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a b s t r a c t

The electronic ground state potential surface of acetylene (HAC„CAH) has a minimum at the linear con-
formation, but the excited electronic states may have potential minima at a variety of nonlinear equilib-
rium shapes. This work is concerned with the group theoretical ideas necessary to treat simultaneously
the symmetry properties of rovibronic states associated with three different planar acetylene equilibrium
configurations, namely trans bent acetylene, cis bent acetylene, and vinylidene (H2C@C). We make use of
three different kinds of groups: (i) point groups, (ii) permutation-inversion (PI) groups, and (iii) extended
PI groups. The PI group is G4 or G8, depending on whether CAH bond breaking is impossible (no bent acet-
ylene M vinylidene interconversion) or possible. The extended PI groups are Gð2Þ4 and Gð2Þ8 , respectively,
when the only large amplitude motions are the CCH bends at each end of the molecule, and Gð8Þ4 and
Gð8Þ8 , respectively, when internal rotation is added as a third large amplitude motion. Applied to acetylene,
the results indicate that there will be no splittings of the rovibronic levels unless CH bond breaking
occurs. Even without bond breaking, however, states of the cis and trans isomers just below their inter-
conversion barrier will show ‘‘staggerings’’ in their K-structures, i.e., a given vibrational level will have
three tunneling components at slightly different energies: one component will have levels with K = 4n
only (where n is an integer), a second component will have levels with K = 4n + 2 only, and the third will
have only odd-K levels. New experimental results for the S1–cis electronic state of acetylene [21] are
reviewed, and are found to be consistent with the group theory in so far as comparison is possible.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction we can avoid all the complications that arise when the A rotational
Acetylene (HAC„CAH) is linear in its ground electronic state,
but its excited electronic states exhibit a variety of equilibrium
shapes. This paper is concerned with the group theoretical ideas
necessary to treat simultaneously the symmetry properties of the
rovibronic states of three different planar acetylene structures,
namely trans bent acetylene, cis bent acetylene, and vinylidene
(H2C@C), although the formalism below has been carried further
for situations where the vinylidene structure is excluded, i.e., for
situations where no chemical bonds are broken. We make use of
three different kinds of groups: (i) point groups [1,2], (ii) permuta-
tion-inversion (PI) groups [3,4], and (iii) extended PI groups [5],
starting with the more familiar point-group ideas and gradually
working up to the less familiar extended-PI group ideas. To make
the paper more readable, we review a number of concepts already
described in the literature.

In this paper we restrict consideration to electronic potential
surfaces for C2H2 which have a very high barrier to linearity, so that
ll rights reserved.

.

constant approaches infinity [6], and the a-axis rotational degree of
freedom becomes a component of a degenerate bending vibra-
tional degree of freedom.

Motions of the N = 4 atoms in acetylene give rise to 3N = 12 de-
grees of freedom. For spectroscopic applications, we immediately
remove the three translations from consideration. When consider-
ing only non-linear acetylenic structures (i.e., trans bent, and cis
bent H1ACa„CbAH2), it is logical to group the three bond stretches
(H1ACa, Ca„Cb, and CbAH2) together as small-amplitude vibrations
(SAVs). This leaves us with the six degrees of freedom of interest
for this paper, which are traditionally divided into three rotational
angles v, h, / describing the orientation of the non-linear equilib-
rium configuration in the laboratory, two CACAH non-degenerate
bends (i.e., H1ACa„Cb and Ca„CbAH2) and one HACACAH torsion.
If trans–cis interconversion is to be considered, the two bends and
the torsion must be treated as large-amplitude motions (LAMs) in
the spectroscopic formalism.

Because group theoretical symmetry operations must ulti-
mately be applied to the variables in the molecular wavefunctions,
and because some confusion arises as a result of the different coor-
dinate systems used to describe wavefunctions for the different
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C2H2 equilibrium structures, we make extensive use of an equation
relating laboratory-fixed Cartesian coordinates to the rovibrational
coordinates used to describe the rovibronic wavefunctions of inter-
est. This equation has the general form

Ri ¼ Rþ S�1ðv; h;/Þ½aiðLAMsÞ þ di�; ð1Þ

where Ri represents the Cartesian coordinates of atom i in a labora-
tory-fixed axis system, R represents the center of mass of the mol-
ecule in this same laboratory-fixed coordinate system, S�1(v,h,/)
represents a direction cosine matrix relating the laboratory-fixed
X, Y, Z axes to some molecule-fixed x, y, z axes, ai(LAMs) represents
the position of atom i in the molecule-fixed axis system as a func-
tion of the large-amplitude-motion coordinates, and di represents
the small-amplitude vibrational displacement of atom i. (The use
of the 12 components of the di vectors to represent the less than
12 SAV degrees of freedom in our spectroscopic formalism will ulti-
mately require suitable constraints on the di.) The direction cosine
matrix S�1(v,h,/) is taken from [7] and has the form

S�1ðv; h;/Þ ¼

cvchc/� svs/ �svchc/� cvs/ shc/

cvchs/þ svc/ �svchs/þ cvc/ shs/

�cvsh þsvsh ch

2
664

3
775; ð2Þ

where cvsh = cosvsinh, etc. A pedagogical discussion of the physi-
cal reasoning, algebraic manipulations, etc. associated with group-
theoretical treatments based on Eqs. (1) and (2) can be found in
Ref. [8]. Some familiarity with that material will greatly facilitate
the reading of the rest of this paper.
2. Point group treatments

Fig. 1a–d shows schematic structures, atom labeling, and mole-
cule-fixed Cartesian axis systems for trans and cis acetylene and
for vinylidene. As is well known [1,2], these three equilibrium
structures are traditionally treated using the point groups C2h

and C2v (which are in fact both isomorphic to the abstract mathe-
matical four-group). Table 1 gives character tables for these two
point groups, using the structures and x, y, z axis labels in
Fig. 1a–d. These axis labels do not necessarily follow the Mulliken
convention [9], because the z axis in Fig. 1 is always chosen to lie
along, or approximately along, the CAC bond. This is convenient
H2

H1

CbCa z 

(a) trans 

H2H1

CbCa z 

x

(b) cis 

H2

H1

CbCa z 

(c) vinylidene 

x
H2H1

CbCa z

y

(d) cis 

x

Fig. 1. Schematic structures for trans-bent and cis-bent acetylene and for vinyli-
dene, together with atom labels and molecule-fixed x, y, z axis systems. The y axis is
not shown in (a–c), but points up from the plane of the molecule (up from the page).
The x axis is not shown in (d), but points down from the page. For conceptual
simplicity, the z axis in these schematic structures always lies along the CaACb

bond. Appropriate translations and rotations of the axis systems shown will thus be
required to obtain the principal inertial axes.
when rotational energy levels must be considered, since the z axis
defined in this way is always nearly coincident with the principal
inertial a axis of the molecule. For the structures in Fig. 1a–c, the
y axis has been chosen to be perpendicular to the molecular plane,
which causes it to lie always along the principal inertial c axis. For
the structures in Fig. 1a and d the y axis is always the C2 symmetry
axis. These two structures will prove useful in the discussion of
internal rotation in Section 7. We include the nuclear spin statisti-
cal weights for the rovibronic states of trans and cis acetylene and
vinylidene in Table 2.

The point group operations of Table 1 can be converted to PI
operations [3,4] by defining for each of them a transformation
[10] of the coordinates R, v, h, /, and the di in Eq. (1). If we make
the assumption that no LAMs exist, as is appropriate when point
groups are used, then the quantities ai(LAMs) in Eq. (1) are re-
placed by equilibrium positions a0

i , which are constants unaffected
by the symmetry operations. We then obtain a simplified version
of Eq. (1),

Ri ¼ Rþ S�1ðv; h;/Þ a0
i þ di

� �
: ð3Þ

It should be noted that Eq. (3) represents three very different equa-
tions for trans acetylene, cis acetylene and vinylidene because the
equilibrium position vectors a0

i are not the same for these isomers.
As a result, the symbols v, h, / and di represent different mathemat-
ical variables in the wavefunctions for the three structures [11],
hinting at the difficulties that will arise if point groups are used
to classify their wavefunctions.

Table 3 lists the transformation properties of the rotation-vibra-
tion coordinates in Eq. (3) under the various point group opera-
tions in Table 1. The column labeled R gives transformations for
the center of mass. It is actually of little interest here. The column
labeled v, h, / gives transformations for the rotational angles [10].
These transformations determine the symmetry species of the
rotational basis functions, and are often named by their ‘‘equiva-
lent rotations’’ [4], as indicated in the next column to the right.
The last two columns give the transformations of the small ampli-
tude vibrational displacement vectors, di, which are needed be-
cause linear combinations of them form the basis for the
symmetry coordinates and the normal coordinates for the small-
amplitude vibrations [7]. Column 8 identifies the atom j whose
equilibrium position is reached when a given point-group opera-
tion acts on the equilibrium or reference position of atom i. The
point group operation of column 2 is then applied to the displace-
ment vector dj, and the result is the transformed vibrational dis-
placement vector di of atom i [5,7,10]. When these transformed
quantities are substituted on the right of Eq. (3), with choices for
the constant equilibrium positions a0

i that are appropriate for the
equilibrium geometry under consideration, the transformed values
for the coordinates Ri on the left-hand side of Eq. (3) are related to
the original values by the PI operations indicated in Table 1. (The
transformation of infinitesimal vibrational displacement vectors
under point group operations is discussed more fully in Chapter
5 of Ref. [7], and is shown pictorially for a plane of reflection in
Fig. 5–8 there.)

Table 3 can be used in two ways. First, it can be used to deter-
mine the point-group symmetry species for the vibrational and
rotational wavefunctions of trans acetylene, cis acetylene and
vinylidene when these three ‘‘molecules’’ possess only small
amplitude vibrations and are not capable of interconversion.
Second, it illustrates the difficulties of using only point groups
when these three entities are considered as interconverting
isomers of the same molecule, since some operations from the full
permutation-inversion group (see Section 3) occur twice, with
different vibrational and rotational transformation properties,
e.g., (ab)(12), and some do not occur at all, e.g., (ab).



Table 1
Character tables (a)–(d) for the point groups of the C2H2 structures in Fig. 1a–d.

(a) G4 = C2h for trans bent acetylene (b) G4 = C2v for cis bent acetylene

PGa E C2(y) i r(xz) PGa E C2(x) r(xy) r(xz)
PIb E (ab)(12) (ab)(12)⁄ E⁄ PIb E (ab)(12) (ab)(12)⁄ E⁄

Ag 1 1 1 1 A1 1 1 1 1
Au 1 1 �1 �1 A2 1 1 �1 �1
Bg 1 �1 1 �1 B1 1 �1 1 �1
Bu 1 �1 �1 1 B2 1 �1 �1 1

(c) G4 = C2v for vinylidene (d) G4 = C2v for cis bent acetylene

PGa E C2(z) r(yz) r(xz) PGa E C2(y) r(xy) r(yz)
PIb E (12) (12)⁄ E⁄ PIb E (ab)(12) (ab)(12)⁄ E⁄

A1 1 1 1 1 A1 1 1 1 1
A2 1 1 �1 �1 A2 1 1 �1 �1
B1 1 �1 1 �1 B1 1 �1 1 �1
B2 1 �1 �1 1 B2 1 �1 �1 1

a Point group operations for C2h (a) and C2v (b–d) for the C2H2 structures and x, y, z axis systems shown in Fig. 1a–d, respectively.
b Permutation-inversion operations to which these point group operations correspond for the structures in Fig. 1a–d, respectively, when using the relation between

laboratory-fixed and molecule-fixed coordinates given in Eq. (3) and the variable transformations given in Table 3.

Table 2
Statistical weights for rovibronic states of the C2H2 isotopomers with no bond
breaking.

12C2H2
13C2H2

12C2D2
13C2D2

Trans or cis acetylenea

evrAg, Au, A1, A2 1 10 6 15
evrBg, Bu, B1, B2 3 6 3 21

Vinylideneb

evrA1, A2 1 4 6 24
evrB1, B2 3 12 3 12

a Rovibronic symmetry species for the PI group G4 given in Table 1a,b,d.
b Rovibronic symmetry species for the PI group G4 given in Table 1c.
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3. Permutation-inversion group treatments

It is well known that when large amplitude motions are possi-
ble, point group treatments must usually be abandoned in favor of
PI group treatments, so in this section we reconsider the three
acetylene structures of interest from this point of view. The full
(i.e. maximum possible) PI group for C2H2 is very simple, since it
Table 3
Transformation properties of the coordinates R, v, h, /, and the di on the right of Eq. (3) u

PIa PGb Moleculec Rd v, h, /e

E E a, b, c, d R v, h, /
(ab)(12) C2(y) a, d R p � v, p

(ab)(12)⁄ i a �R v, h, /

E⁄ r(xz) a, b, c �R p � v, p

(ab)(12) C2(x) b R �v, p �
(ab)(12)⁄ r(xy) b, d �R p + v, h

(12) C2(z) c R p + v, h

(12)⁄ r(yz) c �R �v, p �
E⁄ r(yz) d �R �v, p �

a Permutation-inversion operations from Table 1.
b Point group operations from Table 1.
c The letters a,b,c,d refer to the trans bent acetylene, cis bent acetylene, and vinylide

symmetry operation applies.
d Laboratory-fixed center-of-mass vector.
e Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
f As defined in Bunker and Jensen [4].
g Small-amplitude molecule-fixed vibrational displacement vectors.
h The subscript j as a function of i is defined by evaluating the right side of the equati

Fig. 1 for the i = a, b, 1, 2 atom labels. Note that this prescription will give no result for j fo
operations for the trans-bent, cis-bent, or vinylidene shape under consideration.
is generated from the three operations (ab), (12), and E⁄. This full
PI group has order 23 = 8, and is known as G8; it happens to be iso-
morphic to D2h. The character table is shown in Table 4. This PI
group is appropriate for a simultaneous treatment of rovibronic
symmetry species for all three frameworks in Fig. 1a–c, i.e., trans
and cis acetylene and vinylidene, and such a treatment has been
carried out in the literature [12]. As we will see below, extended
versions of the PI groups are needed when: (i) symmetry species
must be assigned to individual factors of the total rovibronic wave-
function (electronic, small-amplitude-vibrational, large-ampli-
tude-vibrational, and rotational), or (ii) the various possible
tunneling splittings and staggerings are to be considered.

