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Reverberation Chamber Measurement Correlation
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Abstract—This contribution evaluates the utility of several dif-
ferent metrics for studying correlation between reverberation
chamber measurements collected at different stirrer positions.
Metrics considered are the autocovariance, the correlation matrix,
and two metrics based upon the entropy of the data correlation
matrix: 1) the effective number of uncorrelated measurements and
2) the measurement efficiency. The different metrics are shown to
be useful for different correlation analyses. Application of these
metrics reveals that the correlation between reverberation cham-
ber measurements is strongly affected by stirring methodology,
loading configuration, and measurement frequency.

Index Terms—Correlation, entropy, measurement correlation,
measurement efficiency, reverberation chamber.

I. INTRODUCTION

R EVERBERATION chambers provide a statistical field
distribution for measuring antenna radiation efficiency

[1], electromagnetic susceptibility [2], and the performance of
wireless communication systems [3]–[6]. However, correlation
among measurements taken in a reverberation chamber severely
degrades both the efficiency of the measurement procedure (e.g.,
due to oversampling) and the accuracy of the target measure-
ment quantity (e.g., due to an insufficient number of effectively
uncorrelated measurements). Here, we present several tools for
studying correlation between reverberation chamber measure-
ments at different stirrer positions and illustrate how these tools
may be used to identify and mitigate correlation through im-
proved experiment design.

To date, most investigations of reverberation chamber mea-
surement correlation have focused solely on the autocovariance
(or autocorrelation) of the measurement data with respect to a
mechanical stirrer’s position or angle. Typically, stirrer auto-
covariances have been used to determine the minimum stirrer
displacement or rotation required to obtain uncorrelated mea-
surements so as to estimate the maximum obtainable number of
uncorrelated measurements [7]–[12] or to optimize the geome-
try of a mechanical stirrer [9], [13]. Taking a slightly different
approach, [10], [14], [15] fit analytic models to the stirrer’s
autocovariance to compute an effective sample size for their
measurements. In [10], this was used for uncertainty analysis,
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whereas in [14], [15] it was used to compute an ideal stirrer
stepsize.

Here we compare and contrast the utility of four metrics useful
for evaluating different aspects of reverberation chamber mea-
surement correlation: the autocovariance, the correlation ma-
trix, the effective number of uncorrelated measurements, and
measurement efficiency. We show that the autocovariance is an
extremely practical, albeit specialized, tool for assessing serial
correlation, i.e., correlation between sequential uniformly sam-
pled measurements. This makes the autocovariance useful for
characterizing the performance of individual stirrers [9], [13],
but limits its ability to assess other manifestations of measure-
ment correlation. The correlation matrix has been used previ-
ously for studying serial measurement correlation [14], but its
true utility lies in its ability to facilitate the identification of cor-
relation sources and the design of better stirring methodologies.
The effective number of uncorrelated measurements distills a
measurement dataset’s correlation down to a single scalar value
that quantifies the amount of unique information obtained from
a set of measurements. This enables quantitative comparisons
of different measurement configurations and a straightforward
uncertainty analysis. Finally, measurement efficiency provides a
succinct and intuitive assessment of one’s measurement method-
ology that facilitates measurement optimization.

Discussion begins in Section II with a brief overview of the re-
verberation chamber measurements used to demonstrate the dif-
ferent correlation metrics. Then, in Sections III–VI we present
the different correlation metrics and accompanying example
calculations using various reverberation chamber measurement
datasets. These example calculations demonstrate the utility of
the different metrics and lead to the identification of several
sources of reverberation chamber measurement correlation. In
Section VII, we convert the insight afforded by these correla-
tion metrics into practical guidelines for mitigating measure-
ment correlation. Conclusions and future work are discussed in
Section VIII.

II. REVERBERATION CHAMBER MEASUREMENTS

Measurements were taken in a 3.60 m by 4.27 m by 2.90 m
reverberation chamber that used a pair of rotating mechanical
paddles to “stir” the electromagnetic fields. The two orthogo-
nal stirrer axes were positioned near, and oriented parallel to,
two nonadjacent edges of the chamber. The first stirrer rotated
about a vertical axis within a cylindrical volume 2.46 m high
and 1.00 m in diameter. The second stirrer rotated about a hori-
zontal axis within a cylindrical volume 3.3 m long and 1.00 m in
diameter. Note that the length of the second stirrer was about 1.3
times the first. Stepped-paddle measurements were conducted,
and the angular resolution of each stirrer was 0.1◦. The mea-
surements used a pair of 1 GHz to 18 GHz double-ridge guide
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horn antennas that were cross-polarized and pointed away from
each other and toward the two mechanical stirrers. The anten-
nas were connected to a vector network analyzer (VNA), which
was calibrated at the antenna ports. For each of the N different
stirrer positions, the VNA was used to record the complex S21
at M = 16,001 equispaced frequencies from 0.8 GHz to 6 GHz.
The VNA manufacturer’s specified uncertainty in the measured
S21’s magnitude and phase were 0.2 dB and 1◦, respectively.
The technique described in [16] was used to correct for antenna
impedance mismatches. The resulting dataset was compiled into
a M -by-N data matrix, H, given by

H =

⎡
⎢⎢⎢⎢⎣

h1(f1) h2(f1) · · · hN (f1)

h1(f2) h2(f2) · · · hN (f2)
...

...
. . .

...

h1(fM ) h2(fM ) · · · hN (fM )

⎤
⎥⎥⎥⎥⎦

(1)

where the matrix element hn (fm ) denotes the mismatch-
corrected complex S21 measurement corresponding to the mth
frequency fm and nth stirrer position.

A. Stirrer Rotation Algorithms

Three different mechanical stirrer rotation algorithms were
tested to study the effect of relative paddle position on mea-
surement correlation. In later sections, we use our correlation
analyses to compare the effectiveness of these different algo-
rithms and gain insight into stirrer rotation algorithm design.
In the following discussion, φ1 ∈ [0◦, 360◦) denotes the angle
of the first mechanical stirrer, and φ2 ∈ [0◦, 360◦) denotes the
angle of the second mechanical stirrer.

