISORDERED

FILM

First, we study the dynamics of vortex gyration in the
disordered sample shown in Fig. 2 for D = 0.05 with
fixed A. To move a vortex core to different positions,
we apply in-plane static magnetic fields to the sample.
Maintaining the static in-plane magnetic fields, we apply
an additional Gaussian-type field pulse of 20 mT along
the y direction with a 1 ns full width at half maximum
to excite the gyration motion. This pulse is large enough
to induce a free vortex gyration with an initial radius
that is much larger than the disorder correlation length.
The gyration radius decreases with time because of the
energy dissipation through damping, and eventually the
vortex is trapped by the disorder potential when its gy-
ration radius is approximately the correlation length of
the disorder potential, which is 10 nm in the simulations.

Figure 3 shows the behavior of the gyration for vortex
center positions, A, B and C in Fig. 2. Position A is in
a relatively flat region of the disorder potential, position
C is close to a minimum in the disorder potential, and
position B is intermediate between the two. Figure 3(a)
shows the time evolution of the gyration radius r. For
“free” precession, before the vortex becomes trapped, the
gyration frequency and decay rate are almost the same as
the corresponding quantities in a disk without disorder,
and the vortex gyration motion is not changed signifi-
cantly by the disorder potential. As we discuss in Sec. V,
these results indicate that gyration in the “free” regime is
minimally affected by disorder and there does not appear
to be an increase in the effective damping parameter in
this regime. This result is in stark contrast to the behav-
ior found for the motion of a vortex domain wall through
a disorder potential. This contrast will be discussed in
more detail in Sec. V. In the trapped regime, after ap-
proximately 90 ns, the decay rate of the precession radius
increases dramatically for positions B and C, those points
close to minima in the disorder potential. This change
in decay rate is associated with changes in the precession
rate.

Figure 3(b) shows the change of the gyration frequency
as the field-pulse amplitude is varied, by averaging over
a fixed interval (from t = 2 ns to 12 ns) after the pulse.
At small field-pulse amplitudes, the vortex gyrates about
its equilibrium position at points A, B and C with a fre-
quency characteristic of each pining site. At large pulse
amplitudes, the vortex core is depinned and gyrates with
the frequency of the free region. Between the two am-
plitudes, as a function of field pulse amplitude, there is
a crossover above which the gyration frequency drops to
the value of the free region due to depinning of the vortex
core from the pinning site. Here, the transition is gradual
because, for some fields, the vortex core does not com-
pletely escape the pinning potential and may even, for
slightly higher fields, become repinned during the aver-
aging interval. A related measurement in Ref. 4 shows
much more abrupt transitions in Fig. 10(b). However,
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there are significant differences in the excitation pulse
shape that strongly affect transition width as illustrated
in Fig. 10(d) in that same article. Note that the crossover
field here is a field range corresponding to the vortex
completely escaping the pinning potential without being
trapped again for a fixed time interval. For a Gaussian
field pulse with a 1 ns full width at half maximum, the
crossover field for the time average between 2 ns and 12 ns
is approximately 2 mT for points B and C.

IV. GYRATION IN A SINGLE PINNING

POTENTIAL

A. Numerical results

The existence of two regimes of motion of a vortex in
a disordered disk suggests that the behavior should be
captured by a simple model of a single pinning poten-
tial in the center of an otherwise ideal disk. Extreme
examples of such samples, in which a hole has been fab-
ricated in the disk have been studied experimentally27,36

and theoretically.34 Theoretical studies in Ref. 4 are sim-
ilar to ours but focus on changes in the gyration fre-
quency. We choose the radius of the single pinning po-
tential to be rpin = 10 nm as a typical length scale of
the potential. Inside the potential, the magnetization in-
creases quadratically from the center. We characterize
the potential depth as the ratio of reduced magnetiza-
tion at the center ∆Mc to the saturation magnetization
Ms, δ = ∆Mc/Ms. The vortex gyration is excited by
a Gaussian-type field pulse along the y direction of 20
mT with a 1 ns full width at half maximum. When the
strength of the field pulse is large enough, the vortex core
gyrates outside of the pinning potential with a frequency
that is determined by the geometry of the disk. The
radius of the gyration decreases due to the energy dissi-
pation through damping. When the vortex core enters
the pinning potential, it is trapped by the potential and
the gyration frequency changes.