When the breaking of CAH bonds is treated as not feasible, such
as when only cis and trans acetylene are considered, the appropri-
ate PI group is G4. It contains the four PI operations E, (ab)(12),
(ab)(12)⁄, and E⁄.

Some conceptual problems remain even when PI group ideas
are used. For example, in a G8 treatment of C2H2, the PI operation
(12) involves no breaking of CAH bonds when rovibronic functions
associated with vinylidene are considered, whereas (12) involves
breaking both CAH bonds when functions associated with
nder the point group operations in Table 1a–d.

Equiv. Rot.f di
g j(i)h

E E di j = i
� h, p + / C2(y) C2(y)dj a0

j ¼ C2ðyÞa0
i

E i dj a0
j ¼ ia0

i

� h, p + / C2(y) r(xz)dj a0
j ¼ rðxzÞa0

i

h, p + / C2(x) C2(x)dj a0
j ¼ C2ðxÞa0

i

, / C2(z) r(xy)dj a0
j ¼ rðxyÞa0

i

, / C2(z) C2(z) dj a0
j ¼ C2ðzÞa0

i

h, p + / C2(x) r(yz) dj a0
j ¼ rðyzÞa0

i

h, p + / C2(x) r(yz)dj a0
j ¼ rðyzÞa0

i

ne structures in Fig. 1a–d, respectively, and indicate the molecules to which each

ons in this column and then looking for the a0
j which is equal to this right side. See

r all operations in the second column that do not actually correspond to point-group



Table 4
Character tablea,b for the full PI group G8 for C2H2 with bond breaking, and with atom labels as in Fig. 1.

E (ab) (12) (ab)(12) E⁄ (ab)⁄ (12)⁄ (ab)(12)⁄ Statistical weights

12C2H2
13C2H2

12C2D2
13C2D2

Aþ1 1 1 1 1 1 1 1 1 1 1 6 6

Aþ2 1 1 �1 �1 1 1 �1 �1 3 3 3 3

Bþ1 1 �1 1 �1 1 �1 1 �1 0 3 0 18

Bþ2 1 �1 �1 1 1 �1 �1 1 0 9 0 9
A�1 1 1 1 1 �1 �1 �1 �1 1 1 6 6
A�2 1 1 �1 �1 �1 �1 1 1 3 3 3 3
B�1 1 �1 1 �1 �1 1 �1 1 0 3 0 18
B�2 1 �1 �1 1 �1 1 1 �1 0 9 0 9

a Since this group is isomorphic to D2h (the abelian group G8 containing only elements of order two), the sequence of the symmetry operations at the top of the table is
somewhat arbitrary. We have chosen to put the pure permutations first, and the permutation-inversions second, in such a way that: (i) A and B species are symmetric and
antisymmetric with respect to (ab) = exchange of the two C atoms; (ii) subscript 1 and 2 species are symmetric and antisymmetric with respect to (12) = exchange of the two
H atoms; and (iii) superscript + and � species are of positive and negative parity. The PI operation (ab)(12) corresponds to the C2 point group operation for trans or cis bent
acetylene; (12) corresponds to the C2 point group operation for vinylidene; E⁄ corresponds to a point group reflection in the plane of the molecule. All eight PI operations in
this table would correspond to the point-group operations of an actual C2H2 molecule if the two C’s were symmetrically located on the positive and negative z axis and the
two H’s were symmetrically located on the positive and negative x axis. (Note that the G8 symmetry species labels here differ from the G8 labels used in Refs. [7,9,12,16].)

b Statistical weights for rovibronic states of the C2H2 isotopomers when bond breaking is feasible are given in the last four columns.
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(a) The vectors ai (β1,β2) for 0 < β2 < β1

H2

aa
0
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0
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a2(β2) 
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0

ab
0
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−β1

−β2Ca
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Fig. 2. Illustration of the vectors ai(b1,b2) in Eq. (5) for i = a, b (shown as solid
arrows) and i = 1, 2 (shown as dashed arrows). The small contribution of the center-
of-mass position A(b1,b2) has been neglected to simplify the drawing of the
diagram. (a) A distorted conformation ai(b1,b2) of trans acetylene with
p/2 > b1 > b2 > 0. (b) The conformation ai(�b1,�b2) obtained by reversing the signs
of b1 and b2, as specified for two of the symmetry operations in Table 5. Note that
this change in sign of the LAM vibrational variables b1 and b2 leads to a structure in
(b) which can be brought back into exact coincidence with that in (a) by using the
rotational-variable transformation v? v + p to perform a C2(z) operation on the
structure in (b). This combined LAM-rotation operation is the limited identity Eb

occurring in Table 5.
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acetylene are considered. Similarly, in a G4 treatment of C2H2, it
can be shown from Tables 1 and 3 that the PI operation (ab)(12)
corresponds to a C2 rotation about the b inertial axis of cis acety-
lene (in-plane), while also having to correspond to a C2 rotation
around the c inertial axis of trans acetylene (out-of-plane). Clearly
some care will be required to get consistent definitions of the ef-
fects of these PI operations, given the contradictory requirements
above.

Problems such as those just described can be solved using ex-
tended PI groups. These may seem like an unnecessary extra math-
ematical complexity, but we shall see in the next section that
extended PI groups follow naturally from a spectroscopically rea-
sonable choice for the three large-amplitude coordinates that al-
low interconversion among trans acetylene, cis acetylene, and
vinylidene. The determination of the appropriate extended PI
groups and their application to the LAM energy levels of C2H2 is
the main goal of this paper.

4. Large-amplitude coordinates for acetylene

Two large amplitude coordinates appropriate for the trans M cis
problem in acetylene are the H1CaCb and CaCbH2 bending angles b1

and b2 (which can be thought of as local bending modes at each
end of the molecule). Bending through the linear configuration at
one end of the molecule can clearly be used to pass from the trans
to the cis configuration. This appears to be what actually happens
in the trans–cis isomerization of the S1 state of acetylene, where ab
initio calculations [13,14] indicate that the transition state has a
half-linear structure in which one of the CCH angles is roughly
120�, while the other end of the molecule is nearly linear. Positive
and negative values for these two angles are schematically illus-
trated in Fig. 2. Another large amplitude coordinate relevant to
the trans M cis problem is the internal rotation angle a about the
CaACb bond, since changes in this angle can also be used to pass
from the trans to the cis configuration.

Assume the molecule is initially in configuration (a) of Fig. 2,
and then take it to configuration (b) by changing b1 and b2 to
�b1 and �b2. Next rotate the whole configuration (b) about the z
axis, by letting the rotational angle v? v + p. This brings the num-
bered atoms of the molecule back into perfect coincidence with the
configuration in (a), so that the transformation (b1,b2,v) ?
(�b1,�b2,v + p) corresponds to the identity operation E in the PI
group. We call such an operation a ‘‘limited identity’’ because it
functions as a true identity only when limited to the PI group; it
does not function as an identity when it appears in the extended
PI group, where multiple-valued coordinates are used to express
the molecular wavefunction. We will label this limited identity
Eb in Section 6 and elsewhere to indicate that it is associated with
the local mode bending vibrations. Similarly, another limited iden-
tity is given by the transformation (a,v) ? (a + p,v + p), since an
internal rotation of each CAH group by p followed by a z-axis over-
all rotation through p also brings configuration (a) of Fig. 2 back
into perfect coincidence with itself. This limited identity is called
Et in Section 7 and elsewhere to indicate that it is associated with
the torsional motion. Finally, the product of these two limited
identities (b1,b2,a) ? (�b1,�b2,a + p), is also a limited identity. It
is called EbEt = EtEb in Section 8 and elsewhere. These limited iden-
tities only arise when the coordinate system used for the molecular
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wavefunctions is multiple-valued, i.e., when there is more than one
set of coordinates that describes an identical arrangement of atoms
in the laboratory (in other words an identical set of Ri on the left of
Eq. (1)). When there are n different coordinate transformations
that correspond to the PI identity operation (no exchange of atoms,
no laboratory-fixed inversion), we call the resulting group an n-
fold extended PI group.

If we generalize the large-amplitude local bending angles b1 and
b2 to describe motion on an appropriate ellipse with one C atom lo-
cated at each focus, then changes in these angles can also be used
to treat the trans M cis M vinylidene problem. The change from
hydrogen motion on circles centered at each carbon atom to mo-
tion on an ellipse enclosing both carbons is illustrated in Fig. 3. This
change in coordinates leads to no additional limited identities.

5. Extended PI group treatment for linear acetylene

We digress briefly to point out that an extended PI group is rou-
tinely (although mostly unknowingly) used by all high-resolution
spectroscopists to treat linear acetylene. The PI group appropriate
H1

H2

(b) The trans acetylene configuration ai (β1,β2)

β2

β1

x 

Cb

Ca
z 

x

Ca

β1

β2

H2

H1

z 
Cb

(a) Trans and cis acetylene - no bond breaking 

Ca

H1

H2

Cb
z 

(c) The trans configuration ai (π−β1, π−β2) 

π−β1    

π−β2

x 

Fig. 3. Illustration of the range of motion of the two hydrogen atoms in C2H2 for the
planar trans/cis acetylene problem and for the planar trans/cis acetylene problem
with vinylidene. (a) Motion of the hydrogens on circles centered on each carbon
atom. The requirement �2p/3 < b1,b2 < +2p/3 following Eq. (5) prevents the
hydrogens from bending into the area containing the vertical shading, i.e., prevents
the hydrogens from bending back into the CaACb bond. (b) Motion of the two
hydrogen atoms on an (approximate) ellipse enclosing both carbon atoms, as
appropriate for treating the trans and cis acetylene and vinylidene problem. This
diagram is drawn for the same configuration as in (a), but values of b1 and b2 now
describe angles of lines from the center of mass to the hydrogen atoms, rather than
angles from the carbon atoms to the hydrogen atoms as in (a). The requirement
b1 < b2 + p < b1 + 2p following Eq. (21) prevents either one of the hydrogens from
overtaking the other on the elliptical path shown. (c) Example of a motion of the
two hydrogens on the ellipse which involves breaking and reforming the two CAH
bonds. The transformations of b1 and b2 depicted in this panel occur in two
symmetry operations of the double group Gð2Þ8 shown in Table 11, namely C2(x) and
r(xy), which correspond to the PI operations (ab) and (ab)⁄, respectively. (As might
be intuitively expected, PI operations involving (12) in that table, require some
interchange of the b1 and b2 angles.)
for linear acetylene is again G4, containing the four PI operations
E, (ab)(12), E⁄, and (ab)(12)⁄. This group has no degenerate symme-
try species (see Table 1), but it is well known that linear acetylene
has two doubly degenerate bending vibrations, belonging, respec-
tively, to the pg and pu symmetry species of the point group D1h.
D1h is not isomorphic to G4, but is actually an infinite-fold ex-
tended group of G4 [15], where each of the infinite number of arbi-
trary rotations Ca about the linear axis is a limited identity, since
each such rotation causes the electronic and vibrational cylindrical
coordinate angle variables to increase by a, but leads to no ex-
change of identical particles and to no inversion E⁄.

A discussion of correlations between the rovibronic levels of lin-
ear acetylene and the rovibronic levels of both trans and cis bent
acetylene, making use of the double group Gð2Þ4 , has been presented
[16], but the results are not of direct interest here, since linear acet-
ylene is excluded from consideration.
6. Trans and cis acetylene with only two local CCH in-plane
bending LAMs

We begin our extended PI group treatments with this problem,
because all configurations generated by the large amplitude mo-
tions are planar, which greatly simplifies the geometrical aspects
of the problem. For this case, the expression ai(LAMs) in Eq. (1)
must be replaced by ai(b1,b2), where b1 and b2 are the H1ACaACb

and CaACbAH2 bending angles, respectively:

Ri ¼ Rþ S�1ðv; h;/Þ½aiðb1;b2Þ þ di�: ð4Þ

The functions ai(b1,b2), shown schematically in Fig. 2, can be de-
fined algebraically in terms of appropriate constant vector positions
a0

i for the atoms. Even though this is a bending problem, it will be
convenient to take the a0

i vectors to correspond to the linear config-
uration, with all atoms on the z axis and the origin at the center of
mass. This leads to

aiðb1;b2Þ ¼ a0
i � Aðb1; b2Þ for i ¼ a; b ðcarbon atomsÞ

a1ðb1;b2Þ ¼ S�1ð0b10Þ a0
1 � a0

a

� �
þ a0

a � Aðb1; b2Þ
a2ðb1;b2Þ ¼ S�1ð0b20Þ a0

2 � a0
b

� �
þ a0

b � Aðb1; b2Þ; ð5Þ

where A(b1,b2) is defined so that the center of mass of the arbi-
trarily bent structure ai(b1,b2) is always at the origin. To constrain
the LAM b1, b2 motions to something resembling a ‘‘normal bend,’’
i.e., to prevent the H atoms from passing through the C„C bond, we
require �2p/3 < b1,b2 < +2p/3, as suggested by the top panel of
Fig. 3.

It can be seen from Eq. (5) that if the small contributions from
the center-of-mass position A(b1,b2) are ignored, then aa(b1,b2)
and ab(b1,b2) are independent of b1 and b2, while a1(b1,b2) depends
only on b1 and a2(b1,b2) depends only on b2. (The bending motions
b1 and b2 are called ‘‘in-plane’’ in the heading of this section to
emphasize the fact that each bend is associated with only one de-
gree of freedom, unlike the bends in linear acetylene, which are
doubly degenerate and are therefore each associated with two de-
grees of freedom.)

Table 5 gives a set of eight symmetry operations, which when
applied to the right side of Eq. (4), produce on the left side of Eq.
(4) transformed coordinates corresponding to the PI operations
shown in Table 5. It is important to note that the four feasible PI
operations for C2H2 with no CAH bond breaking each occur twice
in Table 5, which means that we are dealing with a double group
Gð2Þ4 of the PI group G4 containing the limited identity Eb. As ex-
plained in Section 4, the double-valued coordinate system in Eqs.
(4) and (5) arises because we can achieve an apparent C2(z) rota-
tion of a bent acetylene structure either (i) by carrying out an ac-
tual overall C2 rotation of the molecule about the z axis via the



Table 5
Transformation properties of the coordinates R, v, h, /, b1, b2, and the di on the right of Eq. (4) under symmetry operations of the double group Gð2Þ4 of G4 (see Table 1) appropriate
for simultaneously treating trans bent and cis bent acetylene with only in-plane local mode CACAH bending motions at each end as the two LAMs.