1) Uniform Linear: (Δφ1 ,Δφ2): For the uniform linear al-
gorithm, the stirrers were rotated by some fixed angle pair,
(Δφ1 ,Δφ2), whereby, for each new measurement, the first stir-
rer was rotated by Δφ1 and the second stirrer was rotated by
Δφ2 . Fig. 1(a) illustrates the angles, φ1 and φ2 , of the two stir-
rers when using the uniform linear algorithm with various stirrer
rotation angle pairs to obtain N = 25 measurements.

2) Uniform Grid: The uniform grid algorithm rotates the
stirrers to the set of angle pairs, {(φ1 , φ2)}, that lie on a rect-
angular grid in the φ1-φ2 angle space. For the measurements
discussed here, N was restricted to a perfect square whereby
the grid dimensions were

√
N -by-

√
N with an intragrid spacing

of Δφ1 = Δφ2 = 360◦/
√

N . Fig. 1(b) illustrates the angles, φ1
and φ2 , of the two stirrers when using the uniform grid algorithm
to obtain N = 25 measurements.

3) Maximin Distance: For a set of N measurements, the
maximin distance algorithm seeks two ordered sets, {φ1} and
{φ2}, each containing N unique stirrer angles such that the cor-
responding set of stirrer angle pairs, {(φ1 , φ2)}, are uniformly
distributed throughout the φ1-φ2 angle space with a minimum
separation distance in φ1 or φ2 of 360◦/N . That is, the algorithm
seeks to maximize the minimum distance between points in the
φ1-φ2 angle space while also ensuring that each stirrers’ set of
N angles is unique. Rather than directly solving the implicit
maximin optimization problem, we opt for an efficient heuristic

Fig. 1. Diagram of the stirrer angles, (φ1 , φ2 ), attained by use of three dif-
ferent stirrer rotation algorithms for N = 25 measurements: (a) uniform linear,
(b) uniform grid, (c) maximin distance.

solution that yields a pair of ordered angle sets, {φ1} and {φ2},
exhibiting approximately uniform separation in angle space.
Details of this heuristic solution are presented in Appendix A.
Fig. 1(c) illustrates the angles, φ1 and φ2 , of the two stirrers
when this maximin distance algorithm is used to obtain N = 25
measurements.
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III. AUTOCOVARIANCE

The autocovariance is a measure of the correlation between
an observed signal and a shifted or delayed copy of itself. Given
the periodicity of our reverberation chamber measurement data,
which arises due to our use of rotating mechanical stirrers, we
opt to use a circular autocovariance given by [17]

ρh(fm ,Δn) =

〈
hn (fm )h∗

n+Δn (fm )
〉

n
− |〈hn (fm )〉n |

2

〈
|hn (fm )|2

〉
n
− |〈hn (fm )〉n |

2
(2)

where Δn ∈ [0, N − 1], the index n + Δn is computed by use
of modulo N arithmetic, 〈·〉n denotes the ensemble average
taken across all stirrer positions, and ·∗ denotes the complex
conjugate. Implicitly, we are assuming that the stirrer-dependent
fluctuations of S21 may be modelled as a wide-sense stationary
process.

In [9], [13], stirrer performance analyses were conducted us-
ing an autocovariance similar to (2). It is worth pointing out that,
unlike the autocorrelation, the autocovariance removes the mean
of the signal and is thus a generally applicable measure of corre-
lation. In contrast, the autocorrelation is only a valid correlation
measure when the data has a mean of zero. This distinction is
particularly important for reverberation chamber measurements,
wherein the measurement configuration may lead to a Rician-
type environment characterized by a nonzero and frequency-
dependent average S21 [18]. Of course, for cases where the
Rician K-factor is zero, the autocovariance and autocorrelation
are identical.

For our analysis, we will use a frequency-averaged circular
autocovariance given by

ρh(Δn) = 〈ρh(fm ,Δn)〉f (3)

where 〈(·)〉f denotes an ensemble average taken over some
bandwidth. Due to the additional frequency averaging, (3) pro-
vides a better estimate of the stirrer’s correlation function than
(2).

Fig. 2 presents examples of two circular stirrer autocovari-
ances frequency-averaged over a 1 GHz bandwidth centered
around 2 GHz. The 1 GHz frequency-averaging bandwidth
was chosen so as to be consistent with results presented in
Section V, wherein a 1 GHz bandwidth is necessary to accu-
rately estimate the same datasets’ effective number of uncorre-
lated measurements, Neff . The autocovariances were calculated
from reverberation chamber measurement datasets that used
a three-absorber loading configuration and the uniform linear
stirring algorithm with N = 360, whereby Δn = 1 in (2)–(3)
corresponds to Δφ = 1◦. The uncertainty in the autocovariance
traces was determined by combining the uncertainty in (3)’s
ensemble average across frequency with the uncertainty arising
due to the 0.1◦ resolution of the stirrer rotation angles. For the
latter uncertainty contribution, we equated the uncertainty in the
stirrer rotation angle with the stirrers’ 0.1◦ resolution and propa-
gated this uncertainty through ρh(Δn). The resulting combined
uncertainty was dominated by the 0.1◦ resolution of the stir-
rer rotation angles and was determined to be less than 0.025.
Comparing the autocovariances in Fig. 2, it may be seen that

Fig. 2. Frequency-averaged circular autocovariance calculated with respect
to stirrer angle for N = 360 measurements. The autocovariance was averaged
across a 1 GHz bandwidth centered around 2 GHz.

Fig. 3. Coherence angle φc as a function of frequency.

they exhibit similar trends, including a single peak at Δφ = 0◦,
which indicates that the mechanical stirrers have only one angle
of rotational symmetry corresponding to 360◦.