Figure 4 shows the time evolution of the gyration ra-
dius r, the gyration frequency f , and the deformation
factor C for depth ratios δ = 0, 0.1, 0.2, 0.3 and 0.4 with
fixed A. Here f is obtained from the angular velocity of
gyration motion and C is calculated from Eq. (3). From
the slope of the logarithm of r we can obtain the de-
cay time τ . When the gyration radius becomes close to
10 nm, which is the radius of the pinning potential, τ ,
f , and C change, indicating that the vortex has become
trapped by the pinning potential. As δ increases, τ and
C decrease while f increases in the trapped regime. Note
that additional oscillations superimposed on the curves
have a frequency of twice the gyration frequency and orig-
inate because the short pulse with which we excite the
gyration leads to a slightly elliptical orbit for the vortex
core.

Figure 5 shows the evolution of the different factors in
Eq. (6) as the depth of the pinning potential is varied.

FIG. 4: (Color online). Time evolution of (a) gyration radius
r, (b) gyration frequency f and (c) deformation factor C in
a single pinning potential of the radius 10 nm for the depth
ratio δ = 0, 0.1, 0.2, 0.3 and 0.4 with fixed A. The gyration is
excited by a 1 ns pulse of 20 mT.

Since f and τ can be measured experimentally, for ex-
ample, from the Kerr microscopy analysis, it is tempting
to attribute the change in the decay to the change in the
effective damping. However, Fig. 5 shows that, in fact,
most of the change is due to a change in the geometry of
the vortex through the factor C, which can be extracted
from the simulations. In fact, ignoring the changes in
C would lead to the erroneous conclusion that damping
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FIG. 5: (Color online). Enhancement ratio of fτ , C, and αeff

as a function of depth ratio δ for (a) fixed A and (b) fixed lex.
Subscript 0 indicates values in the free region before trapping.

decreases as the depth of the well increases for the case
considered here. The actual values of the enhancement
rate depend on various factors such as the type of disor-
der, geometry of samples, and material properties such as
the saturation magnetization and the exchange constant.

B. Radius dependence of the effective damping

Figure 6 shows the frequency dependence of the effec-
tive damping for the different radii of the pinning poten-
tial rpin with fixed A. As the frequency increases, the
vortex gets more excited increasing the effective damp-
ing. Note that its slope increases as the radius of the
pinning potential increases and then saturates around
rpin ≈ 60 nm, which is approximately the distance from
the center of a disk to the point where the z component
becomes zero, as shown in Fig. 1(b).

V. DISCUSSION

Disorder in magnetic samples can increase the energy
dissipation rate both for vortex gyration and domain wall

0.0 0.5 1.0 1.5

1.0

1.1

1.2

rpin = 10 nm
rpin = 20 nm
rpin = 30 nm
rpin = 40 nm
rpin = 50 nm
rpin = 60 nm
rpin = 70 nm

f (GHz)

FIG. 6: (Color online). Frequency dependence of the ef-
fective damping for fixed A and various pinning potential
radii rpin = 10 nm, 20 nm, . . . 70 nm and depth ratios
δ = 0, 0.1, 0.2, 0.3, 0.4. Solid lines indicate values for constant
rpin and dashed lines constant δ.

propagation as shown earlier.28 An important contribu-
tion to this appears to occur when the motion through
the disorder excites additional degrees of freedom in ad-
dition to the overall motion. We refer to these degrees
of freedom as internal. If these internal degrees of free-
dom are not included explicitly in a collective coordinate
model,33 they will typically lead to an increase in the
effective damping parameter that describes the motion.
Vortex gyration appears to give much smaller increase
in the effective damping than is found for domain wall
motion28 but may be more accessible experimentally.3,4