PIa PGb Rc v, h, /d Equiv. Rot.e b1; b2
f di

g j(i)h

E E R v, h, / E b1, b2 E dj a0
j ¼ Ea0

i

(ab)(12) C2(y) R p � v, p � h, p + / C2(y) b2, b1 C2(y) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ i �R v, h, / E b2, b1 i dj a0
j ¼ ia0

i

E⁄ r(xz) �R p � v, p � h, p + / C2(y) b1, b2 r(xz) dj a0
j ¼ rðxzÞa0

i

E Eb R p + v, h, / C2(z) �b1, �b2 C2(z) dj a0
j ¼ Ea0

i

(ab)(12) C2(y)Eb R �v, p � h, p + / C2(x) �b2, �b1 C2(x) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ i Eb �R p + v, h, / C2(z) �b2, �b1 r(xy) dj a0
j ¼ ia0

i

E⁄ r(xz)Eb �R �v, p � h, p + / C2(x) �b1, �b2 r(yz) dj a0
j ¼ rðxzÞa0

i

a The PI operations in this column are obtained when the variable transformations in the columns to the right are substituted in Eq. (5). Note that every PI operation occurs
twice, since this is a double group of the feasible PI group.

b Operations of the extended PI group. E, C2(y), i, and r(xz) are very similar to the C2h point group operations in Table 1a and Table 3, so the C2h names have been retained in
this double group of C2h. Eb is the limited identity in this local-mode LAM bending problem.

c Laboratory-fixed center of mass vector.
d Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
e Equivalent rotation, as defined in Bunker and Jensen [4].
f The two LAM local-mode HACAC and CACAH bending angles.
g Small-amplitude molecule-fixed vibrational displacement vectors, which are needed to describe the three SAV bond stretches and the (SAV by hypothesis) torsion.
h The subscript j as a function of i is defined by evaluating the right side of the equations in this column and then looking for the a0

j which is equal to this right side. Note
that j = i for the first, fourth, fifth, and eighth rows.
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rotational angle transformation v? v + p, or (ii) by carrying out
large-amplitude bending motions through the linear configuration
at each end of the molecule via the bending angle transformation
(b1,b2) ? (�b1,�b2) (see Fig. 2).

This double-valued coordinate system could be avoided if the
molecule fixed x, y, z axes were locked in the HACAC group at
one end of the molecule and the bending angle at that end were re-
stricted to only positive values, but such a coordinate system treats
the two symmetrically equivalent halves of acetylene in an unsym-
metrical manner, so that group theoretical coordinate transforma-
tions cannot easily take all aspects of the molecular symmetry into
account.

The symmetry species and characters for the double group Gð2Þ4

containing the operations in Table 5 are given in Table 6. The SAV
row in the heading, which has no analog in the character Table 1a–
d, indicates which four of the eight symmetry operations can be
Table 6
Character tablea for the double group Gð2Þ4 ¼ Cð2Þ2h ¼ G8 containing the symmetry operations

PIb E (ab)(12) (ab)(12)⁄ E⁄ E (a

Cð2Þ2h
c E C2(y) i r(xz) Eb C2

SAVd Both C2h C2h Both C2

Ab
gs 1 1 1 1 1

Ab
us 1 1 �1 �1 1

Bb
gs 1 �1 1 �1 1 �

Bb
us 1 �1 �1 1 1 �

Ab
gd 1 1 1 1 �1 �

Ab
ud 1 1 �1 �1 �1 �

Bb
g,d 1 �1 1 �1 �1

Bb
ud 1 �1 �1 1 �1

a This group is appropriate for a simultaneous treatment of trans bent and cis bent ace
each end of the molecule. Symmetry species names follow their C2h counterparts, except t
C2h (see footnotes b and c), and the superscript b indicates applicability to C2H2 with lo

b PI operations of acetylene to which transformations in the next row correspond, w
sentations of the PI group G4 must have the same character v in any pair of columns h
‘‘single-valued’’ representations occur in the first four rows of this table.

c Symmetry operations from Table 5. The first four operations have the same names a
limited identity Eb (see Section 4).

d Point-group operations that are retained for trans (C2h) acetylene or cis (C2v) acetyle
e Correlations of the Cð2Þ2h species with the species for trans (C2h) acetylene or cis (C2v)
f Symmetry species of the laboratory-fixed (X,Y,Z) and molecule-fixed (x,y,z) compone

moment l.
kept when trans acetylene (C2h) or cis acetylene (C2v) are consid-
ered to have only small-amplitude vibrations (SAV). This selection
of symmetry operations can be understood with the help of Fig. 4,
which gives a schematic representation of the ab initio potential
surface [14] for the S1 state of planar acetylene. Fig. 4 indicates that
the two trans minima are located at b1 = b2 = ±btrans, where
btrans � +60�, and that the two cis minima are located at
b1 = �b2 = ±bcis, where bcis � +60� (as shown also schematically in
Fig. 2). Harmonic-oscillator-like SAV wavefunctions localized in
each of these four wells can be represented schematically as

wUL ¼ Ntrans exp½�ktransðb1 � btransÞ
2� exp½�ktransðb2 � btransÞ

2�
wLR ¼ Ntrans exp½�ktransðb1 þ btransÞ

2� exp½�ktransðb2 þ btransÞ
2�

wUR ¼ Ncis exp½�kcisðb1 � bcisÞ
2� exp½�kcisðb2 þ bcisÞ

2�
wLL ¼ Ncis exp½�kcisðb1 þ bcisÞ

2� exp½�kcisðb2 � bcisÞ
2�; ð6Þ
in Table 5.

b)(12) (ab)(12)⁄ E⁄

(y)Eb iEb r(xz)Eb

v C2v C2h
e C2v

e (J,l)f

1 1 1 Ag A1 JX, JY, JZ

1 �1 �1 Au A2 lX, lY, lZ

1 1 �1 Bg B1 Jz

1 �1 1 Bu B2 lz

1 �1 �1 Ag B2 Jy

1 1 1 Au B1 ly

1 �1 1 Bg A2 Jx

1 1 �1 Bu A1 lx

tylene when the only LAMs are a local-mode in-plane CACAH bending vibration at
hat the subscript s or d indicates single-valued and double-valued representations of
cal bending LAMs.
hen they are substituted into Eq. (4). Representations of Gð2Þ4 that are also repre-
eaded by the same PI operation, i.e., v[E] = v[Eb], v[C2(y)] = v[C2(y) Eb], etc. These

s their C2h counterparts in Table 1. The last four are the first four multiplied by the

ne when no LAMs are present (see Section 6).
acetylene in Table 1a and b.

nts of the total angular momentum J (excluding nuclear spin) and the electric dipole



cis

trans cis

trans

linear saddlesaddle

saddle

saddle

β2

β1 0

+60o

−60o

−60o

+60o 0

Q3

Q6

Q3 (trans bend)

Q6 (in-plane
cis bend)

H

H

C C
ag

bu

H

H

C C

β2

β1

Fig. 4. Left side: Schematic representation of the S1 potential surface V(b1,b2) for
planar acetylene, together with the trans–cis isomerization path (after Ref. [14]).
(Regions of lowest potential energy are colored red in the web version, and those of
highest potential energy blue; in between the colors follow the spectral sequence.)
Two equivalent trans acetylene minima can be seen near b1 = b2 = +60� and
b1 = b2 = �60�. Similarly, two equivalent cis acetylene minima can be seen near
b1 = �b2 = +60� and b1 = �b2 = �60�. In the high-barrier case, tunneling between
equivalent minima is expected to lead to ‘‘sum and difference’’ wavefunctions with
slightly different energies. Note the very high barrier to linearity in this potential
surface, which essentially prevents tunneling paths from passing through the linear
configuration. Right side: Definition of the vibrational normal coordinates Q3 and
Q6, which when combined correspond closely to the isomerization coordinate.
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V 

Fig. 5. The potential curve obtained by taking a ‘‘cut’’ along an approximately
circular path in Fig. 4 that connects the four wells, i.e., trans ? cis ? trans ? cis ?
repeat. The thick lines at c = 0, p, and 2p, corresponding to points on the circle,
represent the lowest vibrational level in the trans wells. The dashed line at the same
energy represents the trans M trans tunneling path through the classically
forbidden region. The thick lines at c = p/2 and 3p/2 represent the lowest
vibrational level in the cis wells. The dashed lines at the same energy represent
the parts of the cis M cis tunneling path that pass through a classically forbidden
region. The thin solid lines represent the parts of the cis M cis tunneling path that
pass through classically allowed regions (above the trans minima). In these
classically allowed regions the cis wavefunction will be small in amplitude, but will
exhibit oscillatory behavior rather than exponential decay.
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where the subscripts UL, LR indicate the upper left, lower right trans
wells and UR, LL indicate the upper right, lower left cis wells in
Fig. 4, and where Ntrans, ktrans, etc. are suitable normalization and
scaling factors. Under the assumption of only SAV motions, we must
reject any symmetry operations in Table 5 that would change a
wavefunction localized in one well into a wavefunction localized
in one of the other wells. The vibrational coordinates that need to
be constrained are b1 and b2. It can easily be seen that the transfor-
mations (b1,b2) ? (b1,b2) and (b1,b2) ? (b2,b1) in Table 5 leave both
sets of trans vibrational wavefunctions in their original wells, while
(b1,b2) ? (b1,b2) and (b1,b2) ? (�b2,�b1) leave both sets of cis
vibrational wavefunctions in their original wells. These two criteria
lead to the entries C2h, C2v, and ‘‘both’’ under selected PI operations
in the SAV row of Table 6. As expected, the set of four operations
kept for C2h and the set of four kept for C2v each contain the four
PI elements of G4 once and only once. Comparison with the PI-group
characters in Table 1a and b then allows us to derive the symmetry
species correlations given on the right-hand side of Table 6.

We now apply the group theory of this section to the vibra-
tional, rotational, and vibration-rotation wavefunctions appropri-
ate for the potential energy surface in Fig. 4. (A newer ab initio
version of this surface has recently been used for accurate calcula-
tions of the energy levels using a Discrete Variable Representation
[17].)

We consider the trans conformation first, assuming initially that
the cis minima can be ignored. Simple tunneling considerations
lead one to expect eigenfunctions given by the sum and difference
of the localized basis functions

wtrans;sum ¼ 2�1=2ðwUL þ wLRÞ
wtrans;diff ¼ 2�1=2ðwUL � wLRÞ; ð7Þ

where the lowest-energy state with a sum wavefunction (which is
nodeless) is expected to lie below the lowest-energy state with a
difference wavefunction. Application of the symmetry operations
in Table 5, and comparison of the resultant characters with Table 6,
indicates that wtrans,sum and wtrans,diff have vibrational species
vC ¼ Ab

gs and Ab
gd, respectively, in Gð2Þ4 . Similarly, applying the equiv-

alent rotations in Table 5 to the asymmetric rotor functions JKaKc

(recalling that z = a and y = c, and that C2(x) = C2(y)C2(z)), we find
from Table 6 that Jee, Jeo, Joe, and Joo have rotational symmetry spe-
cies rC ¼ Ab

gs;B
b
gs;A

b
gd and Bb

gd in Gð2Þ4 . The four vibration-rotation spe-
cies associated with either wtrans,sum or wtrans,diff in Eq. (7) are then
vrC ¼ vC � rC ¼ Ab

gs;B
b
gs;A

b
gd and Bb

gd.
It turns out that we have now stumbled upon one of the tradi-

tional quandaries in the treatment of certain bending vibrational
problems using tunneling ideas. If we consider a single set of asym-
metric-rotor quantum numbers J, Ka and Kc, the treatment above
appears to predict two rotational energy levels, one associated
with the lower tunneling component and one with the upper.
But there is really only one possible trans acetylene equilibrium
structure for an atom-labeled acetylene molecule H1ACa„CbAH2

when breaking of the CAH bonds is not permitted, since all other
trans equilibrium structures that can be drawn can be brought into
exact coincidence (including atom labels) with the first structure
by simple rotation and translation. Thus, only one vibration-rota-
tion level JKaKc is possible.

This dilemma can be overcome as follows. The PI group for this
problem is G4, as given in Table 1a. Any complete wavefunction for
the system can in principle be expressed in terms of the labora-
tory-fixed Cartesian coordinates Ri occurring on the left of Eq.
(4). Therefore, any complete wavefunction for the system must
transform as some species (irreducible representation) of the PI
group G4. (This requirement does not apply when the individual
vibrational, torsional and rotational factors in the total wavefunc-
tion are considered separately, since these individual factors can-
not be converted to functions of the Ri without knowledge of the
values of the coordinates in the other factors.) If a function is to
transform as a species of G4, it must belong to a single-valued rep-
resentation of Gð2Þ4 , since the single-valued representations are de-
fined as those where all operations corresponding to a given PI
operation have the same character.

Revisiting the conclusions following Eq. (7) above with these
considerations in mind, we see that wtrans,sum vibrational basis
functions can only be combined with Ka = even asymmetric-rotor
functions, and that wtrans,diff vibrational functions can only be com-
bined with Ka = odd rotational functions. This requirement
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Fig. 6. The 8 � 8 tunneling Hamiltonian matrix and its (unnormalized) eigenvectors. This matrix is appropriate for a tunneling problem with one vibrational ground state
wavefunction localized in each of the eight trans minima in Eq. (15) or in each of the eight cis minima in Eq. (16), and rows and columns are labeled by these eight minima.
The matrix element for the 1 ? 2 nearest-neighbor tunneling path in the bending coordinates b1 and b2 (and all group-theoretically equivalent paths) is indicated by 2H12,
where the factor of 2 arises because there are two equivalent paths from minimum 1 to minimum 2 in Fig. 4 (one clockwise, one counterclockwise). The matrix element for
the 1 ? 3 nearest-neighbor tunneling path in the torsional coordinate a (and all group-theoretically equivalent paths) is indicated by H13. Eigenvectors are shown below the
Hamiltonian matrix. Symmetry species labels below these eigenvectors are correct for the trans minima. For the cis minima, Eg must be replaced by Eu.
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removes exactly half of the vibration-rotation wavefunctions gen-
erated in Gð2Þ4 , and thus resolves the number-of-states dilemma. It
also leads to the conclusion that a staggering in energy of even-
Ka and odd-Ka levels will be observed, with the magnitude of the
energy staggering equal to the magnitude of the wtrans,sum versus
wtrans,diff tunneling splitting. (As it happens, such K-level energy
staggerings occur frequently in molecules where extended-group
symmetry analyses are appropriate [5].) As a final point we note
that the vibration-rotation wavefunctions allowed by the above
procedure, which transform as Ab

gs and Bb
gs in Gð2Þ4 , correlate with

Ag and Bg in the group C2h in Table 1, i.e., with the ground state
rovibrational species expected in a single-well C2h point-group
treatment of trans acetylene.

