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Abstract Over a half-century ago, Balazs proposed a thought experiment
to deduce the form of electromagnetic momentum in a lossless and non-
dispersive slab by imposing conservation of global momentum and system
center-of-mass velocity after a pulse has traveled through the slab. Here, we
re-visit the Balazs thought experiment by explicit calculations of momentum
transfer and center-of-mass displacement of a non-dispersive, positive-index
slab of arbitrary complex permittivity and permeability using a set of pos-
tulates consisting only of Maxwell’s equations, a generalized Lorentz force
law, the Abraham form of the electromagnetic momentum density, and con-
servation of both pulse and slab mass. In the case where the slab is lossless,
we show that a pulse of arbitrary shape incident onto the slab conserves
both global momentum and system center-of-mass velocity, consistent with
the starting postulates of the Balazs thought experiment. In the case where
the slab is lossy, we show, within the context of the above postulates, that
global momentum is always conserved and that system center-of-mass ve-
locity is conserved only when mass transfer from the pulse to the slab is
described by an incremental pulse-mass-transfer model, proposed here, in
which the pulse deposits mass in the slab with a distribution corresponding
to the instantaneous mass density profile of the pulse.
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1 Introduction

Light is known to carry momentum [1] and apply forces when interacting
with matter [2,3]. It is well-established that the momentum of a pulse of
light of energy E in free space is p0 = E/c0, where c0 is the speed of
light. The momentum of a pulse of light of the same energy E propagating
in a ponderable medium is not trivially derived and remains a topic of
debate. Consider, for example, the case of a non-dispersive, lossless medium
of positive refractive index n. Compelling arguments exist either in favor of
a Minkowski form [4] of the pulse momentum, given by np0, or an Abraham
form [5] of the pulse momentum, given by p0/n.

The elegant Balazs thought experiment [6] has allowed inference of the
value of the momentum of a pulse of light in a lossless, non-dispersive di-
electric medium. The Balazs thought experiment consists of two identical
enclosures as shown in Fig. 1, each composed of a region of vacuum en-
compassing two entities: a non-dispersive, lossless, and initially-stationary
dielectric slab having refractive index n, thickness L, and mass M and a
finite-duration electromagnetic pulse with free-space mass m = E/c20 ini-
tially traveling in vacuum at c0. In enclosure 1, the pulse propagates along
a straight path through only vacuum, and in enclosure 2, the pulse propa-
gates along a straight path through both vacuum and the slab. It is assumed
that the slab is massive and impedance-matched to free-space and that the
pulse is a plane-wave normally incident onto the slab, traveling with veloc-
ity c0 in vacuum and c0/n in the slab. In the absence of external forces,
the total momenta in enclosures 1 and 2 are conserved and the centers-of-
mass of the two systems move with identical, uniform velocities. The global
momentum in enclosure 1 for all time is the momentum of the pulse in vac-
uum, mc0, and the center-of-mass of the system in enclosure 1 moves with
velocity mc0/(m + M). In enclosure 2, analysis of the slab center-of-mass
displacement before and after the pulse has interacted with the slab, along
with the requirement of conservation of system center-of-mass velocity and
invariance of the pulse mass, implies that the slab acquires a momentum
(1− 1/n)mc0 while the pulse is fully contained in the slab. For global mo-
mentum to be conserved, the momentum of the pulse in the slab must then
be mc0/n, corresponding to an Abraham form of the pulse momentum [5]
(as opposed to, notably, a Minkowski form expressed as nmc0 [4]). A sum-
mary of the assumptions and postulates of the Balazs thought experiment
are listed in Table 1. It should be noted that the Balazs thought experiment
is a before/after experiment which requires full emergence of the pulse from
the slab and does not explicitly consider dynamics while the pulse is in
the slab, which would be necessary to deal with the case of a partially or
completely absorbing slab.

Here, we re-visit the Balazs thought experiment starting with four postu-
lates: the microscopic Maxwell’s equations, a generalized Lorentz force law
applicable for media with both electric and magnetic responses [8–13], the
Abraham form of the electromagnetic momentum density, and conservation
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of both slab and pulse mass, where the latter is assumed to be m = E/c20
in both vacuum and the slab. We consider an electromagnetic pulse travel-
ing through a massive, non-dispersive, and positive-index slab of arbitrary
relative permittivity and permeability. For all times during the interaction
of the pulse and the slab, we calculate the momenta and center-of-mass
displacements of both the pulse and the slab. Two cases are considered: one
in which the slab is lossless, matching the condition originally studied by
Balazs and another in which the slab is lossy, a condition not considered by
Balazs. For the case of a lossless slab, we analytically derive the slab center-
of-mass and system center-of-mass displacements due to a pulse of arbitrary
shape and show that global momentum and system center-of-mass velocity
are conserved, consistent with two of Balazs’ starting postulates. For the
case of a lossy slab, we numerically model the slab and system displace-
ment for varying degrees of loss up to the limiting case where the incident
pulse is completely absorbed by the slab. Absorption in the slab is described
by an incremental pulse-mass transfer model, proposed here, in which the
pulse deposits mass in the slab according to the instantaneous mass den-
sity profile of the pulse. It is shown that global momentum is conserved for
all time, regardless of the degree of loss in the slab, and that the system
center-of-mass velocity is conserved only when pulse mass deposition in the
slab is described by the proposed incremental pulse-mass-transfer model.

2 Analytical Calculations of an Electromagnetic Pulse Incident
onto a Lossless Slab

We analytically treat the case of a pulse with arbitrary temporal profile
incident onto a lossless slab to directly compare with the results of the
Balazs thought experiment and to establish basic concepts to be used in
later sections. Similar to the Balazs thought experiment, we consider a non-
dispersive, lossless material. We treat the more explicit case of a right-
handed material with arbitrary electric and magnetic responses, modeled
by real, relative permittivity εr > 0 and real, relative permeability µr > 0,
yielding a positive refractive index n =

√
εrµr > 0. Like the Balazs thought

experiment, we assume that the slab is impedance-matched to vacuum,
which in our case can be achieved by setting εr = µr to yield a relative
impedance ηr =

√
µr/εr = 1.