A. Coherence Angle/Distance

An autocovariance with respect to stirrer orientation/position
may be used to determine the stirrer’s coherence angle/distance,
which describes how far the stirrer should be rotated/displaced
to obtain a new measurement having a specified level of cor-
relation [7], [8], [11]. These coherence metrics may be defined
by the width of the normalized autocovariance at some thresh-
old correlation value. Here, we use a threshold of 0.5, whereby
the coherence angle, denoted φc , corresponds to the normalized
autocovariance’s full-width at half-maximum.

Fig. 3 presents example calculations of the coherence angle
φc as a function of frequency for the same datasets used to cal-
culate the autocovariances in Fig. 2. The corresponding stirrer
autocovariances were again frequency-averaged over a 1 GHz
bandwidth. The relative uncertainty in the calculation of the co-
herence angles was due to a combination of the stirrer rotation
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Fig. 4. Estimated number of uncorrelated measurements Nest as determined
by the coherence angle φc from a set of N = 360 measurements taken at 1◦
intervals.

angle resolution and the uncertainty in the autocovariances and
was determined to be less than 5%. Fig. 3 reveals that the coher-
ence angle tends to decrease with increasing frequency. This in-
dicates that lower frequencies (i.e., larger wavelengths) require
larger stirrer rotations to decorrelate the measurements [8], [19].
Comparing the performance of the individual stirrers, the sec-
ond stirrer (dashed trace) yields a consistently smaller coherence
angle than the first (solid trace). In Section II, we noted that the
second stirrer was slightly larger than the first stirrer. Thus, the
second stirrer’s superior performance may be attributed to its
larger geometry.

B. Estimated Number of Uncorrelated Measurements

Provided that measurements at coherence angles φc are suf-
ficiently decorrelated, one may use the coherence angle to esti-
mate the total number of uncorrelated measurements that may
be obtained from a single stirrer [7], [8], [11]. This estimate,
denoted Nest , is given by

Nest =
360◦

φc
. (4)

Fig. 4 presents example calculations of the estimated number
of uncorrelated measurements based on the coherence angles
φc presented in Fig. 3. By propagating the uncertainty in the
coherence angles through (4), the relative uncertainty in Nest
was determined to be less than 5%. Fig. 4 reveals that only a
small subset of the N = 360 measurements were uncorrelated.
In other words, Figs. 3 and 4 indicate that taking measurements
at 1◦ increments amounts to an oversampling of the reverbera-
tion chamber’s wireless channel with respect to stirrer angle.

In general, the stirrer autocovariance provides a useful tool
for determining how far to move or rotate a stirrer in order to
minimize the correlation between measurements. This makes
the autocovariance an invaluable tool for evaluating the per-
formance of an individual stirrer. However, it is not the best
tool for assessing the correlation between arbitrary measure-
ment pairs nor for evaluating the effectiveness of one’s mea-

surement methodology, because an autocovariance is suitable
only when sequential, uniform, and finely sampled stirrer rota-
tions/displacements are used (e.g., the “Uniform Linear” stirrer
rotation algorithm with sub-coherence-angle increments).

IV. CORRELATION MATRIX

The correlation matrix provides a far more general tool for
evaluating the correlation between measurement pairs. For an
N -by-N correlation matrix, R, computed from an M ′-by-N
submatrix of the original data matrix, H, the matrix element,
rij , describing the correlation between the ith and jth stirrer
positions and occupying the ith row and jth column of R is
given by [20]

rij =
σij√
σiiσjj

. (5)

In (5), σij denotes the elements of the corresponding covariance
matrix, Σ as given by [20]

σij =
1

M ′ − 1

m ′+M ′∑
m=m ′

{
(hi(fm ) − 〈hi(fm )〉f )

× (hj (fm ) − 〈hj (fm )〉f )∗
}

. (6)

In (5)–(6), i, j ∈ {1, 2, . . . , N} and the primed variables, m′ and
M ′ ≤ M are used to identify a bandwidth from which M ′ un-
correlated frequencies are used to calculate the covariance σij .
Here, uncorrelated frequencies are defined as those separated
by a coherence bandwidth, Bc , as given by the full-width at
half-maximum of a frequency domain autocorrelation [21]. Im-
plicitly, the ensemble averages, 〈hi(fm )〉f and 〈hj (fm )〉f , in (6)
are frequency-averaged using this same set of M ′ frequencies.

Assuming the measurement data are complex Gaussian, the
uncertainty in the elements of the sample correlation matrix
is approximately (1 − |rij |2)/

√
M ′ − 1 for large M ′ [22],

whereby attaining an uncertainty of 0.05 can require M ′ ≈
400 uncorrelated observations (frequencies). Depending on the
chamber’s coherence bandwidth, this may necessitate a large
calculation bandwidth, which, due to the inherent frequency de-
pendence of the measurement data’s insertion loss (see [18],
[23]) and correlation (see Fig. 4), may obfuscate the interpreta-
tion of the resulting correlation matrix. To mitigate this issue, we
row standardize the data matrix H prior to estimating the covari-
ance matrices. This forces the mean and variance of each row
of H to zero and one, respectively, such that each observation
(frequency) is given equal weight in the calculation of the cor-
relation matrix R [24]. Nominally, the higher correlation at the
lower bounds of the calculation bandwidth will be offset by the
lower correlation at the upper bounds of the calculation band-
width, whereby the frequency-averaged correlation matrix will
reflect the measurement correlation near the calculation band-
width’s center. Of course, this cannot be guaranteed, but it does
indicate that the implications of frequency-averaging the cor-
relation matrix are less severe than one might initially suspect.
The same comments apply to (3)’s frequency-averaged circular
autocovariance. Finally, we note that row standardization also
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resolves potential errors in the correlation matrix estimation for
Rician distributed measurement data characterized by a nonzero
row- (i.e., frequency-) dependent mean [25].