All of these ideas can be repeated for a treatment of cis-well
tunneling. We now expect

wcis;sum ¼ 2�1=2ðwUR þ wLLÞ
wcis;diff ¼ 2�1=2ðwUR � wLLÞ; ð8Þ

where the energy of wcis,sum is again below that of wcis,diff and where
the wcis,sum and wcis,diff vibrational species are Ab

gs and Bb
ud, respec-

tively, in Gð2Þ4 . Application of the equivalent rotations in Table 5 to
the asymmetric rotor functions is unchanged from the trans case
(because z = a and y = c is still valid), so Jee, Jeo, Joe, and Joo again have
the rotational symmetry species Ab

gs; Bb
gs; Ab

gd and Bb
gd in Gð2Þ4 . Keep-

ing only single-valued representations for the vibration-rotation
wavefunctions, we find that wcis,sum has only Ka = even levels, with
vibration-rotation species Ab

gs and Bb
gs, while wcis,diff has only

Ka = odd levels, with vibration-rotation species Ab
us and Bb

us, and that
there is again an even-Ka vs odd-Ka energy staggering equal in mag-
nitude to the wcis,sum versus wcis,diff tunneling splitting. For the cis
tunneling case, the Gð2Þ4 vibration-rotation species Ab

gs and Bb
gs for

Ka = even correlate in Table 6 with A1 and B1 in the group C2v, while
vrC ¼ Ab

us and Bb
us for Ka = odd correlate with A2 and B2, i.e., with the

species expected for a single-well C2v point-group treatment of cis
acetylene.

7. Trans and cis acetylene with only an internal rotation LAM

This is essentially the H2O2 situation, which has been discussed
in the literature [18], so we summarize here only the main points.
The expression ai(LAMs) in Eq. (1) must be replaced by ai(a), where
a is the internal rotation angle, to give

Ri ¼ Rþ S�1ðv; h;/Þ½aiðaÞ þ di�: ð9Þ

The functions ai(a) can again be defined in terms of appropriate
constant vector positions for the atoms, a0

i , taken for convenience
to correspond to the trans bent conformation in Fig. 1a, with the
Ca and Cb atoms at �zC and +zC on the z axis. This leads to

aiðaÞ ¼ S�1
i ða;0;0Þa0

i � AðaÞ; ð10Þ

where the internal-rotation matrices are

S�1
i ða;0;0Þ ¼ S�1ð0;0;0Þ for i ¼ a; b;

S�1
i ða;0;0Þ ¼ S�1½ð�1Þia;0;0� for i ¼ 1;2;

ð11Þ

and the constant vectors of atomic positions are
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a0
a ¼ �zCk

a0
b ¼ þzCk

a0
1 ¼ �xHi� zHk

a0
2 ¼ þxHiþ zHk; ð12Þ

where zC, xH, and zH are all positive. A(a) is the center of mass of the
structure S�1

i ða;0;0Þa0
i . In the structures S�1

i ða;0;0Þa0
i obtained from

Eq. (11) the C atom positions do not change with a, but the H atoms
are rotated in equal amount and opposite sense about the CAC
bond, so that the trans configuration occurs for a = np and the cis
configuration for a = (n + 1/2)p, where n is an integer. Note that this
way of carrying out the internal rotation maintains the y axis as the
C2 symmetry axis, so we can still use Table 1a for the trans config-
urations, but must use Table 1d for the cis. Furthermore, while the z
axis remains nearly coincident with the principal a axis during the
internal rotation motion, the y axis lies along the inertial c axis for
trans conformations, but along the inertial b axis for cis
conformations.

The last six columns of Table 7 give a set of eight symmetry
operations which, when applied to the right side of Eq. (9), yield
the same result as applying the PI operations shown in the first col-
umn of the table to the left side of Eq. (9). Just as in Table 5, the four
feasible PI operations for C2H2 with no CAH bond breaking each oc-
cur twice in Table 7. The associated double-valued coordinate sys-
tem, which gives rise to the limited identity Et, could be avoided by
locking the molecule fixed x, y, z axes in one of the two HACAC
groups, though again, as in Section 6, at the expense of hiding some
of the full symmetry of the system.

Table 8 gives the character table of the group G8 containing all
the operations in Table 7. These are labeled in PI notation in the
first row of the heading and in Cð2Þ2h notation in the second. The third
row (SAV) gives the operations that can be retained when the mol-
ecule remains localized in one of the minima. As mentioned above,
the two trans minima occur at a = 0 and a = p, so that symmetry
operations involving a ? a and a ? �a in Table 7 do not move
localized torsional wavefunctions (with approximate form
exp[�ktrans(a � 0)2] and exp[�ktrans(a � p)2]) out of either of these
trans minima. The cis minima occur at a = +p/2 and a = +3p/2, so
that symmetry operations involving a ? a and a ? p � a in Table 7
do not move localized torsional wavefunctions (with approximate
Table 7
Transformation properties of the coordinates R, v, h, /, a, and the di on the right of Eq. (9)
appropriate for simultaneously treating trans bent and cis bent acetylene with internal ro

PIa PGb Rc v, h, /d

E E R v, h, /

(ab)(12) C2(y) R p � v, p � h, p + /

(ab)(12)⁄ i �R v, h, /

E⁄ r(xz) �R p � v, p � h, p + /

E Et R p + v, h, /

(ab)(12) C2(y)Et R �v, p � h, p + /

(ab)(12)⁄ i Et �R p + v, h, /

E⁄ r(xz)Et �R �v, p � h, p + /

a The PI operations in this column are obtained when the variable transformations in th
twice, since this is a double group of the feasible PI group.

b Operations of the extended PI group. E, C2(y), i, and r(xz) are very similar to the C2h po
this double group of C2h. Et is the limited identity in this LAM torsional problem.

c Laboratory-fixed center of mass vector.
d Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
e As defined in Bunker and Jensen [4].
f The LAM internal rotation angle.
g Small-amplitude molecule-fixed vibrational displacement vectors, which are needed

angle bends.
h The subscript j as a function of i is defined by evaluating the right side of the equatio

that j = i for the first, fourth, fifth, and eighth rows.
form exp[�kcis(a � p/2)2] and exp[�kcis(a � 3p/2)2]) out of either
of these cis minima. Again, the sets of elements retained for trans
(C2h) and cis (C2v) acetylene each contain the four elements of the
G4 PI group once and only once, so that it is easy to derive the spe-
cies correlations given in the second and third last columns by
comparing characters with those in Table 1a and d.

We do not discuss the Cð2Þ2h group for the LAM torsional situation
further, since by itself it is not likely to be useful for acetylene. Fur-
thermore, its application to the torsion-rotation problem in H2O2

has been extensively described in the literature [16,18,19]. We
note finally that: (i) the bodies of Tables 6 and 8 are the same,
but some of the column headings are different, and (ii) the correla-
tion to C2v species is different for the double-valued representa-
tions in Tables 6 and 8.

8. Trans and cis acetylene with two CACAH bends and internal
rotation, giving three LAMs

Here we combine the treatments of Sections 6 and 7 to develop
a formalism for treating the S1 state of C2H2 near the isomerization
barrier, where states with excitation of the torsional mode and the
cis and trans bending modes occur (see Section 12). The expression
ai(LAMs) in Eq. (1) must be replaced by ai(a,b1,b2), where a is the
internal rotation angle and b1 and b2 are the H1ACaACb and
CaACbAH2 bending angles, to give

Ri ¼ Rþ S�1ðv; h;/Þ½aiða; b1; b2Þ þ di�: ð13Þ

The functions ai(a,b1,b2) can be defined in terms of constant vector
positions for the atoms, a0

i , where, as in Section 6, these positions
are chosen to correspond to the linear configuration, with all atoms
on the z axis. This leads to

aiða; b1; b2Þ ¼ a0
i � Aða; b1; b2Þ for i ¼ a; b

a1ða; b1; b2Þ ¼ S�1ð�a;0;0Þ S�1ð0; b1;0Þ a0
1 � a0

a

� �
þ a0

a � Aða; b1; b2Þ

¼ S�1ð0;b1;�aÞ a0
1 � a0

a

� �
þ a0

a � Aða;b1;b2Þ

a2ða; b1; b2Þ ¼ S�1ðþa;0;0Þ S�1ð0; b2;0Þ a0
2 � a0

b

� �
þ a0

b � Aða; b1; b2Þ

¼ S�1ð0;b2;þaÞ a0
2 � a0

b

� �
þ a0

b � Aða;b1;b2Þ; ð14Þ
under symmetry operations of the double group Gð2Þ4 (see Table 8) of G4 (see Table 1)
tation as the only LAM.

Equiv. Rot.e af di
g j(i)h

E a E dj a0
j ¼ Ea0

i

C2(y) a C2(y) dj a0
j ¼ C2ðyÞa0

i

E �a i dj a0
j ¼ ia0

i

C2(y) �a r(xz) dj a0
j ¼ rðxzÞa0

i

C2(z) p + a C2(z) dj a0
j ¼ Ea0

i

C2(x) p + a C2(x) dj a0
j ¼ C2ðyÞa0

i

C2(z) p � a r(xy) dj a0
j ¼ ia0

i

C2(x) p � a r(yz) dj a0
j ¼ rðxzÞa0

i

e columns to the right are substituted in Eq. (9). Note that every PI operation occurs

int group operations in Table 1a and Table 3, so the C2h names have been retained in

to express the three SAV bond stretches and the two SAV (by hypothesis) CACAH

ns in this column and then looking for the a0
j which is equal to this right side. Note



Table 8
Character tablea for the double group Gð2Þ4 ¼ Cð2Þ2h ¼ G8 containing the symmetry operations in Table 7.

PIb E (ab)(12) (ab)(12)⁄ E⁄ E (ab)(12) (ab)(12)⁄ E⁄

Cð2Þ2h
c E C2(y) i r(xz) Et C2(y)Et iEt r(xz)Et

SAVd Both Both C2h C2h C2v C2v C2h
e C2v

e (J, l)f

At
gs

1 1 1 1 1 1 1 1 Ag A1 JX, JY, JZ

At
us

1 1 �1 �1 1 1 �1 �1 Au A2 lX, lY, lZ

Bt
gs

1 �1 1 �1 1 �1 1 �1 Bg B1 Jz

Bt
us

1 �1 �1 1 1 �1 �1 1 Bu B2 lz

At
gd

1 1 1 1 �1 �1 �1 �1 Ag A2 Jy

At
ud

1 1 �1 �1 �1 �1 1 1 Au A1 ly

Bt
gd

1 �1 1 �1 �1 1 �1 1 Bg B2 Jx

Bt
ud

1 �1 �1 1 �1 1 1 �1 Bu B1 lx

a This group is appropriate for a simultaneous treatment of trans bent and cis bent acetylene when the only LAM is internal rotation. Symmetry species names follow their
C2h counterparts, except that the subscript s or d indicates single-valued and double-valued representations of C2h (see footnotes b and c of Table 6), and the superscript t
indicates applicability to C2H2 with only a torsional LAM.

b PI operations of acetylene to which transformations in the next row correspond, when they are substituted into Eq. (9). Representations of Gð2Þ4 that correspond to single-
valued representations of the PI group G4 must have the same character in each pair of columns headed by the same PI operation.

c Symmetry operations from Table 7. The first four operations have the same names as their C2h counterparts in Table 1. The last four are these operators multiplied by the
limited identity Et (see Section 4).

d Point-group operations that are retained for trans (C2h) or cis (C2v) acetylene, i.e., retained when no LAMs are present (see Section 7).
e Correlations of these Cð2Þ2h species with the species for trans (C2h) and cis (C2v) acetylene in Table 1a and d.
f Symmetry species of the laboratory-fixed (X,Y,Z) and molecule-fixed (x,y,z) components of the total angular momentum J (excluding nuclear spin) and the electric dipole

moment l.
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where A(a,b1,b2) is defined so that the center of mass of the
ai(a,b1,b2) structure is always at the origin, and where we again re-
quire �2p/3 < b1,b2 < +2p/3.

It turns out that we can find eight trans minima in this coordi-
nate system, lying at

a ¼ 0; b1 ¼ þb2 ¼ �btrans � �2p=6 ð15aÞ
a ¼ p=2; b1 ¼ �b2 ¼ �btrans � �2p=6 ð15bÞ
a ¼ p; b1 ¼ þb2 ¼ �btrans � �2p=6 ð15cÞ
a ¼ 3p=2; b1 ¼ �b2 ¼ �btrans � �2p=6; ð15dÞ

and eight cis minima, lying at

a ¼ 0; b1 ¼ �b2 ¼ �bcis � �2p=6 ð16aÞ
a ¼ p=2; b1 ¼ þb2 ¼ �bcis � �2p=6 ð16bÞ
a ¼ p; b1 ¼ �b2 ¼ �bcis � �2p=6 ð16cÞ
a ¼ 3p=2; b1 ¼ þb2 ¼ �bcis � �2p=6: ð16dÞ

Fig. 4 can be taken as an illustration of the a = 0 minima in Eqs. (15)
and (16), where the potential surface is now not imagined to be
plotted in the vertical direction, but merely to be indicated by con-
tour lines in the plane of the figure. For visualization purposes, we
can imagine stacking three more versions of Fig. 4 above the origi-
nal Fig. 4 to represent the a = p/2, a = p, and a = 3p/2 cuts through
V(a,b1,b2), but with the additional adjustment that each of the
upper three figures be rotated about the vertical axis by its a value,
so that the b1 and b2 axes used for the a = 0 layer will apply to the
other three layers as well.