The system consists of a region of vacuum encompassing an initially-
motionless, massive slab and an electromagnetic pulse. We restrict our anal-
ysis to the non-relativistic limit by choice of a slab mass M >> m such
that the center-of-mass velocity of the slab is significantly less than c0. The
vacuum region is characterized by a free-space permittivity ε = ε0 and a
free-space permeability µ = µ0. The slab is composed of a non-dispersive,
lossless medium characterized by a permittivity ε = εrε0 and a permeability
µ = µrµ0.

First, we postulate that the propagation of the pulse is governed by the
microscopic Maxwell’s equations. The electric field E and the magnetic field
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H of the pulse are then related (in time-domain notation) by Ampere’s Law

∇×H =
∂εE

∂t
, (1)

and by Faraday’s Law

∇×E = −∂µH
∂t

. (2)

The linear medium response to the electric and magnetic fields of the pulse
yields an electric displacement field

D = εE, (3)

a magnetic flux density field
B = µH, (4)

an electric polarization field

P = (ε− ε0)E, (5)

and a magnetic polarization (magnetization) field

M = (µ− µ0)H. (6)

Temporal variation in P and M yield an electric current density Je and a
magnetic current density Jm given respectively by

Je =
∂P

∂t
(7)

=
∂D

∂t
− ε0

∂E

∂t
(8)

and

Jm =
∂M

∂t
(9)

=
∂B

∂t
− µ0

∂H

∂t
. (10)

The electromagnetic pulse propagates in the enclosure along the +z
direction and is directed at normal incidence onto the slab, which occupies
the region 0 < z < L. The electromagnetic pulse in the vacuum region z < 0
consists of an electric field

E0(z, t) = E0h(z − cp0t)g(z − cg0t) x̂, (11)

and a magnetic field

H0(z, t) =
E0

η0
h(z − cp0t)g(z − cg0t) ŷ, (12)

where E0 is the electric field amplitude and η0 =
√
µ0/ε0 is the impedance

of vacuum. We employ general field descriptions where h(z− cp0t) ≡ h(z, t)
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is an arbitrary function describing the spatially and temporally harmonic
carrier wave propagating in the +z-direction with phase velocity cp0, and
g(z − cg0t) ≡ g(z, t) is an arbitrary function describing the electromagnetic
pulse envelope propagating in the +z-direction with group velocity cg0. The
functions h and g are restricted only in that they must be consistent with
Maxwell’s equations.

It is well-established and uncontroversial that the electromagnetic mo-
mentum density in vacuum is given by [1]

G0(z, t) =
E0(z, t)×H0(z, t)

c20
, (13)

where E0(z, t) and H0(z, t) are the electric and magnetic fields in vacuum.
For a pulse that is fully located in the vacuum region, the total pulse
momentum-per-unit-area at a given time t is obtained by integrating 13
yielding

pp,A(t) =

∫ ∞
−∞

E0(z, t)×H0(z, t)

c20
dz. (14)

We evaluate the total pulse momentum-per-unit-area for full passage of the
pulse through a plane at a given position z in vacuum by changing the
integration variable in 14 to yield

pp,A(z) =

∫ ∞
−∞

E0(z, t)×H0(z, t)

c20
(c0dt) =

1

c0

∫ ∞
−∞

E0(z, t)×H0(z, t)dt.

(15)
Substitution of 11 and 12 evaluated at z = 0− into 15 yields

pp,A(0−) ≡ p0 ẑ =
E2

0

c0η0

∫ ∞
−∞

h2(0−, t)g2(0−, t)dt ẑ, (16)

where p0 is the magnitude of the pulse momentum-per-unit-area in vacuum.
Solving 1 and 2 and imposing continuity of the net electric and magnetic

fields at the interface yields a transmitted electromagnetic pulse in the slab
having electric and magnetic fields

Et(z, t) = κE0h(z − cpt)g(z − cgt) x̂, (17)

and

Ht(z, t) =
κE0

ηrη0
h(z − cpt)g(z − cgt) ŷ, (18)

respectively, where cp is the magnitude of the phase velocity of the car-
rier wave in the slab, cg is the magnitude of the group velocity of the
pulse envelope in the slab, and κ is the transmission coefficient of the vac-
uum/dielectric interface given by

κ =
2ηr
ηr + 1

. (19)
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The response of the slab to the electric and magnetic fields of the pulse
yields an electric displacement field

Dt(z, t) = εrε0κE0h(z − cpt)g(z − cgt) x̂, (20)

a magnetic flux density field

Bt(z, t) =
µrµ0κE0

ηrη0
h(z − cpt)g(z − cgt) ŷ, (21)

an electric polarization field

Pt(z, t) = (εr − 1)ε0κE0h(z − cpt)g(z − cgt) x̂, (22)

a magnetic polarization (magnetization) field

Mt(z, t) =
(µr − 1)µ0κE0

ηrη0
h(z − cpt)g(z − cgt) ŷ, (23)

an electric current density

Je(z, t) =
∂

∂t
[(εr − 1)ε0κE0h(z − cpt)g(z − cgt)] x̂, (24)

and a magnetic current density

Jm(z, t) =
∂

∂t

[
(µr − 1)µ0κE0

ηrη0
h(z − cpt)g(z − cgt)

]
ŷ. (25)

We next consider the momentum-per-unit-area imparted by the pulse to
the slab. We postulate that electromagnetic fields interact with ponderable
media via a generalized Lorentz force law originally derived by Einstein
and Laub [8], and then re-derived in great detail by Mansuripur [9]. The
corresponding force density is given by

f = (P · ∇)E + (M · ∇)H + Je × (µ0H)− Jm × (ε0E). (26)

When 26 is applied in our divergence-free configuration, it simplifies to

f(z, t) = Je(z, t)× µ0H(z, t)− Jm(z, t)× ε0E(z, t) (27)

= fe(z, t) + fm(z, t) (28)

where fe(z, t) is component of the force density associated with the electric
current density Je(z, t) and fm(z, t) is the component of the force density
associated with the magnetic current density Jm(z, t). In Appendix A, we
will examine the implications of choosing another variation of a generalized
Lorentz force law [11–13] for calculating the force density exerted by the
electromagnetic fields.

