Microwave Characterization of Transparent Conducting Films

Jan Obrzut and Oleg Kirillov

National Institute of Standards and Technology, Gaithersburg, MD 20899 USA (jan.obrzut@nist.gov).

ABSTRACT

The high frequency conductivity of thin metallic and graphitic nano-films attracts interest due to many potential applications in spin electronics, electromagnetic shielding, flexible antennas, displays, and in solar cells. Surface morphology of thin conducting nano-films typically consists of an isolated clustering structure, which can evolve into a conducting percolated network [1]. The high frequency conductance of such materials is not well understood. We present measurements of microwave conductivity of thin optically transparent films in a coplanar waveguide (CPW) configuration [2]. Fig. 1 shows a signal flow graph of a two port microwave network representing a section of CPW with a conducting thin film specimen. The CPW outside the specimen section has a real characteristic impedance Z_0 , while the material's properties in the specimen section are represented by the complex impedance Z_s that depends on the reflection (Γ) and transmission ($e^{-\gamma t}$) coefficients; propagation constant (γ) and propagation length (l). We determine the relation between the experimentally measured scattering parameters (S_{11}) and (S_{21}), complex impedance (Z_s) and propagation constant (γ) for the CPW test structure through a signal flow graph method. Once the signal flow is solved for γ and Z_s , then the conductance G_s and the capacitance C_s of the specimen can be determined from conventional transmission line relations.

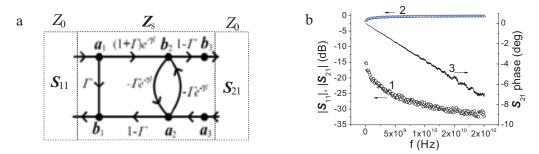


FIGURE 1. a- Signal flow graph of CPW. b- Scattering parameters for Au film. (1)- $|S_{11}|$, (2)- $|S_{21}|$ and (3) - phase of S_{21} .

Measurements are carried out on CPWs with a characteristic impedance of 50 Ω and a propagation length ranging from 450 μ m to 3600 μ m, which are patterned on alumina substrates by lift off lithography.

The measured phase angle of S_{11} (not shown) oscillates between $\pm 180^{\circ}$ in the corresponding frequency range. In comparison, $|S_{11}|$ of the empty reference CPW was measured to be about -60 dB ($\Gamma \approx 0$), while $|S_{21}|$ was in the range of 0 dB ($e^{-\gamma t} \approx 1$). The conductance of the film decreases considerably with increasing frequency from about 50 S/m at 1 GHz to about 10 S/m at 20 GHz. The presented results are general and applicable for characterization of electrical properties of thin nanostructured films at microwave frequencies.

REFERENCES

1. J. Obrzut, D. Pristinski and M. Yoonessi, ECS Trans. 28, 99-106 (2010)

2. W. R. Eisenstadt and Y. Eo, IEEE Trans. Components, Hybr. Manufact. Tech., 15, 483-490 (1992).

Keywords: Thin Films; Microwave Conductance; Coplanar Waveguides;