The presence of eight trans minima in this (a,b1,b2) coordinate
system indicates that we will be dealing with an eightfold ex-
tended group Gð8Þ4 ¼ G32 of the original PI group G4. Table 9 gives
a set of 32 symmetry operations, which when applied to the right
side of Eq. (13), give the same result as applying the PI operations
shown in the first column of the table to the left side of Eq. (13). As
expected, the four feasible PI operations for C2H2 with no CAH
bond breaking each occur eight times in Table 9, with one true
identity and seven limited identities. The seven limited identities
transform a vibrational wavefunction localized in the first trans
well of Eq. (15), represented schematically by exp �k0transða�

�
0Þ2� exp �ktransðb1 � btransÞ

2
h i

exp �ktransðb2 � btransÞ
2

h i
, into a wave-

function localized in one of the other trans wells in Eq. (15). They
also transform a vibrational wavefunction in the first cis well of Eq.
(16) into a wavefunction in one of the seven other cis wells in Eq.
(16).

Trial and error shows that all of the variable transformations in
Table 9 can be expressed in terms of only four generating opera-
tions, i.e., in terms of only four of the operations occurring in Ta-
ble 9. There is some flexibility in choosing the four generators. To
achieve maximum compatibility with Ref. [20], we take

a ¼ iEc

b ¼ C2ðyÞEb

c ¼ rðxzÞEt

d ¼ Et; ð17Þ

which can be shown (by considering their effects on R, v, h, /, a, b1,
b2, and the di) to obey the ten relations

a4 ¼ b2 ¼ c2 ¼ d2 ¼ e ð18aÞ
ba ¼ a3b ð18bÞ
ca ¼ acd ð18cÞ
da ¼ ad; cb ¼ bc; db ¼ bd; dc ¼ cd; ð18dÞ

where e is the identity. Eq. (18a) gives the order of each of the gen-
erators. Eq. (18d) indicates that d commutes with the other three
generators, and that b and c commute with each other. A general
element of the group Gð8Þ4 can now be written in the form

apbqcrds
; ð19Þ

where (from Eq. (18a)) p takes the integer values 0, 1, 2, 3 and q, r, s
take the values 0, 1.

It turns out that the relations given in Eq. (18), which are appro-
priate for acetylene when the two local bends and the internal
rotation are treated as feasible LAMs, are formally identical to
the relations that would be obtained for the operators a, b, c, and
d defined in Table 2 of Merer and Watson [20], which are appropri-
ate for ethylene when internal rotation is considered feasible. Be-
cause the relations are identical, the group G32 here is
isomorphic to the group G32 there (and therefore also has the same
symmetry species and character table). The character table for G32

given in [20] is reproduced here in Table 10. The choice of genera-
tors for use in Eq. (17) makes the transformations of the rotational



Table 9
Transformation properties of the coordinates R, v, h, /, a, b1, b2, and the di on the right of Eq. (13) under the symmetry operations of the eightfold extended group Gð8Þ4 (see
Table 10) of G4 (see Tables 1 and 3) appropriate for simultaneously treating trans bent and cis bent acetylene with internal rotation and with local mode CACAH bending motions
at each end as the three LAMs.

PIa Genb PGc Rd v, h, /e Equiv. Rot.f a; b1; b2
g di

h j(i)i

E e E R v, h, / E a, b1, b2 E dj a0
j ¼ Ea0

i

(ab)(12) a2b C2(y) R p � v, p � h, p + / C2(y) a, b2, b1 C2(y) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ a2bcd i �R v, h, / E �a, b2, b1 i dj a0
j ¼ ia0

i

E⁄ cd r(xz) �R p � v, p � h, p + / C2(y) �a, b1, b2 r(xz) dj a0
j ¼ rðxzÞa0

i

E a2 Eb R p + v, h, / C2(z) a, �b1, �b2 C2(z) dj a0
j ¼ Ea0

i

(ab)(12) b C2(y)Eb R �v, p � h, p + / C2(x) a, �b2, �b1 C2(x) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ bcd i Eb �R p + v, h, / C2(z) �a, �b2, �b1 r(xy) dj a0
j ¼ ia0

i

E⁄ a2cd r(xz)Eb �R �v, p � h, p + / C2(x) �a, �b1, �b2 r(yz) dj a0
j ¼ rðxzÞa0

i

E d Et R p + v, h, / C2(z) p + a, b1, b2 C2(z) dj a0
j ¼ Ea0

i

(ab)(12) a2bd C2(y)Et R �v, p � h, p + / C2(x) p + a, b2, b1 C2(x) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ a2bc i Et �R p + v, h, / C2(z) p � a, b2, b1 r(xy) dj a0
j ¼ ia0

i

E⁄ c r(xz)Et �R �v, p � h, p + / C2(x) p � a, b1, b2 r(yz) dj a0
j ¼ rðxzÞa0

i

E a2d EbEt R v, h, / E p + a, �b1, �b2 E dj a0
j ¼ Ea0

i

(ab)(12) bd C2(y)EbEt R p � v, p � h, p + / C2(y) p + a, �b2, �b1 C2(y) dj a0
j ¼ C2ðyÞa0

i

(ab)(12)⁄ bc i EbEt �R v, h, / E p � a, �b2, �b1 i dj a0
j ¼ ia0

i

E⁄ a2c r(xz)EbEt �R p � v, p � h, p + / C2(y) p � a, �b1, �b2 r(xz) dj a0
j ¼ rðxzÞa0

i

E abc Ec R p/2+v, h, / C4(z) p/2+a, b1, �b2 C�1
4 ðzÞdj a0

j ¼ Ea0
i

(ab)(12) ac C2(y)Ec R 3p/2�v, p � h, p + / C2(y)C4(z) p/2+a, b2, �b1 C�1
4 ðzÞC2ðyÞdj a0

j ¼ C2ðyÞa0
i

(ab)(12)⁄ a i Ec �R p/2+v, h, / C4(z) p/2�a, b2, �b1 C�1
4 ðzÞidj a0

j ¼ ia0
i

E⁄ ab r(xz)Ec �R 3p/2�v, p � h, p + / C2(y)C4(z) p/2�a, b1, �b2 C�1
4 ðzÞrðxzÞdj a0

j ¼ rðxzÞa0
i

E a3bc EbEc R �p/2+v, h, / C�1
4 ðzÞ p/2+a, �b1, b2 C4(z) dj a0

j ¼ Ea0
i

(ab)(12) a3c C2(y)EbEc R p/2�v, p � h, p + / C2ðyÞC�1
4 ðzÞ p/2+a, �b2, b1 C4(z)C2(y) dj a0

j ¼ C2ðyÞa0
i

(ab)(12)⁄ a3 i EbEc �R �p/2+v, h, / C�1
4 ðzÞ p/2�a, �b2, b1 C4(z) i dj a0

j ¼ ia0
i

E⁄ a3b r(xz)EbEc �R p/2�v, p � h, p + / C2ðyÞC�1
4 ðzÞ p/2�a, �b1, b2 C4(z)r(xz) dj a0

j ¼ rðxzÞa0
i

E abcd EtEc R �p/2+v, h, / C�1
4 ðzÞ �p/2+a, b1, �b2 C4(z) dj a0

j ¼ Ea0
i

(ab)(12) acd C2(y)EtEc R p/2�v, p � h, p + / C2ðyÞC�1
4 ðzÞ �p/2+a, b2, �b1 C4(z)C2(y) dj a0

j ¼ C2ðyÞa0
i

(ab)(12)⁄ ad i EtEc �R �p/2+v, h, / C�1
4 ðzÞ �p/2�a, b2, �b1 C4(z) i dj a0

j ¼ ia0
i

E⁄ abd r(xz)EtEc �R p/2�v, p � h, p + / C2ðyÞC�1
4 ðzÞ �p/2�a, b1, �b2 C4(z)r(xz) dj a0

j ¼ rðxzÞa0
i

E a3bcd EbEtEc R p/2+v, h, / C4(z) �p/2+a, �b1, b2 C�1
4 ðzÞdj a0

j ¼ Ea0
i

(ab)(12) a3cd C2(y)EbEtEc R 3p/2�v, p � h, p + / C2(y)C4(z) �p/2+a, �b2, b1 C�1
4 ðzÞC2ðyÞdj a0

j ¼ C2ðyÞa0
i

(ab)(12)⁄ a3d i EbEtEc �R p/2+v, h, / C4(z) �p/2�a, �b2, b1 C�1
4 ðzÞidj a0

j ¼ ia0
i

E⁄ a3bd r(xz)EbEtEc �R 3p/2�v, p � h, p + / C2(y)C4(z) �p/2�a, �b1, b2 C�1
4 ðzÞrðxzÞdj a0

j ¼ rðxzÞa0
i

a The PI operations in this column are obtained when the variable transformations in the columns to the right are substituted in Eq. (13). Note that every PI operation
occurs eight times.

b Notation of Eq. (17).
c The operations E, C2(y), r(xz), and i are very similar to the C2h point group operations, so the C2h names have been retained in this octuple group Gð8Þ4 of the feasible PI

group G4. Eb and Et are the limited identities for the local-mode HACAC and CACAH bending problem and for the torsional problem, respectively, as found in Tables 5 and 7.
Ec is a limited identity for the combined bending and torsional problem. Four other limited identities are obtained by taking binary and tertiary products of these three.

d Laboratory-fixed center of mass vector.
e Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
f The equivalent rotations [4] C�1

4 ðzÞ are of order four, but C2ðyÞC�1
4 ðzÞ ¼ C2ðy ¼ �xÞ are of order two.

g The LAM internal rotation angle and the two LAM local-mode HACAC and CACAH bending angles.
h Small-amplitude molecule-fixed vibrational displacement vectors; linear combinations of these are used to express normal (or symmetry) coordinates for the three

small-amplitude bond stretches.
i The subscript j as a function of i is defined by evaluating the right side of the equations in this column and then looking for the a0

j which is equal to this right side. Note
that j = i whenever the equation has the form a0

j ¼ Ea0
i , which occurs for all the limited identities, or the form a0

j ¼ rðxzÞa0
i , which occurs in eight other rows.
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angles v, h, / and the torsional angle a in Table 9 agree with the
analogous transformations in Table 2 of Ref. [20], so that the spe-
cies for rotational and torsional functions here are the same as
those in Table 4 of Ref. [20]. The physical conclusions drawn from
these two isomorphic groups will sometimes be different, how-
ever, because G32 here represents an eightfold extended group of
the PI group G4 for acetylene, i.e., G32 ¼ Gð8Þ4 , whereas G32 there rep-
resents a twofold extended group of the PI group G16 for ethylene,
i.e., G32 ¼ Gð2Þ16 . One example of how analogies between the G32

group theory for acetylene and ethylene should not be pushed
too far is the fact that single-valued representations of the acety-
lene PI group G4 correspond to the four species Aþ1g; A�2g; Bþ2u, and
B�1u in Table 10, whereas single-valued representations of the eth-
ylene PI group G16 correspond to the four A, four B, and E+ and
E� species in Ref. [20].

It may at first seem surprising that the extended PI group for
LAM bending and torsion in acetylene is isomorphic with that for
the LAM torsion problem in ethylene. This fact can be made to
seem intuitively reasonable by noting that the LAM acetylene
bends give rise to an average planar structure of (0.5H)2-
CC(0.5H)2, which is essentially the structure of ethylene. The
degenerate representations in Table 10 arise because this hypo-
thetical structure can pass through the D2d point group when inter-
nal rotation is considered [20]. A second surprising group
theoretical result, at least to the authors, is that three of the seven
limited identities (a2,d,a2d) are each in a class by themselves,



Table 10
Character tablea for the group Gð8Þ4 , which is identical to that for Gð2Þ16 [20]b

Speciesc a ac ab abc C2h
d C2v

d (J,l)e

e d a2 a2d c a2c b bd bc a2bc a3 a3c a3b a3bc
cd a2cd a2b a2bd a2bcd bcd ad acd abd abcd

a3d a3cd a3bd a3bcd

Aþ1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Ag A1 JX, JY, JZ

Aþ2u 1 1 1 1 1 1 �1 �1 �1 �1 1 1 �1 �1 Bu B2

A�1u 1 1 1 1 �1 �1 1 1 �1 �1 1 �1 1 �1 Au A2

A�2g 1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1 Bg B1 Jz

Bþ1g 1 1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 Ag A1

Bþ2u 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 Bu B2 lz

B�1u 1 1 1 1 �1 �1 1 1 �1 �1 �1 1 �1 1 Au A2 lX, lY, lZ

B�2g 1 1 1 1 �1 �1 �1 �1 1 1 �1 1 1 �1 Bg B1

E+ 2 2 �2 �2 2 �2 0 0 0 0 0 0 0 0 Ag 	 Bu A1 	 B2

E� 2 2 �2 �2 �2 2 0 0 0 0 0 0 0 0 Au 	 Bg A2 	 B1

E1 2 �2 2 �2 0 0 2 �2 0 0 0 0 0 0 Ag 	 Au A1 	 A2

E2 2 �2 2 �2 0 0 �2 2 0 0 0 0 0 0 Bg 	 Bu B1 	 B2

Eg 2 �2 �2 2 0 0 0 0 2 �2 0 0 0 0 Ag 	 Bg A2 	 B2 {Jx, Jy}
Eu 2 �2 �2 2 0 0 0 0 �2 2 0 0 0 0 Au 	 Bu A1 	 B1 {lx, ly}

a This group is appropriate for a simultaneous treatment of trans bent and cis bent acetylene when the three LAMs are internal rotation and a local-mode in-plane C-C-H
bending vibration at each end of the molecule. Symmetry operations have been named to emphasize the isomorphism of the group of 32 elements used here for acetylene to
the group of 32 elements used in Ref. [20] for ethylene. The effect on the variables on the right of Eq. (13) of the four operations a, b, c, and d used to generate all 32 elements of
this group is given by the transformations in Table 9. Multiplication properties of these four operations are given in Eq. (18).

b Elements in the last four classes in this character table are of order 4, 4, 2, and 4, respectively, e.g., a4 = (ac)4 = (ab)2 = (abc)4 = e.
c Symmetry species and characters in this table have been taken without change from Ref. [20]. Representations of Gð8Þ4 that correspond to single-valued representations of

the PI group G4 must have the same character in all columns corresponding to a given PI operation. In particular, they must have a character of +1 for all limited identities (see
Table 9). The single-valued representations here thus consist only of the four representations with character +1 for d, a2, a2d and the class containing abc, namely Aþ1g ;A

�
2g ;B

þ
2u

and B�1u .
d Correlation of these Gð8Þ4 species to the species of C2h trans acetylene and of C2v cis acetylene.
e Symmetry species of the laboratory-fixed (X,Y,Z) and molecule-fixed (x,y,z) components of the total angular momentum J (excluding nuclear spin) and the electric dipole

moment l.
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while the other four limited identities (abc,a3bc,abcd,a3bcd) are in
the same class.