The force density exerted by the pulse in the slab is calculated by substi-
tuting 17, 18, 24, and 25 into 28. Dropping the arguments in the functions
h and g, we first develop the expression for fe(z, t)

fe(z, t) =
(εr − 1)κ2E2

0

c20ηrη0

(
∂h

∂t
g +

∂g

∂t
h

)
hg ẑ. (29)
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Using the relations
∂h

∂t
= −cp

∂h

∂z
, (30)

and
∂g

∂t
= −cg

∂g

∂z
, (31)

and because dielectric is non-dispersive such that cg = cp = c0/n, where
c0 is the speed of light in free space, 29 can be expressed in terms of the
spatial gradients of the fields

fe(z, t) = − (εr − 1)κ2E2
0

nc0ηrη0

(
∂h

∂z
hg2 +

∂g

∂z
h2g

)
ẑ. (32)

Similar calculations for fm(z, t) yield

fm(z, t) = − (µr − 1)κ2E2
0

nc0ηrη0

(
∂h

∂z
hg2 +

∂g

∂z
h2g

)
ẑ. (33)

The total instantaneous force-per-unit-area F(t) exerted by the pulse
onto the dielectric slab is determined by substituting 32 and 33 into 28 and
integrating the resulting expression throughout the extent of the slab

F(t) = − κ2E2
0

nc0ηrη0
(εr + µr − 2)

∫ L

0+

(
∂h

∂z
hg2 +

∂g

∂z
h2g

)
dz ẑ. (34)

The integral expression in 34 can be developed as∫ L

0+

(
∂h

∂z
hg2 +

∂g

∂z
h2g

)
dz =

1

2

[
−h2(0+, t)g2(0+, t) + h2(L, t)g2(L, t)

]
,

(35)
such that 34 becomes

F(t) =
κ2E2

0

2nc0ηrη0
(εr + µr − 2)[

h2(0+, t)g2(0+, t)− h2(L, t)g2(L, t)
]
ẑ. (36)

Integrating 36 with respect to time yields the net momentum ps(t) im-
parted by the pulse onto the dielectric slab at a given time t

ps(t) ≡ ps(t) ẑ

=
κ2E2

0

2nc0ηrη0
(εr + µr − 2)∫ t

−∞

[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ ẑ, (37)

where ps(t) is the magnitude of the momentum-per-unit-area imparted to
the slab.
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We define a normalized momentum transfer, ζ(t) = ps(t)/p0, as

ζ(t) =
κ2

2nηr
(εr + µr − 2)×∫ t

−∞
[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ∫∞

−∞ h2(0−, t)g2(0−, t)dt
. (38)

Simplification of the pre-factor in 38 yields

ζ(t) =
T

2

(
ηr +

1

ηr
− 2

n

)
∫ t

−∞
[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ∫∞

−∞ h2(0−, t)g2(0−, t)dt
, (39)

where T = κ2/ηr is the transmission coefficient of the vacuum-dielectric
interface. The integral in the numerator of 39 is proportional to the in-
stantaneous electromagnetic energy in the slab at a given time t. To ex-
press the normalized momentum transfer as a function of time, we choose
t = 0 to correspond to the instant when the peak of the pulse is located
at the vacuum-dielectric interface at z = 0 and assume that the pulse du-
ration is significantly shorter than the pulse transit time through the slab,
t0 = nL/c0. The ratio of the integrals in 39 is then zero for t < 0 prior to
the pulse entering the slab, unity for 0 < t < t0 when the pulse is in the
slab, and zero for t > t0 after the pulse has left the slab. For an impedance-
matched slab where T = 1, the normalized momentum transfer is given
by

ζ(t) =

 0 t < 0
1− 1/n 0 < t < t0

0 t > t0.
(40)

Thus, the momentum-per-unit-area imparted by the pulse to the slab, ps(t),
can be expressed as

ps(t) = ζ(t)p0 ẑ =

 0 t < 0
(1− 1/n) p0 ẑ 0 < t < t0

0 t > t0.
(41)

We now consider the displacements of the pulse, the slab, and the sys-
tem as the pulse travels through the slab. Similar to the Balazs thought
experiment, we postulate that the pulse carries a mass m. In particular, for
a pulse that is uniform over a cross-sectional area A and with dimensions
larger than the wavelength, the value of the mass of the pulse in vacuum is
given by [6]

m =
p0A

c0
=
E

c20
, (42)
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where E is the energy of the pulse. Here, we furthermore assume that this
value of pulse mass is independent of location. Due to the absence of loss
in the slab, the mass of the slab, M , and the mass of the pulse, m, are
invariant for all time. In general, different portions of the slab move with
different velocities as the pulse transits through the slab. We simplify our
treatment by approximating the slab as a rigid body, with a center-of-mass
that is displaced due to the momentum-per-unit-area ps(t) applied by the
pulse. The center-of-mass displacement of the slab, zs(t), is calculated by
integrating ps(t)A/M over the duration in which the pulse is in the slab to
give

zs(t) =
ps(t)At

M
=

 0 t < 0
(1− 1/n) p0At/M 0 < t < t0
(1− 1/n) p0At0/M t > t0.

(43)

Substituting 42 into 43, we replicate the exact form of the slab center-of-
mass displacement calculated by Balazs [6]

zs(t) =

 0 t < 0
(1− 1/n)mc0t/M 0 < t < t0
(1− 1/n)mc0t0/M t > t0.

(44)

The center-of-mass displacement of the pulse, zp(t), is given by

zp(t) =

 c0t t < 0
c0t/n 0 < t < t0

c0t− c0t0/n t > t0.
(45)

The center-of-mass displacement of the enclosed slab and pulse system,
zsys(t), can be calculated from

zsys(t) =
mzp(t) +Mzs(t)

m+M
. (46)

Substitution of 44 and 45 into 46 yields a system center-of-mass displace-
ment valid for all times

zsys(t) =
mc0t

m+M
. (47)

The system center-of-mass velocity, vsys, is constant for all time and given
by

vsys =
∂zsys
∂t

=
mc0

m+M
. (48)

We next consider the momentum-per-unit-area carried by the pulse at
all points in space and time to determine the global momentum of the
system. The value of the electromagnetic momentum density in a ponderable
medium is not trivially derived and remains a topic of controversy. There
are arguments in favor of both an Abraham momentum density [5] given by

GA =
E×H

c20
(49)
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and a Minkowski momentum density [4] given by

GM = D×B, (50)

where E, H, D, and B are the electric field, magnetic field, electric displace-
ment field, and magnetic flux density field, respectively, in a ponderable
medium. For the case of a ponderable medium that is non-dispersive and
lossless, the two forms of the momentum density are related by the index
of refraction of the medium via

GM = εµ(E×H) = n2
E×H

c20
= n2GA. (51)

First, we postulate that the pulse in the slab possesses an Abraham
momentum density given by 49. When the pulse is fully immersed in the
slab, the total pulse momentum-per-unit-area at a given time t is obtained
by substituting 17 and 18 into 49 and integrating the momentum density,
yielding

pp,A(t) =

∫ ∞
−∞

Et(z, t)×Ht(z, t)

c20
dz. (52)

We evaluate the total pulse momentum-per-unit-area for full passage of the
pulse through a plane at a given position z in the slab by changing the
integration variable in 52 to obtain

pp,A(z) =

∫ ∞
−∞

Et(z, t)×Ht(z, t)

c20

(
c0dt

n

)
=

1

nc0

∫ ∞
−∞

Et(z, t)×Ht(z, t)dt.