Fig. 5 presents example correlation matrix calculations for
four different measurement datasets with N = 100 measure-
ments and a three absorber loading configuration. The correla-
tion matrices were calculated from the row-standardized mea-
surement data within a 1 GHz bandwidth centered about 2 GHz
and are presented using a logarithmic color scale to emphasize
the different matrix structures. The 1 GHz bandwidth was used
so as to be consistent with the results presented in other sections
as well as to attain a reasonable uncertainty in the elements
of the correlation matrix. From an analysis of the variance of
the elements of the covariance matrices, the elements of the
correlation matrices were determined to have an uncertainty of
approximately 0.05, or 10−1.3 .

The correlation matrices presented in Fig. 5 provide conve-
nient graphical representations of the correlation between each
of the N different measurements. As may be expected, all of
the correlation matrices exhibit a maximum correlation of unity
along the main diagonal. Off this main diagonal, the values of
the correlation matrix are seen to depend on the stirrer rota-
tion algorithm used to collect the measurement data. Fig. 5(a),
which corresponds to the “Uniform Linear: (3.6◦, 3.6◦)” algo-
rithm, exhibits a broad main diagonal that reveals strong cor-
relation between adjacent stirrer positions. This is unsurprising
given that Fig. 3 indicates the 3.6◦ stirrer rotation angle used in
Fig. 5(a) is less than either stirrer’s coherence angle at 2 GHz.
Figs. 5(b)–(d) exhibit faint diagonal bands of moderate cor-
relation off the main diagonal. Fig. 5(c) also exhibits square
patches of moderate correlation along the main diagonal. Both
of these correlation artifacts correspond to a pair of stirrer po-
sitions wherein either the first or second stirrer was at a similar
angle. For these cases, it is as if only one stirrer is being used to
decorrelate the measurements.

Overall, the correlation matrix is an excellent tool for graphi-
cally and thus qualitatively evaluating the correlation in a mea-
surement dataset. This makes the correlation matrix convenient
for analyzing and identifying sources of correlation for a given
stirrer rotation algorithm. Furthermore, whereas the autocovari-
ance should really only be used to evaluate the performance of
a single stirrer (e.g., by way of its coherence angle/distance),
the general formulation of the correlation matrix makes it ap-
plicable to measurements collected using an arbitrary number
of stirrers and any stirring methodology. However, because it is
inherently a 2-D measure of correlation, the correlation matrix
is neither well suited for drawing definitive conclusions about
the overall correlation in a dataset nor for making quantitative
comparisons across different datasets and/or frequencies.

V. EFFECTIVE NUMBER OF UNCORRELATED MEASUREMENTS

A more succinct correlation metric may be found by con-
sidering the total amount of information, or entropy in the
measurement data. Intuitively, correlation among different mea-
surements should result in redundant information that limits the
maximum amount of information in N measurements. Thus,

Fig. 5. Correlation matrices for different stirring algorithms with three ab-
sorbers and N = 100: (a) uniform linear: (3.6◦, 3.6◦), (b) uniform linear:
(7◦, 13◦), (c) uniform grid, and (d) maximin distance.
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the more correlated the measurement data, the more redundant
information contained in the measurements, and the lower the
measurement data’s overall (i.e., joint) entropy.

For multivariate data akin to the data matrix H, the conven-
tional entropy metric is determined based on the distribution of
the eigenvalues of the data’s covariance matrix Σ [26], [27]. As
in [28], [29], we consider a slight variation of this formulation
based on the eigenvalues λn of the correlation matrix R

Iα =
1

1 − α
ln

(
N∑

n=1

λ̂
α

n

)
(7)

where λ̂n are the normalized eigenvalues of R as given by

λ̂n =
λn∑N

n=1 λn

. (8)

Equation (8) casts the spectrum of R as a discrete probability
distribution and (7) calculates this discrete distribution’s Rényi
entropy Iα of order α [30]. Values of Iα range from 0 for a single
nonzero eigenvalue to ln N for N equal eigenvalues. We note
that (7) in the limit α → 1 corresponds to the classic Shannon
entropy formula [31]. Henceforth, we shall restrict ourselves to
Rényi entropy of order α = 2, which has been used in various
disciplines to develop a measure of the dimensionality of a
system or dataset [27], [31], [32].

Ideally, the reverberation chamber measurements at each of
the N different stirrer positions will be perfectly uncorrelated
such that R = I, where I denotes the identity matrix. For this
ideal case, all N eigenvalues of the correlation matrix will be
identical, and (7) will yield the maximum possible entropy cor-
responding to I2 = lnN . Given that I2 = lnN is the entropy for
N uncorrelated measurements, we can determine an effective
number of uncorrelated measurements, Neff , for N potentially
correlated measurements by requiring that

I2 = lnNeff . (9)

Taking the exponential of both sides of (9) yields an expression
for the effective number of uncorrelated measurements, Neff

Neff = eI2 . (10)

Equation (10) determines the corresponding number of uncor-
related measurements that would have yielded the same amount
of information as the N original measurements. If the N origi-
nal measurements were perfectly uncorrelated, whereby R = I,
then Neff = N . If the N measurements were perfectly corre-
lated (with equal variances) such that R is a unit matrix (i.e.,
all 1s), then Neff = 1. Thereby, Neff provides a convenient met-
ric for quantifying the amount of unique information in the N
measurements. Quantities analogous to Neff have been used in
other disciplines to describe the effective number of different
events [31], the number of probabilities, λ̂n , that are significantly
greater than zero [32], and the effective number of degrees of
freedom [27].

Substituting (7) and (8) into (10) yields

Neff =

(∑N
n=1 λn

)2

∑N
n=1 λ2

n

. (11)

By relating the summations in (11) to the trace of the correlation
matrix, R, and its square, R2 , the effective number of uncorre-
lated measurements may alternatively be expressed as [27]

Neff =
N 2

∑N
i,j=1 |rij |2

(12)

where rij are again the elements of the correlation matrix, R. In
practice, (12) tends to be more convenient, because it does not
require the calculation of the correlation matrix’s eigenvalues.