The modeling results described in this article agree
with the recent experiments and theoretical analysis in
Refs. 3 and 4, demonstrating the frequency changes be-
tween the free and trapped regimes. Perhaps not sur-
prisingly, the transition between high-amplitude and low-
amplitude occurs when the gyration radius is compara-
ble to the correlation length. Here, we focus not on the
change of the frequencies between the two regimes, but
on the change of the effective damping constant, which
is much smaller than that of the frequency.

Disorder has a negligible effect on the gyration decay
rate when the gyration amplitude is large. However, the
decay rate is increased by disorder when gyration am-
plitude is small. While a naive interpretation would at-
tribute changes in the product of gyration frequency and
decay time fτ to changes in the effective damping param-
eter α, a more detailed interpretation in the context of
the collective coordinate approach shows that the major-
ity of the change in fτ is due to disorder-induced changes
in the deformation factor C, and that the change in α is
modest. Even though the change in the frequency can
be successfully modeled assuming the deformation factor
C is constant, evaluating the effective damping correctly
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requires detailed calculation.
Comparing these vortex gyration results with the re-

sults of similar calculations on vortex wall propagation,
it is clear that the domain wall motion is more sensi-
tive to disorder. For field or current induced vortex wall
propagation in the presence of Ms fluctuations with fixed
A,28 the effective damping is enhanced almost two times
for D = 0.05 (5 % average fluctuation of Ms). For vor-
tex gyration in a single pinning potential with fixed A,
however, the damping is enhanced by only 6 % even for
δ = 0.4 (40 % of reduced magnetization at the center),
as shown in Fig. 5.

One possible reason for this difference is the appear-
ance of half antivortices in domain wall propagation. As
the vortex wall propagates either by field or current along
a magnetic nanowire, energy dissipates mostly through
the motion of the vortex core and two half antivortices.28

The relative motions of these structures are examples of
internal degrees of freedom. When these are excited by
moving in the disorder potential, the energy dissipation
rate increases. In a disk, on the other hand, there are no
antivortices, as seen in Fig. 1. When vortices are driven
to large amplitudes, antivortices can appear and can lead
to core reversal14 when the system is driven hard enough.
In the simulations we consider here, we are not in this
regime and the distortions of the vortex are relatively
small. The lack of antivortices in these simulations is
consistent with a reduced excitation of internal degrees
of freedom as compared to the vortex wall propagation,
resulting in the smaller enhanced effective damping.

In summary, we have demonstrated that disorder en-
hances the effective damping, and the enhancement ratio
can be estimated up to the deformation factor by a vor-
tex gyration experiment in a magnetic disk with a single
pinning potential at the center. By measuring the fre-
quency f and decay time τ in free and trapped regions,
we can estimate the enhancement ratio of the effective
damping times the deformation factor.
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Appendix: Fixed A vs fixed lex

In this article we are using a simple approximation
to model the effect of thickness fluctuations. Since the
important energies in the problem are the magnetostatic
(stray field) energy, the Zeeman energy, and the exchange
energy, we can capture the changes in the first two by lo-
cally varying the saturation magnetization Ms. In the
main body of the text, we report results for vortex gy-
ration as we model thickness variations by changing Ms

while keeping the exchange constant A constant. An al-
ternate approach would be to keep the exchange length
lex = [2A/(µ0M

2
s )]1/2 constant. In this appendix, we de-

scribe the quantitative but not qualitative changes that
result.

For a fixed lex, a disorder value of D = 0.0125 gives
a similar variation in gyration frequency as a value of
D = 0.05 for constant A. We attribute the higher sen-
sitivity to disorder with fixed lex to changes in exchange
energy in the region outside the vortex core. Briefly,
Eq. (7) shows that A becomes a function of Ms when lex
is fixed. Consequently, the exchange energy associated
with the curling of the magnetization around the vortex
core decreases when Ms decreases.