(53)
Substitution of 17 and 18 evaluated at z = 0+ into 53 yields

pp,A(0+) =
κ2E2

0

nc0η0

∫ ∞
−∞

h2(0+, t)g2(0+, t)dt ẑ. (54)

Given continuity of the electric and magnetic fields at z = 0 and an impedance-
matched slab where κ2 = 1, comparison of 16 and 54 reveals that the pulse
momentum-per-unit-area in the slab is modified by a factor of 1/n relative
to the pulse momentum-per-unit-area in vacuum, consistent with the result
of the Balazs thought experiment.

Choosing t = 0 to correspond to the instant when the peak of the pulse
is located at the vacuum-dielectric interface at z = 0 and assuming a pulse
duration significantly shorter than the pulse transit time through the slab
t0 = nL/c0, the total pulse momentum-per-unit-area can then be expressed
as a function of time as

pp,A(t) =

 p0 ẑ t < 0
p0/n ẑ 0 < t < t0
p0 ẑ t > t0

(55)

where the pulse is completely immersed in vacuum over the time intervals
t < 0 and t > t0, and the pulse is completely immersed in the slab over the
time interval 0 < t < t0.
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Adding 41 and 55 yields a conserved total momentum-per-unit-area for
all time given by

ps(t) + pp,A(t) = p0. (56)

Thus, analytical calculations using Maxwell’s equations, the generalized
Lorentz force law given in 27, and conservation of slab and pulse mass with
a pulse mass given by m = E/c20 yield a uniform system center-of-mass
velocity (Equations 47 and 48) that corresponds to a starting postulate
of the Balazs thought experiment and a slab center-of-mass displacement
(Equation 44) that matches one of the intermediate results in the Balazs
thought experiment. Further postulating an Abraham form of the electro-
magnetic momentum density yields a conserved global momentum (Equa-
tion 56) at all times that corresponds to another starting postulate of the
Balazs thought experiment. The assumptions and postulates of the calcula-
tions performed in this section are summarized in Table 2.

We provide an illustrative example by calculating the momentum-per-
unit-area and displacement values for a pulse propagating through a lossless
slab for a set of parameters detailed in the caption of Fig. 2. As shown in
Fig. 2(a), the system momentum-per-unit-area is conserved for all time.
Over the time interval in which the pulse is in the slab 0 < t < t0, a
reduction in the pulse momentum-per-unit-area is balanced by an increase
in the slab momentum-per-unit-area. As shown in Fig. 2(b), the slab center-
of-mass displacement is initially zero, increases linearly when the pulse is
in the slab, and is fixed at a positive value after the pulse has left the slab.
The pulse center-of-mass displacement increases with a slope of c0 for t < 0
and t > t0 and a slope of c0/n for 0 < t < t0. The corresponding system
center-of-mass displacement is linear and the system center-of-mass velocity
is conserved for all time.

Finally, we explore the implication of substituting a Minkowski momen-
tum density (Equation 50) for the Abraham momentum density in the con-
text of the Balazs thought experiment, keeping all other assumptions and
postulates the same. Parallelling the treatment for the Abraham momen-
tum density of the pulse (52-54), the total pulse momentum-per-unit-area
as a function of time is given by

pp,M (t) =

 p0 ẑ t < 0
np0 ẑ 0 < t < t0
p0 ẑ t > t0

(57)

which is inconsistent with the result of the Balazs thought experiment. The
momentum-per-unit-area imparted to the slab by the pulse is independent
of any assumption of the pulse momentum density and is once again given
by 41. Adding ps(t) and pp,M (t) yields a total momentum-per-unit-area

ps(t) + pp,M (t) =

 p0 ẑ t < 0
(1− 1/n+ n)p0 ẑ 0 < t < t0

p0 ẑ t > t0

(58)
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which varies as a function of time. Thus, the Minkowski momentum density,
in conjunction with Maxwell’s equations, the generalized Lorentz force law
given in 27 and conservation of slab and pulse mass, do not lead to global
momentum conservation at all times. Conservation of global momentum at
all times using the Minkowski momentum density may require an alternate
form of a generalized Lorentz force law, a different form of the pulse mass
in the medium, or both.

3 Numerical Simulations of an Electromagnetic Pulse Incident
onto a Lossy Slab

We now consider the case where an electromagnetic pulse is incident onto
a slab occupying 0 < z < L composed of a non-dispersive, lossy dielectric
characterized by a complex relative electric permittivity εr and complex
relative magnetic permeability µ

r
, with finite imaginary parts, respectively.

Our treatment is restricted to the case of a right-handed medium having
Re[εr] > 0 and Re[µ

r
] > 0, simultaneously, yielding a complex index of

refraction with Re[n] > 0. The interaction of the pulse with the slab is
described by invoking the four postulates that have been shown, in the
previous section, to be consistent with conservation of momentum and con-
servation of center of mass velocity in the case of a lossless slab: Maxwell’s
equations, the generalized Lorentz force law given in Equation 27, conser-
vation of both pulse and slab mass, and the Abraham momentum density.
Due to the presence of loss in the slab, we invoke an additional postulate to
model the transfer of mass from the pulse to the slab as a function of space
and time.