A. Uncertainty in an Ensemble Power Average

In addition to its simple physical interpretation, the effective
number of uncorrelated measurements Neff also provides in-
sight into the uncertainty in a power ensemble average of N
potentially correlated realizations of a random variable. Let us
assume a set of N potentially correlated realizations of a com-
plex normally distributed random variable, X , with a mean of
X = 0 and variance of σ2

X , whereby the real and imaginary
components of X are independent and identically normally dis-
tributed as Re(X) ∼ N (0, σ2

X/2) and Im(X) ∼ N (0, σ2
X/2),

respectively. This is analogous to S21 measured in a well-stirred
reverberation chamber. By specifying that X has units propor-
tional to voltage, we may define P = |X|2 as a new exponen-
tially distributed random variable analogous to |S21 |2 with units
proportional to power [33].

The variance σ2

P̂
in an estimate P̂ of the mean power P from

a set of N realizations of P is [34, Eq. (A.10)]

σ2

P̂
=

1
N 2

N∑
i,j=1

σij,P (13)

where σij,P denotes the covariance between the ith and jth
realization of P . The covariance, σij,P , may be related to the
covariance, σij,X , between the ith and jth realization of X
according to [33]

σij,P = |σij,X |2 . (14)

Given NP uncorrelated realizations of P , it is well known
that the variance of the average power σ2

P̂
, is given by [34]

σ2

P̂
=

σ2
P

NP
. (15)

Casting (13) into a form analogous to (15) allows us to define an
effective number of uncorrelated power realizations, NP , for the
N potentially correlated measurements. Solving (15) for NP ,
employing (14) and (13), and recognizing that σij,X = σ2

X for
i = j such that σ2

P = σ4
X , the effective number of uncorrelated

power measurements, NP , may be expressed in terms of the
covariance of the N realizations of X:

NP =
1
N

∑N
i=1 σ4

X

1
N 2

∑N
i,j=1 |σij,X |2

. (16)
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Multiplying the numerator and denominator by N 2/σ4
X and

using (5) with σii = σjj = σ2
X yields

NP =
N 2

∑N
i,j=1 |rij |2

(17)

which is identical to the expression for Neff in (12). Substituting
Neff for NP in (15) and taking the square root yields the standard
error (see [34]) in the estimate of mean power:

σ
P̂

=
σP√
Neff

. (18)

From (18), we see that 1/
√

Neff is directly proportional to the
standard error in an estimate of the mean power and is thereby

a measure of the uncertainty in the average power estimate, P̂ .
Normalizing σ

P̂
by the average power P and recognizing

that σP = P for the exponentially distributed random variable
P considered here, we find that the relative standard error,
denoted RSE, is given by

RSE =
σ

P̂

P
=

1√
Neff

. (19)

B. Data Standardization

The row standardization introduced in Section IV to mitigate
the effects of calculating the correlation matrix over some band-
width will reduce the column rank of the data matrix H by one.
This rank reduction leads to an underestimation of the dataset’s
effective number of uncorrelated measurements. This may be
easily compensated by observing that reducing the column rank
of H by one will likewise reduce Neff by one. Thus, for a row
standardized data matrix H, the actual value of Neff is given by

N ′
eff = Neff + 1. (20)

For the sake of simplicity, the term “effective number of uncor-
related measurements,” Neff , will henceforth refer to the primed
variable given in (20).

C. Application to Reverberation Chamber Measurements

The accuracy of the effective number of uncorrelated mea-
surements depends heavily on the accuracy of the estimated
correlation matrix and thereby, the underlying covariance ma-
trix. Furthermore, whereas the accuracy of individual elements
of the correlation matrix depend purely on the number of ob-
servations (frequencies) M ′, the summation in (12) reveals that
the accuracy of Neff , also depends on the number of variables
(stirrer positions) N . To minimize this error, we use improved
covariance matrix estimators that are more accurate than the
sample covariance matrix for smaller ratios of M ′/N .

In Appendix B, we demonstrate the importance of these im-
proved covariance matrix estimators via a brief study of the
sensitivity of Neff to M ′/N for a range of N . Based on this
study and recognizing that the calculation bandwidth is given
by M ′Bc , where Bc is the chamber’s loading-dependent co-
herence bandwidth, we determined that a 1 GHz calculation
bandwidth was sufficient to ensure that the relative uncertainty
in Neff was less than 5% for the case of N ≤ 360 measurements

Fig. 6. Effective number of uncorrelated measurements, Neff , for N = 360
measurements.

and three absorbers as well as N ≤ 100 measurements with five
absorbers. This covered the majority of the Neff -based analyses
to be presented here. Based on our discussion of the correla-
tion matrix in Section IV, we expect that using a frequency-
averaged correlation matrix will result in an effective number
of uncorrelated measurements that corresponds roughly to the
calculation bandwidth’s center. This is partially confirmed by
Appendix B’s analysis of the sensitivity of Neff to M and N ,
wherein we observed little change in the asymptotic value of
Neff for order-of-magnitude changes in the calculation band-
width. Finally, we note that we purposefully used the sample
covariance matrix for our analysis in Section IV, because it re-
sults in an unbiased correlation matrix estimate better suited for
qualitative analysis of structural details. Here, in contrast, our
analysis is more quantitative and thus requires a more accurate
correlation matrix estimate.

Fig. 6 presents example calculations of the effective number
of uncorrelated measurements Neff for the same two sets of
N = 360 measurements as were considered in Fig. 4 for the
estimated number of uncorrelated measurements Nest based on
the autocovariance’s coherence angle, φc . Similar to Nest in
Fig. 4, Neff in Fig. 6 was calculated at 1 GHz increments by
use of measurement data within a 1 GHz bandwidth. We see
that both Neff and Nest in Figs. 4 and 6 exhibit similar trends.
We also see that Nest based on a stirrer autocorrelation’s full-
width at half-maximum coherence angle tends to underestimate
the effective number of uncorrelated measurements, Neff , by
about 33%. This suggests that Nest may be more accurate if the
coherence angle φc is determined by use of an autocovariance
threshold greater than 0.5.