9. Trans and cis acetylene and vinylidene with only two
delocalized H ‘‘in-plane bending’’ vibrations

For this problem, breaking the CAH bonds is considered to be a
feasible operation. Fig. 3 illustrates an ellipse-like path along which
the H atoms can travel as they move from one carbon atom to the
other. (Note that moving the H atoms along this ellipse, in other
words choosing the angles b1 and b2 appropriately in Fig. 3, allows
the C2H2 molecule to assume trans bent, cis bent, and vinylidene-
like structures.) From the point of view of mathematical expres-
sions, the treatment in this section will be quite similar to that in
Section 6.

The ai(LAMs) can again be represented as ai(b1,b2), but it is now
convenient to define b1 and b2 as angles giving the positions of the
hydrogen atoms relative to the center of the CbACa bond. Chemi-
cally this seems reasonable, since H1, for example, is no longer
exclusively associated with Ca. The basic equation is thus formally
identical to Eq. (4),

Ri ¼ Rþ S�1ðv; h;/Þ½aiðb1; b2Þ þ di�: ð20Þ

The functions ai(b1,b2) could again be defined (as in Eq. (5)) by
applying rotations about the out-of-plane y axis through angles of
0, b1, or b2 to a set of four constant vectors a0

i ði ¼ a; b;1;2Þ chosen
to correspond to a linear D1h reference configuration lying along
the z axis. This leads to

aiðb1; b2Þ ¼ a0
i � Aðb1;b2Þ for i ¼ a; b

a1ðb1;b2Þ ¼ S�1ð0;b1;0Þa0
1 � Aðb1;b2Þ

a2ðb1;b2Þ ¼ S�1ð0;b2;0Þa0
2 � Aðb1;b2Þ; ð21Þ

where A(b1,b2) keeps the center of mass of ai(b1,b2) at the origin,
and where the values of the angles b1 and b2 are now (in contrast
to Section 6) unconstrained, except for b1 > b2 � p > b1 � 2p, which
prevents H1 from overtaking H2 and H2 from overtaking H1. But Eq.
(21) forces the hydrogens to follow a circular path centered at the
origin, which seems less chemically reasonable than the elliptical
path shown in Fig. 3. We therefore replace Eq. (21) by

aiðb1;b2Þ ¼ a0
i � Aðb1; b2Þ for i ¼ a; b

a1ðb1;b2Þ ¼ a0
1ðb1Þ � Aðb1;b2Þ

a2ðb1;b2Þ ¼ a0
2ðb2Þ � Aðb1;b2Þ; ð22Þ

where the functions a0
1ðbÞ and a0

2ðbÞ are defined only implicitly, but
with the requirements that:

j � a0
i ðbÞ ¼ 0 for i ¼ 1;2 ð23aÞ

a0
i ðpþ bÞ ¼ C2ðyÞa0

i ðbÞ for i ¼ 1;2 ð23bÞ
a0

i ð�bÞ ¼ C2ðzÞa0
i ðbÞ for i ¼ 1;2 ð23cÞ

a0
1ðbÞ ¼ C2ðyÞa0

2ðbÞ: ð23dÞ

In Eq. (23a) j is the unit vector along the y axis, so that the hydro-
gens are restricted to motion in the xz plane. Eqs. (23b) and (23c)
require that the ‘‘tracks’’ for the LAM hydrogen bending motions
each have D2h symmetry. Eq. (23d) forces the LAM bending tracks
to be the same for both H atoms.

The PI group for this problem is G8, with the character table
shown in Table 6. Table 11 gives a set of 16 symmetry operations,
which when applied to the right side of Eq. (20), give the same re-
sults as when the PI operations shown in Table 11 are applied to
the left side of Eq. (20). The eight feasible PI operations for C2H2

(including those for CAH bond breaking) each occur twice in Ta-
ble 11, so we are dealing with a double group Gð2Þ8 of the PI group
G8. The limited identity associated with this double group is again
labeled Eb, and has essentially the same properties as the limited
identity in Table 5. Note that no new limited identities are intro-
duced when we extend the PI group of the planar bending problem
of Section 6 to include CH-bond-breaking operations. The character



Table 11
Transformation properties of the coordinates R, v, h, /, b1, b2, and the di on the right of Eq. (20) under symmetry operations of the double group Gð2Þ8 appropriate for
simultaneously treating trans bent and cis bent acetylene and vinylidene, with only in-plane H atom bending motions as the two LAMs (see Fig. 3).

PIa PGb Rc v, h, /d Equiv. Rot.e b1;b2
f di

g j(i)h

E E R v, h, / E b1, b2 E dj a, b, 1, 2
(ab)(12) C2(y) R p � v, p � h, p + / C2(y) b2, b1 C2(y) dj b, a, 2, 1
(ab)(12)⁄ i �R v, h, / E b2, b1 i dj b, a, 2, 1
E⁄ r(xz) �R p � v, p � h, p + / C2(y) b1, b2 r(xz) dj a, b, 1, 2
(12) C2(z) R p + v, h, / C2(z) p � b2, p � b1 C2(z) dj a, b, 2, 1
(ab) C2(x) R �v, p � h, p + / C2(x) p � b1, p � b2 C2(x) dj b, a, 1, 2
(ab)⁄ r(xy) �R p + v, h, / C2(z) p � b1, p � b2 r(xy) dj b, a, 1, 2
(12)⁄ r(yz) �R �v, p � h, p + / C2(x) p � b2, p � b1 r(yz) dj a, b, 2, 1
E Eb R p + v, h, / C2(z) �b1, �b2 C2(z) dj a, b, 1, 2
(ab)(12) C2(y)Eb R �v, p � h, p + / C2(x) �b2, �b1 C2(x) dj b, a, 2, 1
(ab)(12)⁄ i Eb �R p + v, h, / C2(z) �b2, �b1 r(xy) dj b, a, 2, 1
E⁄ r(xz)Eb �R �v, p � h, p + / C2(x) �b1, �b2 r(yz) dj a, b, 1, 2
(12) C2(z)Eb R v, h, / E p + b2, p + b1 E dj a, b, 2, 1
(ab) C2(x)Eb R p � v, p � h, p + / C2(y) p + b1, p + b2 C2(y) dj b, a, 1, 2
(ab)⁄ r(xy)Eb �R v, h, / E p + b1, p + b2 i dj b, a, 1, 2
(12)⁄ r(yz)Eb �R p � v, p � h, p + / C2(y) p + b2, p + b1 r(xz) dj a, b, 2, 1

a The PI operations in this column are obtained when the variable transformations in the columns to the right are substituted in Eqs. (20) and (22). Note that every PI
operation occurs twice, since this is a double group of the feasible PI group G8 (see Table 4).

b The operations E, C2(y), i, and r(xz) are very similar to the C2h point group operations for trans bent acetylene in Fig. 1, so the C2h names have been retained in this double
group of G8; C2(z) and r(yz) are very similar to the C2v operations for vinylidene in Fig. 1, so these C2v names have also been retained. The first eight point group operations in
this column would be appropriate for a D2h acetylene molecule with the C’s on the z axis and the H’s on the x axis. Eb is the limited identity in this delocalized planar H-
bending problem.

c Laboratory-fixed center of mass vector.
d Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
e As defined in Bunker and Jensen [4].
f The two LAM local-mode HACAC and CACAH bending angles.
g Small-amplitude molecule-fixed vibrational displacement vectors.
h The four atom labels in each row of this column give values of the function j(i) for i = a, b, 1, 2, respectively, for the symmetry operation at the left of the row.

Table 12
Character tablea for the double group Gð2Þ8 appropriate for C2H2 when two LAM planar bending angles are considered which permit simultaneous description of trans acetylene, cis
acetylene, and vinylidene.

E (ab) (12) (ab)(12) E⁄ (ab)⁄ (12)⁄ (ab)(12)⁄ E (ab) (12) (ab)(12) E⁄ (ab)⁄ (12)⁄ (ab)(12)⁄

E C2(x) C2(z) C2(y) r(xz) r(xy) r(yz) i Eb C2(x)Eb C2(z)Eb C2(y)Eb r(xz)Eb r(xy)Eb r(yz)Eb iEb (J,l)b

Aþ1s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 JX, JY, JZ

Aþ2s 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1

Bþ1s 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 lz

Bþ2s 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1 1 �1 �1 1
A�1s 1 1 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 lX, lY, lZ

A�2s 1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1
B�1s 1 �1 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1 Jz

B�2s 1 �1 �1 1 �1 1 1 �1 1 �1 �1 1 �1 1 1 �1
Aþ1d 1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

Aþ2d 1 1 �1 �1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1 lx

Bþ1d 1 �1 1 �1 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1

Bþ2d 1 �1 �1 1 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 Jy

A�1d 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1
A�2d 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 �1 �1 Jx

B�1d 1 �1 1 �1 �1 1 �1 1 �1 1 �1 1 1 �1 1 �1
B�2d 1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 1 �1 �1 1 ly

a The symmetry operations are defined in Table 11. The symmetry species of Gð2Þ8 are divided into single-valued (subscript s) and double-valued (subscript d) represen-
tations of G8. This direct product character table contains four copies of Table 4, three multiplied by +1 and one (lower right) multiplied by �1.

b Symmetry species of the laboratory-fixed (X,Y,Z) and molecule-fixed (x,y,z) components of the total angular momentum J (excluding nuclear spin) and the electric dipole
moment l.

212 J.T. Hougen, A.J. Merer / Journal of Molecular Spectroscopy 267 (2011) 200–221
table for Gð2Þ8 is shown in Table 12, which has the simple form of a
direct product group of G8 with {E,Eb}.

10. Trans and cis acetylene and vinylidene with two delocalized
H bending (migration) vibrations as well as internal rotation
about the CAC bond

The last set of LAMs that we consider for the acetylene problem
corresponds to the case of two delocalized H bending motions,
which allow for CAH bond breaking, and an internal rotation about
the CAC bond. The treatment in this section is thus related to that
in Section 8 much as the treatment in Section 9 was related to that
in Section 6. In particular, no new limited identities arise (i.e., we
have the same seven limited identities as in Section 8) and our final
group G64 will be an octuple group Gð8Þ8 of the PI group G8 in
Table 4.

There are many subtle conceptual problems associated with
considering simultaneously vibrations and rotations for the three
different molecular geometries in this section. We do not discuss
any of these in detail, nor do we attempt spectroscopic applications
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of the group theory. Instead we merely set up a coordinate system
that allows passage among the three geometries, and then derive
the group theoretical transformations associated with this coordi-
nate system.

Eq. (1), relating the laboratory-fixed Cartesian coordinates and
the molecule-fixed coordinates, becomes

Ri ¼ Rþ S�1ðv; h;/Þ½aiða;b1;b2Þ þ di�; ð24Þ

with reference positions defined by

aiða;b1;b2Þ ¼ a0
i � Aða;b1;b2Þ for i ¼ a; b

a1ða;b1;b2Þ ¼ S�1ð�a;0;0Þa0
1ðb1Þ � Aða; b1; b2Þ

a2ða;b1;b2Þ ¼ S�1ðþa;0;0Þa0
2ðb2Þ � Aða; b1; b2Þ: ð25Þ

The functions a0
1ðbÞ and a0

2ðbÞ, which essentially define the ‘‘tracks’’
on which the hydrogen bending vibrations take place, are again de-
fined only implicitly, and are again required to satisfy Eq. (23).

One of the questions that we do not discuss in this paper is the
problem of what happens to the torsion of trans and cis bent acet-
ylene when the molecule takes a vinylidene shape. A vinylidene
minimum occurs in Eq. (25) when a = 0, b1 = bvinyl = constant (with
0 < bvinyl < p/2), and b2 = p � bvinyl (see Fig. 3). For this configura-
tion, small displacements from zero of the coordinate a give rise
to the out-of-plane umbrella vibration of vinylidene. It thus seems
probable that the group theoretical treatment devised here will
preserve the three stretches (one CAC and two CAH) and the
two CACAH local bends in all three molecular geometries, but that
the torsion in trans and cis acetylene will ‘‘turn into’’ the umbrella
motion in vinylidene. A further complication is the fact that the
torsion of cis bent acetylene has a C2v species of A2, while the um-
brella mode of vinylidene has a C2v species of B1.

Since Eqs. (24) and (25) are formally very similar to Eqs. (13)
and (14), Table 9 and Eqs. (17)–(19) can be used to define symme-
try transformations for Eq. (24) that do not involve breaking either
CAH bond. It is then sufficient to add to the four generators in Sec-
tion 8 one more generator g, which does break the CAH bonds. In PI
notation there are four operators to choose from: (12), (ab), (12)⁄,
and (ab)⁄. It turns out that the direct-product structure of the
resulting group G64 is most clearly seen if g is chosen to be one
of the four (ab)⁄ operations that is in a class by itself. (The reason
why the eight (ab)⁄ operations are distributed into four classes of
order one and one class of order four is not intuitively obvious,
but presumably derives from our unsymmetrical treatment of
the carbon and hydrogen motions in the multi-valued coordinate
system of Eq. (24).) The analog of Eq. (19) for a general element
of G64 then becomes

apbqcrdsgt ; ð26Þ

where p takes the integer values 0, 1, 2, 3, and q, r, s, and t take the
values 0, 1, leading to a group of order 64. (To avoid confusion, the
generating operations are not labeled by the letter e, which conven-
tionally denotes the identity, or f, which conventionally denotes a
function.) We take the precise transformation of molecular vari-
ables caused by the new generator g to be

gf ðR;v; h;/;a; b1; b2;diÞ ¼ f ð�R;v; h;/;a;pþ b1;pþ b2; idjÞ;
ð27Þ

where j(i) = i for i = 1 or 2, but j(a) = b and j(b) = a. The generator g
defined in Eq. (27) can be shown to lead to the PI operation (ab)⁄

when its transformations are substituted in Eqs. (24) and (25).
The 32 new transformations obtained by multiplying the 32 trans-
formations in Table 9 by g are shown in Table 13.