An electromagnetic pulse is directed at normal incidence along the +z-
direction onto the slab. Pulse attenuation in the slab is described by a real,
positive electric conductivity, σe, and a real, positive magnetic conductivity,
σm. With the inclusion of loss, Ampere’s Law and Faraday’s Law (in time-
domain notation) become

∇×H =
∂εE

∂t
+ σeE, (59)

and

∇×E = −∂µH
∂t
− σmH, (60)

respectively. The general parameters are ε = ε0, µ = µ0, σe = 0, and σm = 0
in the vacuum region; ε = Re[εr]ε0, µ = Re[µ

r
]µ0, σe = Im[εr]ε0ω0 and

σm = Im[µ
r
]µ0ω0 in the slab region. The spatio-temporal evolution of the

pulse is modeled using one-dimensional finite-difference-time-domain FDTD
solutions to 59 and 60. The simulation space consists of a one-dimensional
array of 4400 pixels with a resolution of 1 nm/pixel. Perfectly-matched-
layer boundary conditions are used at the two ends of the simulation space
to eliminate spurious reflections from the boundaries. Calculations are per-
formed under two conditions: one in which the slab is impedance-matched
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to vacuum such that εr = µ
r

and ηr = 1 and another in which the slab is
not impedance-matched to vacuum.

We first perform numerical simulations of electromagnetic pulse prop-
agation through a slab that is impedance-matched to vacuum. The real
parts of the relative permittivity and the relative permeability of the slab
are both fixed at 2.0. Figures 3(a) and (b) display time-sequences of the
FDTD-calculated electric fields for comparative cases in which a pulse is
incident onto a lossless slab and a lossy slab, respectively. The incident
pulse consists of several electric field oscillations and has a width in vacuum
comparable to the width of the slab. Both impedance-matched slabs show
no reflection from the either of the two dielectric-vacuum interfaces. The
pulse completely transmits through the lossless slab ( Im[εr] = 0.0) with
no change in the pulse amplitude and only partially transmits through the
lossy slab ( Im[εr] = 0.1) with significant pulse amplitude reduction while
the pulse is in the slab.

Based on the electric and magnetic fields obtained from the FDTD sim-
ulations, the current densities in the slab are calculated as a function of
space and time. The total electric current density consists of a bound elec-
tric current density component proportional to ε − ε0 and a free electric
current density component proportional to σe

Je(z, t) =
∂P(z, t)

∂t
+ σeE(z, t), (61)

and the total magnetic current density consists of a bound magnetic cur-
rent density component proportional to µ− µ0 and a free magnetic current
density component proportional to σm

Jm(z, t) =
∂M(z, t)

∂t
+ σmH(z, t). (62)

The instantaneous force density, f(z, t), is obtained by substituting the total
current densities given by 61 and 62 into 27 to yield

f(z, t) =

(
∂P(z, t)

∂t
+ σeE(z, t)

)
× µ0H(z, t)−(

∂M(z, t)

∂t
+ σmH(z, t)

)
× ε0E(z, t) (63)

=

[
(ε− ε0)

∂E(z, t)

∂t
+ σeE(z, t)

]
× µ0H(z, t)−[

(µ− µ0)
∂H(z, t)

∂t
+ σmH(z, t)

]
× ε0E(z, t) (64)

Figure 4 plots a time sequence of the instantaneous Lorentz force density
for the case when the pulse is incident onto a lossless slab. The force density
is zero throughout the slab prior to the arrival of the pulse. When the pulse
traverse the slab, it exerts alternating positive and negative force density
over successive quarter cycles of the field, yielding a force density profile that
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has half the wavelength of the corresponding electric field profile shown in
Figure 3(a). The force density returns to zero throughout the slab extent
after the pulse has exited the slab.

The instantaneous pressure, F(t), is obtained by integrating the force
density over the extent of the slab

F(t) =

∫ L

0

f(z, t)dz. (65)

Figure 5(a) plots F(t) as the pulse traverses a slab for Im[εr] values of
0.0, 0.01, 0.1, and 1.0, representative of slabs that are completely transmis-
sive, partially transmissive with slight absorption, partially absorbing with
slight transmission, and completely absorbing, respectively. For a completely
transmissive slab ( Im[εr] = 0.0), entry of the pulse into the slab over the
time interval −2 fs < t < 2 fs yields an always-positive pressure that is mod-
ulated at twice the frequency of the electric field. Alternating positive and
negative force densities exerted by the pulse as it enters the slab causes
the net pressure exerted on the slab to fluctuate from positive values to
zero. When the pulse is fully immersed in the slab over the time interval
2 fs < t < 4.2 fs, the positive and negative force densities are balanced, re-
sulting in zero pressure. The exit of the pulse from the slab over the time
interval 4.2 fs < t < 8.2 fs yields an always-negative pressure with magni-
tude and temporal profile exactly matching those of the positive pressure
exerted upon entry. A small increase in the absorption of the slab modi-
fies the relative pressures exerted upon pulse entry and exit. In the cases
where Im[εr] = 0.01 and Im[εr] = 0.01, the positive pressure associated
with pulse entry is increased and the negative pressure associated with pulse
exit is diminished. The former is attributed to an additional Lorentz force
density component due to absorption which is always positive; the latter
is attributed simply to the field amplitude reduction when the pulse exits
the slab. For the completely absorbing slab ( Im[εr] = 1.0), the pulse exerts
only a large positive pressure upon entry and zero pressure after the pulse
has been completely absorbed t > 2 fs.

We calculate ps(t) and pp,A(t) via

ps(t) =

∫ t

−∞
F(τ)dτ (66)

and

pp,A(t) =

∫ ∞
−∞

GA(z, t)dz, (67)

respectively. Figure 5(b) plots the magnitude of the momentum-per-unit-
area imparted by the pulse to the slab, ps, and the momentum-per-unit-area
of the pulse, pp,A, for discrete values of Im[εr] ranging from 0.0 to 1.0. Before
the pulse has arrived at the slab, the momentum of the system is carried
entirely by the pulse. As the pulse travels through the slab, changes in ps
are balanced by equal and opposite changes in pp,A. For the lossless case,
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the pulse applies a series of positive pressure spikes upon entry that cause
ps to increase in successive rises and plateaus from 0 to 0.5× 10−3 N s/m2