We note that of all the correlation metrics considered here,
it is only possible to quantitatively compare Neff and Nest , be-
cause they are the only two metrics with identical dimensions
(scalar) and units (number of measurements). However, even
this comparison is extremely limited, because, as was noted in
Section III, calculating Nest requires a finely sampled stirrer
autocorrelation for determining the threshold-based coherence
angle. In contrast, Neff , which is calculated from the data’s
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Fig. 7. Effective number of uncorrelated measurements, Neff , for N = 100
measurements.

correlation matrix, is applicable regardless of how the data are
collected. Furthermore, whereas Nest is a premeasurement esti-
mate of how many uncorrelated measurements one might make
in a reverberation chamber, Neff is a postmeasurement assess-
ment of the datasets effective number of uncorrelated measure-
ments.

Fig. 7 presents example calculations of Neff for N = 100
measurements using different stirrer rotation algorithms and a
three-absorber loading configuration. The effective number of
uncorrelated measurements was again calculated at 1 GHz incre-
ments by use of measurement data within a 1 GHz bandwidth.
The “Uniform Linear: (7◦, 13◦)” and the “Maximin Distance”
algorithms consistently yielded the largest effective number of
uncorrelated measurements. This is because both stirrer rotation
algorithms are effective at distributing the measurement points
in the φ1-φ2 angle space while also providing a unique set of
N stirrer rotation angles for each stirrer. In contrast, the subpar
performance of the “Uniform Grid” stirrer rotation algorithm
is due to correlation among measurements with identical φ1
or φ2 stirrer angles, as was discussed in Section IV. The poor
performance of the “Uniform Linear: 3.6◦/3.6◦” stirrer rotation
algorithm at low frequencies is due to the small stirrer rotation
angle of Δφ = 3.6◦. Reexamining Fig. 3, we see that 3.6◦ is less
than either stirrer’s coherence angle, φc , for frequencies below
about 4.5 GHz.

Fig. 8 presents example calculations of Neff for N = 100
measurements obtained using the “Uniform Linear: (7◦, 13◦)”
stirrer rotation algorithm with different reverberation chamber
loading configurations. The effective number of uncorrelated
measurements was calculated in the same manner as the Neff
presented in the previous figures. Increasing the number of ab-
sorbers reduces the chamber’s quality factor, and we note that
for NIST’s chamber at 2 GHz, zero, one, three, and five ab-
sorbers correspond to quality factors of approximately 2 × 104 ,
6 × 103 , 2 × 103 , and 1 × 103 , respectively. As Fig. 8 indicates,
this reduced quality factor leads to increased measurement cor-
relation and a reduction in the dataset’s effective number of
uncorrelated measurements, Neff .

Fig. 8. Effective number of uncorrelated measurements, Neff , for different
loading configurations with N = 100 and (7◦, 13◦) stirrer steps.

To confirm that the observed dependence of Neff on loading
is due to increased correlation between measurements and not
the loading-dependent number of uncorrelated frequencies M ′

in the 1 GHz calculation bandwidth, we repeated the calcula-
tions using a 500 MHz calculation bandwidth. Despite halving
M ′, we observed a maximum change in Neff of 1.5%, with
typical changes of less than 0.5%. This indicates that the ob-
served differences in Neff for different loadings is dominated
by measurement correlation effects and also demonstrates the
robustness of the improved covariance matrix estimators used
in the calculation of Neff .

VI. MEASUREMENT EFFICIENCY

The effective number of uncorrelated measurements, Neff ,
quantifies the amount of unique information that was obtained
from the N measurements. By normalizing Neff by N , we ar-
rive at an alternative metric that succinctly summarizes how
efficiently our measurement methodology acquires this infor-
mation. We define this measurement efficiency, εN ∈ [0, 1], as

εN =
Neff

N
. (21)

For reverberation chamber measurements, εN reveals the effec-
tiveness of a given stirring technique for a given loading and/or
antenna configuration. A measurement efficiency approaching
unity indicates a highly effective stirring technique that yields
uncorrelated measurements, whereas a measurement efficiency
approaching zero indicates a poor stirring technique wherein
improvements could be made. We note a quantity similar to εN

has been used extensively in quantum chemistry to describe the
participation ratio or spatial filling factor of an orbital [32],
[35].

Fig. 9 presents example calculations of measurement effi-
ciency, εN , versus the number of measurements, N , for re-
verberation chamber datasets obtained by use of the “Uniform
Linear: (8.5◦/11.5◦)” stirrer rotation algorithm with different
loading configurations. Due to the larger values of N considered
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Fig. 9. Measurement efficiency, εN , versus number of measurements, N ,
for different loading configurations using the 8.5◦/11.5◦ uniform linear stirrer
rotation algorithm.

here—up to 720—we calculate the effective number of uncor-
related measurements, Neff , from a 2 GHz bandwidth centered
about 2 GHz so as to ensure a relative uncertainty of less than
5%. Examining Fig. 9, we observe that as the number of mea-
surements, N , increases, the measurement efficiency, εN , de-
creases. This is because as N increases, the measurement points
are more densely packed into the φ1-φ2 angle space. This tighter
packing leads to greater correlation between measurement that
reduces both the effective number of uncorrelated measurements
and the measurement’s efficiency. In other words, Fig. 9 indi-
cates that increasing the number of measurements has diminish-
ing returns whereby a small increase in Neff can require a large
increase in N .

To understand the implications of the diminishing returns
of increasing N , let us consider the uncertainty in a rever-
beration chamber’s average power measurement as given by
the relative standard error, RSE. We assume the chamber is
well-stirred, whereby the power is exponentially distributed and
RSE = 1/

√
Neff per (19). Fig. 10 examines the relationships

between N and RSE for the data presented in Fig. 9. The lower
trace gives the lower bound for RSE and corresponds to the
case where Neff = N , i.e, where all N measurements are un-
correlated. As may be seen, the three upper traces gradually
deviate from the ideal case with increasing N , and the effect
is more severe for heavier loading configurations. Similar to
the measurement efficiency curves in Fig. 9, Fig. 10 shows that
increasing the number of measurements, N , yields diminishing
returns on measurement uncertainty. Thus, we observe that cor-
relation among reverberation chamber measurements can hinder
efforts to attain measurement uncertainties below target levels,
particularly for low quality factor reverberation chambers.