It can also be shown that the definition for g in Eq. (27) leads to
the following additions to the relations in Eq. (18)
g2 ¼ e ð28aÞ
ga ¼ ag; gb ¼ bg; gc ¼ cg; gd ¼ dg: ð28bÞ

Since g commutes with all elements of Gð8Þ4 in Table 10, G64 is a di-
rect product of Gð8Þ4 with the group {e,g}. G64 thus has 28 classes. The
first 14 classes, containing only elements with t = 0 in Eq. (26), turn
out to be identical to those at the top of Table 10. The second 14
classes, containing all the elements with t = 1 in Eq. (26), are these
same classes, but with every element multiplied by g. They are used
to label the columns in the G64 character table. Since G64 has exactly
the same seven limited identities as Gð8Þ4 , we refer to G64 as Gð8Þ8 from
this point on. The character table for Gð8Þ8 is given as Table 14. Its
symmetry species are named according to the left side of Table 10,
with the addition of s and a subscripts, which indicate species that
are symmetric and antisymmetric with respect to g.

11. Application of the present formalism to trans and cis
acetylene with high tunneling barriers and no bond breaking

We now apply the results of Section 8 to the 46000 cm�1 region
of the S1AS0 transition of acetylene [21]. States of trans and cis
acetylene are both present, but transitions or interactions involv-
ing states of vinylidene are absent. This region lies just below the
cis–trans interconversion barrier, so that the various LAM motions
taking place will lead to ‘‘tunneling-sized’’ displacements, rather
than gross rearrangement of the rovibronic energy levels.

The permutation operations for vinylidene given in Table 1c in-
clude (12), which is a bond-breaking operation for trans and cis
bent acetylene. In this section we show that, when vinylidene is
excluded from consideration, i.e. when bond-breaking operations
are not feasible, there will be no splittings of the asymmetric rotor
energy levels of the trans or cis bent isomers as a result of tunnel-
ing effects, though some of the levels will be systematically shifted,
leading to K-staggerings instead of splittings.

11.1. Inter-conformational perturbations

The first question that arises is which cis acetylene levels can
perturb which trans acetylene levels. The importance of this ques-
tion lies in determining how intensity is transferred from S1-trans
levels (to which absorption from the ground state is allowed) to S1-
cis levels at nearly the same energy (to which absorption from the
ground state is forbidden). In the high-barrier tunneling case, this
question can be answered from a consideration of only point
groups and permutation-inversion groups. No extended group
considerations are needed. In fact, this question has already been
answered by Lundberg [12], making use of the full permutation-
inversion group G8 for C2H2. Since Lundberg used a group contain-
ing bond-breaking operations, the application of his results to the
no-bond-breaking case can lead to some confusion. We therefore
reproduce his results using arguments based only on the permuta-
tion-inversion group G4.

The high-barrier tunneling approximation allows us to begin by
considering the energy levels of trans and cis acetylene using
small-amplitude vibrations and point-group operations, i.e., we
can work out the positions of, and classify the electronic, vibra-
tional, and rotational states as is conventionally done using the
C2h point group for trans and the C2v point group for cis acetylene.
We then introduce the appropriate permutation-inversion group,
containing whatever feasible tunneling operations are to be con-
sidered, and use Watson’s ‘‘reverse correlation method’’ [22] to
determine the number and symmetry species (but not the relative
or absolute positions) of the components into which each point-
group rovibronic level splits.

The present situation is unusual, because the point groups for
trans and cis acetylene contain the same number of operations as



Table 13
Transformation properties of the coordinates R, v, h, /, a, b1, b2, and the di on the right of Eq. (24) under half (see Table 9 for the other half) of the symmetry operations of the
eightfold extended group Gð8Þ8 of G8 (see Table 4) appropriate for simultaneously treating trans bent and cis bent acetylene and vinylidene with internal rotation and local mode C–
C–H bending motions at each end as the three LAMs.

PIa Genb PGc Rd v, h, /e Equiv. Rot.f a; b1; b2
g di

h j(i)i

(ab)⁄ g r(xy)Eb �R v, h, / E a, p + b1, p + b2 i dj b, a, 1, 2
(12)⁄ a2bg r(yz)Eb �R p � v, p � h, p + / C2(y) a, p + b2, p + b1 r(xz) dj a, b, 2, 1
(12) a2bcdg C2(z)Eb R v, h, / E �a, p + b2, p + b1 E dj a, b, 2, 1
(ab) cdg C2(x)Eb R p � v, p � h, p + / C2(y) �a, p + b1, p + b2 C2(y) dj b, a, 1, 2
(ab)⁄ a2g r(xy) �R p + v, h, / C2(z) a, p � b1, p � b2 r(xy) dj b, a, 1, 2
(12)⁄ bg r(yz) �R �v, p � h, p + / C2(x) a, p � b2, p � b1 r(yz) dj a, b, 2, 1
(12) bcdg C2(z) R p + v, h, / C2(z) �a, p � b2, p � b1 C2(z) dj a, b, 2, 1
(ab) a2cdg C2(x) R �v, p � h, p + / C2(x) �a, p � b1, p � b2 C2(x) dj b, a, 1, 2
(ab)⁄ dg r(xy)EbEt �R p + v, h, / C2(z) p + a, p + b1, p + b2 r(xy) dj b, a, 1, 2
(12)⁄ a2bdg r(yz)EbEt �R �v, p � h, p + / C2(x) p + a, p + b2, p + b1 r(yz) dj a, b, 2, 1
(12) a2bcg C2(z)EbEt R p + v, h, / C2(z) p � a, p + b2, p + b1 C2(z) dj a, b, 2, 1
(ab) cg C2(x)EbEt R �v, p � h, p + / C2(x) p � a, p + b1, p + b2 C2(x) dj b, a, 1, 2
(ab)⁄ a2dg r(xy)Et �R v, h, / E p + a, p � b1, p � b2 i dj b, a, 1, 2
(12)⁄ bdg r(yz)Et �R p � v, p � h, p + / C2(y) p + a, p � b2, p � b1 r(xz) dj a, b, 2, 1
(12) bcg C2(z)Et R v, h, / E p � a, p � b2, p � b1 E dj a, b, 2, 1
(ab) a2cg C2(x)Et R p � v, p � h, p + / C2(y) p � a, p � b1, p � b2 C2(y) dj b, a, 1, 2
(ab)⁄ abcg r(xy)EbEc �R p/2 + v, h, / C4(z) p/2 + a, p + b1, p � b2 C�1

4 ðzÞidj
b, a, 1, 2

(12)⁄ acg r(yz)EbEc �R 3p/2 � v, p � h, p + / C2(y)C4(z) p/2 + a, p + b2, p � b1 C�1
4 ðzÞrðxzÞdj

a, b, 2, 1

(12) ag C2(z)EbEc R p/2 + v, h, / C4(z) p/2 � a, p + b2, p � b1 C�1
4 ðzÞdj

a, b, 2, 1

(ab) abg C2(x)EbEc R 3p/2 � v, p � h, p + / C2(y)C4(z) p/2 � a, p + b1, p � b2 C�1
4 ðzÞC2ðyÞdj

b, a, 1, 2

(ab)⁄ a3bcg r(xy)Ec �R �p/2 + v, h, / C�1
4 (z) p/2 + a, p � b1, p + b2 C4(z) i dj b, a, 1, 2

(12)⁄ a3cg r(yz)Ec �R p/2 � v, p � h, p + / C2(y)C�1
4 (z) p/2 + a, p � b2, p + b1 C4(z)r(xz) dj a, b, 2, 1

(12) a3g C2(z)Ec R �p/2 + v, h, / C�1
4 (z) p/2 � a, p � b2, p + b1 C4(z) dj a, b, 2, 1

(ab) a3bg C2(x)Ec R p/2 � v, p � h, p + / C2(y)C�1
4 (z) p/2 � a, p � b1, p + b2 C4(z)C2(y) dj b, a, 1, 2

(ab)⁄ abcdg r(xy)EbEtEc �R �p/2 + v, h, / C�1
4 ðzÞ �p/2 + a, p + b1, p � b2 C4(z) i dj b, a, 1, 2

(12)⁄ acdg r(yz)EbEtEc �R p/2 � v, p � h, p + / C2ðyÞC�1
4 ðzÞ �p/2 + a, p + b2, p � b1 C4(z)r(xz) dj a, b, 2, 1

(12) adg C2(z)EbEtEc R �p/2 + v, h, / C�1
4 ðzÞ �p/2 � a, p + b2, p � b1 C4(z) dj a, b, 2, 1

(ab) abdg C2(x)EbEtEc R p/2 � v, p � h, p + / C2(y)C�1
4 (z) �p/2 � a, p + b1, p � b2 C4(z)C2(y) dj b, a, 1, 2

(ab)⁄ a3bcdg r(xy)EtEc �R p/2 + v, h, / C4(z) �p/2 + a, p � b1, p + b2 C�1
4 ðzÞidj

b, a, 1, 2

(12)⁄ a3cdg r(yz)EtEc �R 3p/2 � v, p � h, p + / C2(y)C4(z) �p/2 + a, p � b2, p + b1 C�1
4 ðzÞrðxzÞdj

a, b, 2, 1

(12) a3dg C2(z)EtEc R p/2 + v, h, / C4(z) �p/2 � a, p � b2, p + b1 C�1
4 ðzÞdj

a, b, 2, 1

(ab) a3bdg C2(x)EtEc R 3p/2 � v, p � h, p + / C2(y)C4(z) �p/2 � a, p � b1, p + b2 C�1
4 ðzÞC2ðyÞdj

b, a, 1, 2

a The PI operations in this column are obtained when the variable transformations in the columns to the right are substituted in Eq. (24). Every PI operation occurs eight
times.

b Notation of Eqs. (19) and (26).
c The operations C2(x), C2(y), C2(z), r(xy), r(yz), r(xz), and i are very similar to the D2h point group operations, so the D2h names have been retained in this octuple group Gð8Þ8

of the feasible PI group G8. (See Table 9 for the other 32 elements of Gð8Þ8 .) Eb and Et are the limited identities for the local-mode H–C–C and C–C–H bending problem and for
the torsional problem, respectively, as found in Tables 5 and 7. Ec is a limited identity for the combined bending and torsional problem, as found in Table 9.

d Laboratory-fixed center of mass vector.
e Rotational variables = Eulerian angles in the direction cosine matrix of Eq. (2) [7].
f As defined in Bunker and Jensen [4].
g The LAM internal rotation angle and the two LAM local-mode H–C–C and C–C–H bending angles.
h Small-amplitude molecule-fixed vibrational displacement vectors; linear combinations of these are used to express normal (or symmetry) coordinates for the three

small-amplitude bond stretches.
i The four atom labels in each row of this column give values of the function j(i) for i = a, b, 1, 2, respectively, for the symmetry operation at the left of the row. Note that j = i

does not occur for the 32 bond-breaking elements of Gð8Þ8 given in this table.
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the PI group needed when CAH bond breaking is not feasible. This
leads group-theoretically to the conclusion that no splittings of
rovibronic energy levels will be observed as long as bond-breaking
does not occur. The same conclusion could be reached by noting
that both trans and cis acetylene have only one framework when
CAH bond breaking is forbidden, i.e., it is impossible to draw two
non-superimposable trans acetylene equilibrium structures using
the labeled atoms Ca, Cb, H1 and H2, when H1 must (by hypothesis)
be attached to Ca.

Furthermore, the PI group G4 for trans and cis acetylene without
CAH bond breaking is isomorphic to both C2h for trans acetylene
and C2v for cis acetylene. Thus, from the PI group point of view,
the C2h and C2v symmetry labels are just two different sets of labels
for the same PI group symmetry species, i.e., the point-group labels
are rigorously identical in pairs, with: Ag(C2h) = A1(C2v),
Au(C2h) = A2(C2v), Bg(C2h) = B1(C2v), and Bu(C2h) = B2(C2v). This pair-
ing also indicates which C2h rovibronic states can perturb which
C2v rovibronic states, e.g., evrAg(C2h) can perturb evrA1(C2v), etc.
(Note that we are following Mulliken’s recommendation [9] that
the B species of C2v be labeled such that in-plane vibrations are
of species B2 rather than B1.) The most important consequence
[12,21] of these rovibronic selection rules is that a given trans vib-
ronic state and a given cis vibronic state cannot perturb each other
for both even and odd K values.

These rovibronic selection rules remain valid when perturba-
tions driven by electron spin are considered. Spin splittings in
C2H2 are expected to be small compared to rotational spacings,
so that Hund’s case (b) applies. The laboratory-fixed electron spin
functions used in case (b) do not involve the nuclear coordinates,
so they are unchanged by any nuclear permutation. Since the spin
is an angular momentum, spin functions are invariant under the
laboratory-fixed inversion operation E⁄. Case (b) electron spin
functions thus belong to the totally symmetric species in any PI
group, so that the electron-spin-rovibronic species, evrsC, of any
case (b) spin component of a rovibronic state is always the
same as that of the rovibronic state, evrC. Electron spin driven



Table 14
Character tablea,b for the group Gð8Þ8 .