and pp,A to decrease in successive drops and plateaus from 1×10−3 N s/m2

to 0.5 × 10−3 N s/m2. Both ps and pp,A are momentarily fixed at 0.5 ×
10−3 N s/m2 after the pulse has fully entered the slab and before the pulse
starts to leave the slab. The negative pressure spikes applied by the exiting
pulse cause ps to decrease from 0.5× 10−3 N s/m2 to 0 and pp,A to increase
from 0.5× 10−3 N s/m2 to 1× 10−3 N s/m2. For the partially transmissive
and partially absorbing cases, increase in ps relative to that observed for the
lossless case is caused by positive Lorentz force associated with absorption
in the slab, and decrease in pp,A relative to that observed for the lossless
case is caused by diminished pulse amplitude. The portion of the system
momentum retained by the slab after the pulse has left the slab increases
as the degree of loss in the slab increases; ps ' 0.22 × 10−3 N s/m2 for
Im[εr] = 0.01 and ps ' 0.92 × 10−3 N s/m2 for Im[εr] = 0.1. For the

completely absorbing slab, ps increases from 0 to 1.0 × 10−3 N s/m2 and
pp,A decreases from 1.0 × 10−3 N s/m2 to 0 during the entry of the pulse
over the time interval −2 fs < t < 2 fs. For t > 2 fs, ps and pp,A remain fixed
at 1.0× 10−3 N s/m2 and 0, respectively. As shown in Fig. 5(c), the global
momentum-per-unit-area of the system is conserved for all time in all cases
such that

ps(t) + pp,A(t) = C (68)

where C is a constant.
For a pulse that is uniform over a cross-sectional area, A, the mass of

the pulse at any time is

m(t) = A

∫ ∞
−∞

ρ(z, t)dz (69)

where ρ(z, t) is the mass density of the pulse, which is related to the elec-
tromagnetic field quantities by [14]

ρ(z, t) =
1

2c20
[E(z, t) ·D(z, t) + H(z, t) ·B(z, t)] . (70)

At a given moment in time, the pulse displacement is calculated from

zp(t) =
A
∫∞
−∞ ρ(z, t)zdz

m(t)
. (71)

We define m0 and M0 to be the initial mass of the pulse and the slab,
respectively, before the pulse has entered the slab. Conservation of mass is
imposed in the simulations by maintaining a fixed total system mass

m0 +M0 = m(t) +M(t) (72)

where M(t) is the time-dependent mass of the slab. Absorption of the pulse
in the slab is modeled by an incremental pulse-mass transfer model. At
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each time step of the simulation, the incremental change in the mass of the
pulse ∆m(t+∆t) = m(t)−m(t+∆t) is distributed over the instantaneous
normalized mass density profile of the pulse to yield an absorbed mass
density over the time increment ∆t

ρa(z, t+∆t) = ∆m(t+∆t)
ρ(z, t+∆t)

m(t+∆t)
. (73)

The absorbed mass density over the time increment ∆t is added to the slab
mass density at the previous time step, ρs(z, t), to yield an updated slab
mass density at t+∆t given by

ρs(z, t+∆t) = ρs(z, t) + ρa(z, t+∆t) (74)

where M(t+∆t) =
∫∞
−∞ ρs(z, t+∆t)dz. As shown in Fig. 6(a), reductions

in the pulse mass are compensated by increases in the slab mass such that
the total system mass is conserved for all times. Figure 6(b) plots the total
mass density absorbed by the slab for Im[εr] values of 0.01, 0.1, and 1.0.
As Im[εr] increases from 0.01 to 1.0, the peak absorbed mass density in-
creases over two orders of magnitude and the distribution of the absorbed
mass density shifts towards the slab interface at z = 0. For the completely
absorbing slab Im[εr] = 1.0, the incident pulse is absorbed within ' 0.2µm
of the interface.

At a given moment in time, the slab center-of-mass displacement is cal-
culated from

zs(t) =
A
∫ t

−∞ ps(τ)dτ +A
∫∞
−∞ ρs(z, t)(z − L/2)dz

M(t)
, (75)

where the first and second terms in the numerator of 75 describe the shift
in the center-of-mass of the slab due to momentum transfer from the pulse
to the slab and mass transfer from the pulse to the slab, respectively. Fig-
ure 7(a) plots the slab center-of-mass displacement for discrete values of
Im[εr] ranging from 0.0 to 1.0. For Im[εr] = 0.0, the pulse applies an ac-

celerating pressure to the slab upon entry and a braking pressure to the
slab upon exit, yielding a slab center-of-mass displacement that is initially
zero, increases linearly while the pulse propagates through the slab, and
remains constant after the pulse exits. For Im[εr] = 0.01, absorption in the
slab reduces the braking pressure exerted by the pulse when it exits the
slab such that the slab continues to experience forward displacement even
after the pulse exits. For Im[εr] = 0.1 and Im[εr] = 1.0, there is signifi-
cant absorption of the pulse, which deposits the majority of the pulse mass
near the interface at z = 0 during the entry of the pulse −1 fs < t < 3 fs.
Pulse-mass deposition pulls the slab center-of-mass backwards, despite the
presence of an always-positive pressure. After initial pull-back of the slab,
the positive pressure during pulse entry and weak braking pressure upon
pulse exit both contribute to a slab center-of-mass velocity higher than that
experienced by the less absorbing slabs.
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Based on the slab center-of-mass displacement, we calculate the center-
of-mass displacement of the total slab and pulse system from

zsys(t) =
m(t)zp(t) +M(t)zs(t)

M(t) +m(t)
. (76)

As shown in Fig. 7(b), for the completely transmissive slab, the system
center-of-mass moves with a uniform velocity, in agreement with the analytically-
derived Equation 48. Although the presence and degree of loss in the slab
influence the slab mass density and the slab center-of-mass displacement,
they do not influence the system center-of-mass displacement. For slabs with
Im[εr] = 1.0, 0.1, and 0.01, the system center-of-mass moves with a uni-

form velocity that is equivalent to that observed for the lossless slab for all
time. Thus, Maxwell’s equations and the Lorentz force law, along with the
incremental pulse-mass-transfer model, are consistent with conservation of
system center-of-mass velocity, regardless of the degree of loss in the slab.

We next perform numerical simulations of electromagnetic pulse propa-
gation through a slab having εr = 3.0 + 0.1i and µ

r
= 2.0 + 0.05i to demon-

strate conserved system center-of-mass velocity and global momentum even
in the absence of impedance-matching to vacuum. The pulse consists of a
harmonic carrier wave oscillating at a frequency ω0 = 6 × 1014 Hz (cor-
responding to a wavelength λ0 = 500 nm) and a Gaussian envelope with
a full-width-at-half-maximum FWHM= 1 fs. The pulse amplitude is nor-
malized such that the total pulse power is 1 mW. The slab has a length
L = 1µm and a mass M = 1 kg.