To clearly demonstrate this point, we used Neff to compare
two reverberation chamber measurement datasets collected with
a five absorber loading configuration. The first dataset used the
maximin distance stirrer rotation algorithm to collect N = 1080
measurements and yielded Neff = 418 effectively uncorrelated
measurements; the second dataset used the uniform grid stirrer

Fig. 10. Relative standard error, RSE, of a power ensemble average for datasets
with different number of measurements, N , obtained by use of the 8.5◦/11.5◦
uniform linear stirrer rotation algorithm with different loading configurations.

rotation algorithm with N = 1296 measurements and yielded
Neff = 370 effectively uncorrelated measurements1. That is,
despite collecting 20% more measurements, the uniform grid
stirrer rotation algorithm yielded fewer effectively uncorrelated
measurements than the maximin distance stirrer rotation algo-
rithm! This clearly demonstrates the increased cost associated
with an inefficient measurement methodology.

VII. DISCUSSION

A well-designed reverberation chamber experiment should
enable target measurement uncertainty levels to be reached at
minimum “cost”. For our discussion, we associate the cost of a
measurement with measurement time, and thereby the number
of measurements N required to reach the uncertainty target. In
this sense, an optimized reverberation chamber measurement
methodology should seek to maximize measurement efficiency
εN such that for a given number of measurements N , one attains
the best possible measurement uncertainty at minimum cost. The
most direct route to maximizing measurement efficiency is by
identifying and mitigating measurement correlation.

As a first step, one should evaluate the autocovariance of
individual stirrers so as as to determine their corresponding
coherence angle/distance. Using (4), this enables an order-of-
magnitude estimate of the number of uncorrelated measure-
ments that one may collect and thereby provides insight into the
expected measurement uncertainty that may be attained for a
given chamber. More importantly, this coherence metric quanti-
tatively evaluates the performance of each stirrer and provides a
key input parameter for designing an effective stirring method-
ology, which, as evidenced by Figs. 5 and 7, is critical for
minimizing measurement correlation.

1To ensure accuracy in the calculations of Neff for the large N , the datasets’
correlation matrices were calculated from a 4 GHz bandwidth centered about
3.5 GHz.
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Based on our experience with the maximin distance algo-
rithm, which consistently exhibited the best performance of
the three algorithms considered here, we expect that a “good”
stirrer rotation algorithm should uniformly distribute the mea-
surement points in angle space while ensuring that all stirrer
angles are unique for each measurement. Additionally, the al-
gorithm should ensure that for any two measurement points,
their separation in at least one dimension (e.g., φ1 or φ2) is
equal to or greater than the corresponding stirrer’s coherence
angle/distance. This allows for similar albeit still unique stirrer
angles for one stirrer at a time and relies on the other stir-
rer(s) to de-correlate the measurements. Ideally, we would like
the separation between measurement points in all dimensions
to exceed the corresponding stirrers’ coherence angle/distance
metrics, but this can be impractical, because it severely restricts
the number of measurements that one may collect.

As Figs. 8–10 showed, reducing the chamber loading will in-
crease the effective number of uncorrelated measurements and
thereby improve measurement efficiency. For those using rever-
beration chambers with intrinsically low quality factors, addi-
tional stirrers or stirring techniques (e.g., frequency, polariza-
tion, or platform stirring) are likely invaluable for reducing the
measurement correlation and thereby improving measurement
efficiency. Otherwise, they may find that an exorbitant number of
measurements are required to meet the target measurement un-
certainty criterion. This is evidenced by the aforementioned aux-
iliary study, wherein N = 1080 measurements (obtained using
the maximin distance stirrer rotation algorithm) were required
to attain a relative standard error of 1/

√
Neff = 1/

√
418 ≈ 5%

for a five absorber loading configuration.

VIII. CONCLUSION

Correlation impairs both the efficiency and accuracy of rever-
beration chamber measurements and should thus be mitigated
whenever possible. As noted throughout our discussion, the dif-
ferent metrics serve different purposes. The autocovariance is
useful for evaluating the effectiveness of an individual stirrer,
and the corresponding minimum stepsize provides information
invaluable to measurement planning. Correlation matrices pro-
vide a comprehensive picture of measurement correlation that
may be used to qualitatively assess different stirring methodolo-
gies as well as develop new stirring methodologies with min-
imum correlation between measurements. Finally, the succinct
entropy-based metrics enable quantitative comparisons of the
performance of different measurement methodologies. These
metrics will not only prove useful for optimizing one’s mea-
surement methodology as discussed in Section VII, but are also
expected to facilitate the development and validation of theoret-
ical bounds on a given chamber’s measurement uncertainty.

Using several correlation metrics, it was shown that measure-
ment correlation is strongly affected by the stirring methodol-
ogy, the chamber loading configuration, and the measurement
frequency. For many scenarios, the measurement frequency as
well as the reverberation chamber’s quality factor will be fixed.
Thus, for a given reverberation chamber, the only way to reduce
correlation among measurements is by maximizing the unique-

ness of each measurement’s stirrer position(s). This suggests
that an optimized stirring methodology is critical for realizing
uncorrelated measurements.

It is conceivable that numerous other measurement param-
eters such as chamber dimensions, stirrer geometries, antenna
patterns, orientations, and polarizations, etc., affect measure-
ment correlation, whereby a complete guide to minimizing
measurement correlation will require a far more comprehensive
study than that presented here. These investigations will be the
focus of future studies, but importantly, the analyses described
herein enable the objective comparisons necessary for discern-
ing which measurement parameters are critical for maximizing
measurement efficiency.