For a single pinning potential, simulations for the fixed
lex case show similar trends as seen in Fig. 4 but with
larger frequency and smaller decay time compared with
the fixed A case. In addition, we see in Fig. 5(b) that the
fixed lex case leads to a smaller change in the effective
damping for a given change in fτ as compared to the
fixed A case.

To understand the difference between Ms fluctuations
with fixed A and those with fixed lex, consider a simple
model of a vortex in a thin film disk with thickness z.
We estimate the core energy and how it varies with the
reduction in the magnetization in the pinning potential
for both fixed A and fixed lex. We model the pinning
potential as a circular region of radius rpin of uniformly
reduced magnetization Mpin. We assume that the vor-
tex can be described as a core region within a radius
rc where the magnetization points out of plane, and an
outer region r > rc where the magnetization is directed
azimuthally. Our approach is to estimate the change in
vortex energy as Mpin is varied in the pinning potential
region , r < rpin. For simplicity, we just consider the case
for rc < rpin.

In the core region, the magnetization is uniform, and
the energy density is magnetostatic, thus we can approx-
imate the energy of the core as

Ecore = πr2
cz

1

2
µ0M

2
pin. (A.1)

In this expression we have assumed that z ≪ rc for sim-
plicity.

The divergence of the magnetization in the outside re-
gion, r > rc, is zero and the magnetization is perpen-
dicular to the stray fields from the core region, so the
energy in the outside region is entirely exchange energy.
Since the magnetization outside rpin does not depend on
Mpin and the geometry of the vortex is fixed (exactly
in this simple model and approximately in a full simula-
tion), the energy of the magnetization from rpin out to
R, the radius of the disk, does not change. Ignoring that
constant contribution leaves the Mpin-dependent change
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in the exchange energy from rc to rpin

Eoutside =

∫

dv
A

M2
pin

(

dM

dx

)2

= 2πzA ln(rpin/rc). (A.2)

As a further approximation, we ignore any exchange en-
ergy associated with the sharp transition from vertical to
in-plane magnetization at the core boundary, rc.

So far, the core radius has been left as a variable, and
we determine its value by minimizing the total energy
Etotal = Ecore + Eoutside. The result is

rc,min =

√

2A

µ0M2
pin

≡ lex, (A.3)

and the minimized energy is

Etotal = πzA

[

1 + ln

(

r2
pinµ0M

2
pin

2A

)]

(A.4)

or equivalently,

Etotal = πl2exz
1

2
µ0M

2
pin

[

1 + 2 ln

(

rpin

lex

)]

. (A.5)

Therefore, from Eqs. (A.4) and (A.5), the ratio of the
total energy changes using constant A compared to con-
stant lex is

dEtotal

dMpin

∣

∣

∣

lex

dEtotal

dMpin

∣

∣

∣

A

= 1 + 2 ln

(

rpin

lex

)

. (A.6)

For rpin = 10 nm and lex = 5.7 nm, the ratio is ≈ 2.1.
That is, the energy is more sensitive to variations in Mpin

for fixed lex than for fixed A.

With A fixed, a decrease in Mpin results in an expan-
sion of the core radius [see Eq. (A.3)] such that the de-
creased magnetostatic energy density within the core is
compensated by an increased core volume, yielding no
net change in the magnetostatic energy. The net energy
change is due to a decrease in the exchange energy as the
region rc < r < rpin becomes smaller as rc increases.

In contrast, for fixed lex, the geometry of the core is
fixed, and there is a decrease in the magnetostatic energy
of the core associated with a decrease in Mpin. Further,
with lex fixed it can be seen from (A.3) that A must
decrease with Mpin, and this results in reduced exchange
energy calculated in the region rc < r < rpin.
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densed Matter Theory Center, Department of Physics,
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