Figures 8(a) and (b) display time-sequences of the FDTD-calculated
electric field and instantaneous Lorentz force density as the pulse is incident
onto the slab from vacuum. Due to the non-unity relative impedance of the
slab, a small portion of the pulse is reflected when the pulse is incident on
either of the two vacuum-dielectric interfaces. The amplitude of the pulse
is reduced as it travels through the slab due to absorption. Prior to the
arrival of the pulse in the slab, the force density is zero throughout the slab.
When the pulse travels through the slab, it exerts alternating positive and
negative force density over successive quarter cycles of the field. Absorption
in the slab diminishes the force density amplitude when the pulse is in the
slab. The force density returns to zero after the pulse has exited the slab
(following a sufficient number of multiple reflections back and forth between
the internal facets of the slab).

The force-per-unit-area, F(t), exerted by the pulse onto the slab is plot-
ted in Fig. 9(a). The pulse exerts positive pressure as it enters the slab and
negative pressure as it exits the slab. As shown in Fig. 9(b), momentum-per-
unit-area in the system is dynamically re-distributed between the slab and
the pulse as the pulse travels through the slab, but remains conserved for
all time. Prior to the arrival of the pulse, the system momentum is entirely
in the pulse and the slab momentum is zero. As the pulse enters the slab,
an increase in the slab momentum-per-unit-area is balanced by a commen-
surate decrease in the pulse momentum-per-unit-area. After the pulse has
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exited the slab, a greater portion of the system momentum is in the slab
and a lesser portion remains in the pulse. As shown in Fig. 9(c), the total
momentum-per-unit-area of the system is conserved for all time.

As highlighted in Fig. 10(a), the slab center-of-mass displacement is ini-
tially zero and increases approximately linearly while the pulse propagates
through and exits the slab. Figure 10(b) show that the corresponding center-
of-mass displacement of the total slab and pulse system increases linearly.
Thus, even in the absence of impedance matching, an electromagnetic pulse
incident onto a lossy slab yields a conserved system center-of-mass velocity
for all time. A summary of the assumptions and postulates of the calcula-
tions performed in this section are summarized in Table 3.

4 Conclusion

We have re-visited the Balazs thought experiment by using four postulates:
Maxwell’s equations, a generalized Lorentz force law, conservation of pulse
and slab mass, and an Abraham electromagnetic momentum density to de-
scribe an electromagnetic pulse propagating through a non-dispersive slab.
In contrast to the original Balazs thought experiment, our approach enables
investigation of the dynamics of the pulse while it is inside the slab. Pulse in-
teraction with a lossless slab using the four postulates leads to conservation
of the system center-of-mass velocity and conservation of global momen-
tum at all times, which correspond to two of the starting postulates of the
Balazs thought experiment. In the case where the slab is lossy, we invoke
an incremental pulse-mass-transfer model to describe pulse absorption in
the slab. Our model of pulse absorption yields conservation of both global
momentum and system center-of-mass velocity, regardless of the degree of
loss in the slab.
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Appendix A: An Alternative Form of a Generalized Lorentz Force
in the Context of the Balazs Thought Experiment

We consider the momentum imparted by an electromagnetic pulse onto
a lossless slab using Maxwell’s equations and an alternative form of the
generalized Lorentz force law expressed as [11–13]

f(z, t) = Je(z, t)×B(z, t)− Jm(z, t)×D(z, t). (77)

Substitution of 20, 21, 24, and 25 into 77 yields the force density

f(z, t) = − κ2E2
0

nc0ηrη0
(2εrµr − εr − µr)

(
∂h

∂z
hg2 +

∂g

∂z
h2g

)
ẑ. (78)

Integrating 78 throughout the extent of the slab yields a total instantaneous
force-per-unit-area given by

F(t) =
κ2E2

0

2nc0ηrη0
(2εrµr − εr − µr)[

h2(0+, t)g2(0+, t)− h2(L, t)g2(L, t)
]
ẑ. (79)

Integrating 79 with respect to time yields the net momentum ps(t) imparted
by the pulse onto the dielectric slab at a given time t

ps(t) =
κ2E2

0

2nc0ηrη0
(2εrµr − εr − µr)×∫ t

−∞

[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ ẑ. (80)
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The normalized momentum transfer, ζ(t), is expressed as

ζ(t) =
κ2

2nηr
(2εrµr − εr − µr)∫ t

−∞
[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ∫∞

−∞ h2(0−, t)g2(0−, t)dt
. (81)

Simplification of the pre-factor in 81 yields

ζ(t) =
T

2

(
2n− ηr −

1

ηr

)
∫ t

−∞
[
h2(0+, τ)g2(0+, τ)− h2(L, τ)g2(L, τ)

]
dτ∫∞

−∞ h2(0−, t)g2(0−, t)dt
. (82)

Assuming an impedance-matched slab where T = 1 and a pulse duration
significantly shorter than t0 = nL/c0, the normalized momentum transfer
is given by

ζ(t) =

 0 t < 0
n− 1 0 < t < t0

0 t > t0

(83)

Thus, the momentum-per-unit-area imparted by the pulse to the slab, ps(t),
is

ps(t) = ζ(t)p0 ẑ =

 0 t < 0
(n− 1) p0 ẑ 0 < t < t0

0 t > t0

(84)

The required pulse momentum-per-unit-area to achieve conservation of global
momentum is

pp(t) =

 p0 ẑ t < 0
(2− n)p0 ẑ 0 < t < t0

p0 ẑ t > t0

(85)

Because the required magnitude of the pulse momentum-per-unit-area in
the dielectric slab, (2 − n)p0, is neither physically justifiable (in particular
because it would take on negative values for n > 2) nor consistent with all
previous theories of the electromagnetic momentum density, we conclude
that the form of the generalized Lorentz force law given in Equation 77 is
inaccurate in describing electromagnetic interactions with ponderable me-
dia.
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Balazs Thought Experiment

Assumptions Postulates

– Slab is non-dispersive and lossless with
refractive index n

– Slab is impedance-matched to vacuum
– Slab is massive M >> m
– Pulse is a plane wave at normal inci-

dence
– Pulse travels with velocity c0 in vac-

uum and c0/n in the slab

– Conservation of total momentum of a
closed system

– Conservation of system center-of-mass
velocity in the absence of external
forces