APPENDIX A

MAXIMIN DISTANCE STIRRER ROTATION ALGORITHM

We begin by defining Φ1 as the ordered set of N > 1 angles
for the first stirrer as

Φ1 =
{

0◦,
360◦

N
, 2

360◦

N
, . . . , (N − 1)

360◦

N

}
. (22)

Thus, Φ1 is a sequence of N angles equispaced from 0◦ to
360◦. The maximin distance algorithm defines the N angles for
the second stirrer as a permutation of Φ1 . Denoting the second
stirrer’s ordered set of N angles as Φ2 , the bijective mapping of
the N -element sequence Φ1 to the N -element sequence Φ2 is
given by

Φ2[Ai ] = Φ1[i] (23)

where i, Ai ∈ {1, 2, . . . , N} and Ai is the ith element of the
sequence A that is itself the concatenation of K sequences,
A(k) of the form

A(k) =
{
A

(k)
i |A(k)

i = k + (i − 1)K and A
(k)
i ≤ N

}
. (24)

The K sequences A(k) are ordered such that A is given by

A =
{
A(B1 ) , A(B2 ) , . . . , A(BK )} (25)

where Bj denotes the jth element of the auxiliary sequence B
given by

B =
{

1, 1 +
⌈

K

2

⌉
, 2, 2 +

⌈
K

2

⌉
, . . .

∣∣∣∣ Bj ≤ K

}
(26)

with j ∈ {1, 2, . . . ,K} and ·� denoting the ceiling function
that rounds up to the nearest integer.

The permutation parameter K used in Eqs. (25)–(26) is in
general given by

K =
[√

N
]

(27)

where [·] denotes the rounding function, which rounds to the
nearest integer. However, for select values of N , K will generate
a permutation such that there are pairs of measurement points in
the φ1-φ2 angle space whose separation distance in both φ1 and
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Fig. 11. Behavior of Neff calculated by use of different covariance matrix es-
timators with different number of measurements, N , and different observation-
to-variable ratios, M ′/N , by use of the 7◦/13◦ uniform linear stirrer rotation
algorithm and a three absorber loading configuration.

φ2 is 360◦/N . That is, these points will be minimally separated
in angle space. Provided that N /∈ {2, 4, 8}, these cases may
be resolved by substituting for K the alternative permutation
parameter K ′ given by

K ′ = [
√

N ] + 1 − 2[
√

N mod 1] (28)

where y mod x denotes the modulo operator that yields the
remainder of y/x. The following are three special cases where
K ′ should be used in place of K so as to generate the most
effective permutation:

1)
√

N is an even integer.
2) K is an even integer and N/K is integer.
3) K is an odd integer and 2N −K−1

2K is an integer.

APPENDIX B

UNCERTAINTY IN Neff

Generally, the error in the sample covariance matrix mani-
fests itself as an overestimation of the off-diagonal matrix ele-
ments [36] which, from (5) and (12), will lead to an underes-
timation of a dataset’s effective number of uncorrelated mea-
surements. The majority of the improved covariance matrix es-
timators either 1) seek to compensate for the sample covariance
matrix’s overestimation of its off-diagonal elements [36]–[38],
[38], or 2) impose some predetermined structure on the covari-
ance matrix estimate [39], [40].

Fig. 11 compares the effective number of uncorrelated mea-
surements, Neff , about a center frequency of 3.5 GHz as calcu-
lated by use of several covariance matrix estimators for different
number of measurements N and uncorrelated frequencies M ′ by
use of the “Uniform Linear: (7◦, 13◦)” stirrer rotation algorithm.
The curves in Fig. 11 indicate that Neff based on the different
covariance matrix estimators tend to approach the same value
with increasing M ′/N . However, the rate at which these differ-

ent estimators approach the asymptotic limit depends on both
the number of measurements, N , and the ratio of observations
to variables, M ′/N . From Fig. 11, we see that Neff calculated
from the Toeplitz covariance matrix estimator tends to approach
this asymptotic value the most rapidly. This motivated our de-
cision to use structured covariance wherever possible, as noted
in Section V.

For calculations of Neff in this paper, Ledoit’s shrinkage-
based covariance matrix estimator [36] was used with data
collected by use of the maximin distance stirrer rotation al-
gorithm; for all other datasets, an appropriate structured covari-
ance matrix estimator was used [40]. Specifically, a Toeplitz
covariance matrix estimator was used with data collected by
way of the uniform linear stirrer rotation algorithm unless
Δφ1 = 360◦/N and φ2 = 0◦, Δφ2 = 360◦/N and φ1 = 0◦, or
Δφ1 = Δφ2 = 360◦/N ; for these cases, a circulant covariance
matrix estimator was used. For data collected by way of the uni-
form grid stirrer rotation algorithm, a circulant block-circulant
covariance matrix estimator was used. These structured covari-
ance matrices were found by first using the efficient albeit crude
projection technique [41], [42] and then taking the nearest pos-
itive semidefinite matrix as described in [43], [44] to ensure a
valid covariance matrix.

Based on Fig. 11 and similar unreported analyses for the other
stirrer rotation algorithms, we conclude that the empirical Neff
reported in this paper have a relative uncertainty of less than
5%. This uncertainty accounts for the possible error in Neff due
to finite values of M ′/N for various N . Other uncertainties
(e.g., due to measurement noise) are expected to be negligible
in comparison.

Finally, we recognize that this analysis of the uncertainty
in Neff is complicated by the measurement data’s frequency-
dependent correlation, whereby measurements at lower frequen-
cies tend to be more correlated than those at higher frequencies
(see Figs. 4 and 6). Discerning the impact of this frequency-
dependent correlation on the calculation of Neff is difficult,
because the additional frequencies are necessary to accurately
estimate the data’s covariance matrix. However, Fig. 11 sug-
gests that the net effect of this frequency-dependent correlation
on Neff may be small, possibly because the higher correlation
at low frequencies is offset by the lower correlation at high
frequencies.
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correlation matrix spectrum and Rényi entropy,” in Proc. Eur. Conf. Circuit
Theory Design, 2009, Antalya, Turkey, Aug. 23–27, 2009, pp. 466–469.
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