– Pulse carries constant mass m = E/c20
in vacuum

Table 1 Assumptions and postulates corresponding to the Balazs thought ex-
periment.
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Explicit Force Density Calculations: Lossless Case

Assumptions Postulates

– Slab is non-dispersive and lossless with
refractive index n

– Slab has a positive index of refraction
n > 0

– Slab is impedance-matched to vacuum
– Slab is massive M >> m
– Pulse is a plane wave at normal inci-

dence, with arbitrary envelope and car-
rier wave

– Pulse travels with velocity c0 in vac-
uum and c0/n in the slab

– Pulse is short compared to the length
of the slab

– Maxwell’s equations
– Generalized Lorentz force law given in

27
– Electromagnetic momentum density

GA = (E×H)/c20
– Slab mass is invariant and pulse carries

constant mass m = E/c20 independent
of its location

Table 2 Assumptions and postulates corresponding to our explicit force density
calculations in the case of a pulse incident onto a lossless slab.
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Explicit Force Density Calculations: Lossy Case

Assumptions Postulates

– Slab is non-dispersive and lossy
– Slab has a positive index of refraction
– Slab has arbitrary impedance mis-

match with vacuum
– Slab is massive M >> m
– Pulse is a plane wave at normal inci-

dence

– Maxwell’s equations
– Generalized Lorentz force law given in

27
– Electromagnetic momentum density

GA = (E×H)/c20
– Spatially-varying electromagnetic mass

density ρ = (E ·D + H ·B)/(2c20)
– An incremental mass transfer model,

proposed here, in which the pulse de-
posits mass in the slab with a distri-
bution corresponding to the instanta-
neous mass density profile of the pulse

Table 3 Assumptions and postulates corresponding to our numerical force den-
sity calculations in the case of a pulse incident onto a lossy slab.
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Fig. 1 Formulation of the Balazs thought experiment. Two identical enclosures
each contain a photon of mass m and a non-dispersive, lossless slab of mass M
and length L. (a) In enclosure 1, the photon propagates in a straight line above
the slab through only vacuum. (b) In enclosure 2, the photon propagates in a
straight line through both vacuum and the slab.
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Fig. 2 (a) Momentum-per-unit-area and (b) center-of-mass displacement values
calculated for a pulse (green), a non-dispersive, lossless slab (red), and the total
pulse-slab system (blue) when the pulse is incident onto the slab. We have assumed
a set of parameters p0 = 1 N s/m2, M = 1 kg, L = 1m, εr = 2, and µr = 2. The
dotted lines indicate the instances when the peak of the pulse is located at the
vacuum-dielectric interfaces at z = 0 and z = L, respectively.
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Fig. 3 Time sequence of the FDTD-calculated electric field for (a) a pulse in-
cident onto a non-dispersive, lossless, impedance-matched slab of relative permit-
tivity εr = 2.0 and (b) a pulse incident onto a lossy, impedance-matched slab of
complex relative permittivity εr = 2.0 + 0.1i. For clarity, the curves have been
offset such that the horizontal asymptotic value of each curve corresponds to zero
electric field. The incident pulse consists of a harmonic carrier wave oscillating at
a frequency ω0 = 6 × 1014 Hz (corresponding to a wavelength λ0 = 500 nm) and
a Gaussian envelope with a full-width-at-half-maximum FWHM= 1 fs. The pulse
amplitude is normalized such that the total pulse power is 1 mW. The slab has a
length L = 1µm and a mass M = 1 kg. The dotted lines indicate the edges of the
slab.
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Fig. 4 Time sequence of the FDTD-calculated Lorentz force density for a pulse
incident onto a non-dispersive, lossless, impedance-matched slab of relative per-
mittivity εr = 2.0. For clarity, the curves have been offset such that the horizontal
asymptotic values corresponds to zero force density. The dotted lines indicate the
edges of the slab.
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Fig. 5 (a) Instantaneous force-per-unit-area exerted by the pulse onto the slab
for discrete Im[εr] values ranging from 0.0 to 1.0. (b) The net momentum-per-
unit-area imparted to the slab (solid lines), the momentum-per-unit-area of the
pulse (dashed lines), and (c) the total momentum-per-unit-area of the system for
discrete Im[εr] values ranging from 0.0 to 1.0.
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Fig. 6 (a) Total pulse mass (dashed lines) and the change in slab mass (solid
lines) as the pulse is incident onto the slab for discrete Im[εr] values ranging
from 0.0 to 1.0. (b) Mass density absorbed by the slab for discrete Im[εr] values
ranging from 0.01 to 1.0.
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Fig. 7 (a) Slab center-of-mass displacement and (b) system center-of-mass dis-
placement when a pulse traverses a slab for discrete Im[εr] values ranging from
0.0 to 1.0. The dotted lines indicate the instances when the peak of the pulse is lo-
cated at the vacuum-dielectric interfaces at z = 0 and z = L, respectively, for the
case of a non-dispersive, lossless slab. The pulse cross-sectional area is A = 1 m2.
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Fig. 8 Time sequence of the FDTD-calculated (a) electric field and (b) Lorentz
force density for a pulse incident onto a non-dispersive, lossy slab of complex
relative permittivity εr = 3.0 + 0.1i and complex relative permeability µ

r
= 2.0 +

0.05i. For clarity, the curves have been vertically offset such that the horizontal
asymptotic values for each curve corresponds to zero. The dotted lines indicate
the edges of the slab.
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Fig. 9 (a) Instantaneous force-per-unit-area exerted by the pulse onto a non-
dispersive, lossy slab of complex relative permittivity εr = 3.0 + 0.1i and complex
relative permeability µ

r
= 2.0 + 0.05i. (b) The net momentum-per-unit-area im-

parted to the slab (solid line), the momentum-per-unit-area of the pulse (dashed
line), and (c) the total momentum-per-unit-area of the system.
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Fig. 10 (a) Slab center-of-mass displacement and (b) system center-of-mass
displacement when a pulse traverses a non-dispersive, lossy slab of complex relative
permittivity εr = 3.0 + 0.1i and complex relative permeability µ

r
= 2.0 + 0.05i.

The pulse cross-sectional area is A = 1 m2.