Species a ac ab abc ag acg abg abcg
e d a2 a2d c a2c b bd bc a2bc a3 a3c a3b a3bc g dg a2g a2dg cg a2cg bg bdg bcg a2bcg a3g a3cg a3bg a3bcg

cd a2cd a2b a2bd a2bcd bcd ad acd abd abcd cdg a2cdg a2bg a2bdg a2bcdg bcdg adg acdg abdg abcdg
a3d a3cd a3bd a3bcd a3dg a3cdg a3bdg a3bcdg

Aþ1gs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Aþ2us 1 1 1 1 1 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 1 1 1 �1 �1 �1 �1 1 1 �1 �1
A�1us 1 1 1 1 �1 �1 1 1 �1 �1 1 �1 1 �1 1 1 1 1 �1 �1 1 1 �1 �1 1 �1 1 �1
A�2gs 1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1 1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1

Bþ1gs 1 1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 1 1 1 1 1 1 1 1 1 1 �1 �1 �1 �1

Bþ2us 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1
B�1us 1 1 1 1 �1 �1 1 1 �1 �1 �1 1 �1 1 1 1 1 1 �1 �1 1 1 �1 �1 �1 1 �1 1
B�2gs 1 1 1 1 �1 �1 �1 �1 1 1 �1 1 1 �1 1 1 1 1 �1 �1 �1 �1 1 1 �1 1 1 �1

Eþs 2 2 �2 �2 2 �2 0 0 0 0 0 0 0 0 2 2 �2 �2 2 �2 0 0 0 0 0 0 0 0
E�s 2 2 �2 �2 �2 2 0 0 0 0 0 0 0 0 2 2 �2 �2 �2 2 0 0 0 0 0 0 0 0
E1s 2 �2 2 �2 0 0 2 �2 0 0 0 0 0 0 2 �2 2 �2 0 0 2 �2 0 0 0 0 0 0
E2s 2 �2 2 �2 0 0 �2 2 0 0 0 0 0 0 2 �2 2 �2 0 0 �2 2 0 0 0 0 0 0
Egs 2 �2 �2 2 0 0 0 0 2 �2 0 0 0 0 2 �2 �2 2 0 0 0 0 2 �2 0 0 0 0
Eus 2 �2 �2 2 0 0 0 0 �2 2 0 0 0 0 2 �2 �2 2 0 0 0 0 �2 2 0 0 0 0
Aþ1ga 1 1 1 1 1 1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

Aþ2ua 1 1 1 1 1 1 �1 �1 �1 �1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1 �1 �1 1 1
A�1ua 1 1 1 1 �1 �1 1 1 �1 �1 1 �1 1 �1 �1 �1 �1 �1 1 1 �1 �1 1 1 �1 1 �1 1
A�2ga 1 1 1 1 �1 �1 �1 �1 1 1 1 �1 �1 1 �1 �1 �1 �1 1 1 1 1 �1 �1 �1 1 1 �1

Bþ1ga 1 1 1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1

Bþ2ua 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 1 1 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 �1 �1
B�1ua 1 1 1 1 �1 �1 1 1 �1 �1 �1 1 �1 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1 �1 1 �1
B�2ga 1 1 1 1 �1 �1 �1 �1 1 1 �1 1 1 �1 �1 �1 �1 �1 1 1 1 1 �1 �1 1 �1 �1 1

Eþa 2 2 �2 �2 2 �2 0 0 0 0 0 0 0 0 �2 �2 2 2 �2 2 0 0 0 0 0 0 0 0
E�a 2 2 �2 �2 �2 2 0 0 0 0 0 0 0 0 �2 �2 2 2 2 �2 0 0 0 0 0 0 0 0
E1a 2 �2 2 �2 0 0 2 �2 0 0 0 0 0 0 �2 2 �2 2 0 0 �2 2 0 0 0 0 0 0
E2a 2 �2 2 �2 0 0 �2 2 0 0 0 0 0 0 �2 2 �2 2 0 0 2 �2 0 0 0 0 0 0
Ega 2 �2 �2 2 0 0 0 0 2 �2 0 0 0 0 �2 2 2 �2 0 0 0 0 �2 2 0 0 0 0
Eua 2 �2 �2 2 0 0 0 0 �2 2 0 0 0 0 �2 2 2 �2 0 0 0 0 2 �2 0 0 0 0

a This group is appropriate for a simultaneous treatment of trans bent and cis bent acetylene and vinylidene when the three LAMs are internal rotation and a local-mode in-plane C–C–H bending vibration at each end of the
molecule.

b Symmetry species of various operators are: CðlXÞ ¼ CðlY Þ ¼ CðlZÞ ¼ B�1ua; CðJXÞ ¼ CðJY Þ ¼ CðJZÞ ¼ Aþ1gs; Cflx;lyg ¼ Eua; CðlzÞ ¼ Bþ2ua; CfJx ; Jyg ¼ Egs; and CðJzÞ ¼ A�2gs.
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perturbations in C2H2 (e.g., singlet-triplet perturbations) thus can-
not violate the rovibronic selection rules of the previous paragraph.

The rovibronic selection rules above do not remain valid when
nuclear spin driven perturbations are considered, but observation
of such perturbations is likely to be rare in the electronic spec-
trum of acetylene. Furthermore, a discussion of the changes in
rovibronic selection rules is lengthy, involves consideration of
the operator F = J + I, and is different for different isotopic species,
so we present only the final conclusion here: In acetylene with no
bond breaking, perturbations between a given pair of cis and
trans vibronic levels are rovibronically allowed for one (even or
odd) set of K values and rovibronically forbidden for the other,
but they are nuclear spin allowed (between levels of the same F
value) for both even and odd K.

11.2. Tunneling splittings in the multivalued coordinate system of
Section 8

It turns out that cis and trans acetylene do not exhibit doublings
of their rovibronic energy levels when bond breaking motion is not
feasible, though tunneling splittings of the LAM bending-torsional
levels are expected when the use of a multiple valued coordinate
system (designed to take maximum advantage of the vibrational
symmetry) leads to the ‘‘creation’’ of a number of different frame-
works. In this section we consider the energy level patterns of
these vibrational tunneling splittings. In Section 11.3 we show
how these splittings manifest themselves as staggerings of the K-
structure when rotation is taken into account. Such staggerings of-
ten arise in quantum mechanical tunneling situations; the use of
multiple valued coordinates greatly simplifies their qualitative
understanding.

It is useful to recall some (pictorial) concepts associated with
multidimensional, multi-minimum high-barrier tunneling prob-
lems, such as that suggested by the potential surface shown in
Fig. 4. Fig. 5 shows a cut of this surface obtained by traveling
around the circumference of a circle with its center at the linear
configuration and its radius chosen to reach from the center to
one of the trans minima. Such a cut passes in turn through a trans
minimum, a cis minimum, a trans minimum, and a cis minimum,
before returning again to the trans minimum starting point, and
the energy along the cut can be displayed as a periodic function
of an angular coordinate c, given by tan�1(b2/b1) � p/4. In Fig. 5
we have taken the trans wells to be significantly deeper than
the cis wells, as in the S1 state of acetylene near 46000 cm�1

[17,21].
Consider first a tunneling motion that starts from the lowest en-

ergy level in the trans well and moves along the angular coordinate
c around the circle. This trajectory passes ‘‘under’’ both cis wells,
and thus corresponds to a traditional ‘‘ammonia-like’’ tunneling
motion, in the sense that the entire region between the two iden-
tical trans wells is classically forbidden. The only difference from
ammonia lies in the fact that the top of the potential barrier
‘‘mountain’’ is missing, because of the presence of the cis well ‘‘cra-
ter.’’ However, the tunneling splitting associated with this
trans ? trans tunneling trajectory is characterized in the quantum
mechanical high-barrier tunneling treatment by only a single
parameter, namely the tunneling splitting frequency. The detailed
shape of the top of the potential barrier, which is in any case al-
most ‘‘invisible’’ to the low-amplitude portion of the wavefunction
passing under it, has little influence on the tunneling frequency,
which is essentially determined by an integral along the path s un-
der the barrier of the form

R s2
s1
fð2m=�h2Þ½VðsÞ � E�g1=2 ds, i.e., by the

usual function [23] of the tunneling mass (m), barrier height (V–
E), and path length (s2 � s1) that arises in discussions of transmis-
sion coefficients for quantum mechanical wave propagation
through a barrier.
Now consider a tunneling motion that starts from the lowest
energy level in the cis well. This trajectory passes through the bar-
rier separating the cis from the trans well, but passes above the
minimum of the trans well, so there is a tendency to think of this
as a tunneling from cis to trans acetylene. As is well known [23],
however, the amplitude of the wavefunction will be extremely
low in its oscillatory region above the trans minimum, and will
only regain its original large magnitude when the tunneling trajec-
tory reaches the other cis well. Thus, while this trajectory techni-
cally has a cis ? trans tunneling aspect to it, it is more
reasonable to think of it as a cis ? cis tunneling, where the very-
low-amplitude ‘‘tunneling’’ part of the wavefunction has an oscilla-
tory (rather than an exponentially decaying) segment at its center.
The quantum mechanical ‘‘purpose’’ of this oscillatory segment is
to maintain a correct node-count, i.e., the lowest level in the cis
well must have an eigenfunction with a node count one greater
than the trans-well eigenfunction immediately below it in energy.
Reasoning intuitively leads to the following suppositions, which
we adopt here. (i) The tunneling splitting will still be characterized
by a single parameter, which is determined by path integrals of the
form

R s2
s1
fð2m=�h2Þ½VðsÞ � E�g1=2 ds along the two segments of the

path under the barrier on either side of the trans-well oscillatory
region. (ii) The very low amplitude oscillatory part of the wave-
function passing over the classically allowed trans minimum part
of the path will correspond to a transmission coefficient of unity,
and will give a negligible contribution to the cis ? cis tunneling
frequency. (iii) The high-amplitude parts of the tunneling wave-
function will still occur only in the two cis wells.

We now turn to a more careful treatment of the eight-well tun-
neling problem associated with the multivalued coordinate system
of Section 8. Following the discussion above, we will consider tun-
neling splittings caused by trans ? trans tunneling among a given
set of eight isoenergetic localized trans minimum states entirely
separately from splittings caused by cis ? cis tunneling among
eight different localized cis minimum states.

Symmetry species for linear combinations of bending-torsional
(bt) vibrational wavefunctions localized in the eight trans minima
of Eq. (15) of Section 8 can be determined much as they were for
the two-well problem of Section 6. The v = 0 harmonic-oscillator
(Gaussian) bending-torsional basis functions localized in the eight
trans wells span the representation

btCtrans ¼ Aþ1g 	 Bþ1g 	 Eþ 	 E1 	 Eg ð29Þ

of Gð8Þ4 . A similar set of Gaussian harmonic-oscillator basis functions
localized in the eight cis wells span the Gð8Þ4 representation

btCcis ¼ Aþ1g 	 Bþ1g 	 Eþ 	 E1 	 Eu: ð30Þ

It is relatively simple to estimate the splittings of the levels in Eqs.
(29) and (30) by carrying out a pure bending-torsion tunneling
treatment. A complete treatment of the tunneling problem must
obviously also include rotational effects, but such a treatment
[24,25] is beyond the scope of this work, so we content ourselves
here with deriving only the (presumably dominant) J = 0 splitting
patterns.

We can understand the tunneling paths between the eight trans
equilibrium configurations given by the various sets of a, b1, b2 val-
ues in Eq. (15) pictorially, by imagining four copies of Fig. 4 (which
are energy displays above the b1, b2 plane), stacked on top of each
other, in such a way that the vertical spacing between each copy is
the same, but with the second copy rotated by 90� with respect to
the first, the third copy rotated by 180�, and the fourth copy by
270�, corresponding to the four a values in Eqs. (15a)–(15d). We
can then number the trans minima from n = 1 to 8, and use har-
monic oscillator v = 0 vibrational functions in each of these minima
(as in Sections 6 and 7) as a basis set to set up an 8 � 8 tunneling
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matrix. To define the numbering of the minima in a group theoret-
ically unique way, we act with powers of a3cd in Table 9 on a bend-
ing-torsional function localized in trans minimum n = 1, occurring
at a = 0, b1 = b2 = +btrans � +2p/6 in Eq. (15a), to generate bending-
torsional functions localized in minima n = 3, 5, and 7, i.e.,
(a3cd)pjn = 1i = jn = 1 + 2pi for 0 6 p 6 3, or act in a similar way
on a bending-torsional function in trans minimum 2, occurring at
a = 0, b1 = b2 = �btrans � �2p/6 in Eq. (15a), to generate bending-
torsional functions in minima 4, 6, and 8. In addition, jn=2 i
a2jn=
1 i. This numbering scheme puts minima 1 and 2 from Eq. (15a) in
the first layer, minima 3 and 4 from Eq. (15b) in the second, etc.

The ‘‘nearest-neighbor’’ in-plane bending tunneling motions
take place within each layer, and can be represented as 1 M 2,
3 M 4, 5 M 6, and 7 M 8. These motions give rise to the tunneling
matrix elements 2H12 = 2H21 = 2H34 = 2H43 = 2H56 = 2H65 = 2H78 =
2H87 in the 8 � 8 Hamiltonian matrix shown in Fig. 6. It can be
shown by group theoretical arguments [24–26] that these tunnel-
ing elements all have the same magnitude and sign. (The factor of 2
is added to allow for the fact that there are two equivalent tunnel-
ing paths in Fig. 4, one going clockwise through one cis minimum,
the other going counterclockwise through the other cis minimum.)

There are four equivalent internal-rotation tunnelings from
minima 1 and 2 in the first layer to minima 3 and 4 in the second
layer, i.e., 1 M 3, 1 M 4, 2 M 3, and 2 M 4. Counting all four layers,
there are 32 equal (again by group theoretical arguments) matrix
elements H13 at appropriate positions in the Hamiltonian of
Fig. 6. Diagonalization of this matrix yields the eigenvectors shown
at the bottom of Fig. 6, and the energy levels

E btAþlg
� �

¼ E0 þ 2H12 þ 4H13

E btBþlg
� �

¼ E0 þ 2H12 � 4H13

E btEg
� �

¼ E0 � 2H12

E btE1
� �

¼ E0 þ 2H12

E btEþ
� �

¼ E0 � 2H12; ð31Þ

for the Gð8Þ4 symmetry species levels in Eq. (29). We expect both H12

and H13 to be negative in the ground vibrational state [26], so that
the eigenfunction for the lowest energy state has no nodes. The tun-
neling Hamiltonian matrix in Fig. 6 thus gives rise to five energy
levels, whose relative energies are functions of two tunneling
parameters: H12, which is associated with tunneling involving the
LAM local mode CACAH bends at each end of the molecule, and
H13, which is associated with internal rotation tunneling of the
two CAH groups about the CAC bond.

A similar treatment for the cis–cis tunneling problem yields en-
ergy levels

E btAþlg
� �

¼ E0 þ 2H12 þ 4H13

E btBþlg
� �

¼ E0 þ 2H12 � 4H13

E btEu
� �

¼ E0 � 2H12

E btE1
� �

¼ E0 þ 2H12

E btEþ
� �

¼ E0 � 2H12; ð32Þ

for the symmetry species in Eq. (30).

11.3. Tunneling splittings become tunneling staggerings upon
returning from Gð8Þ4 to the PI group G4

The derivation of tunneling staggering effects has two parts.
First, we set up and diagonalize an LAM tunneling matrix in a mul-
tivalued coordinate system, which is needed if we are to define the
LAM coordinates and their domain as symmetrically as possible for
the two equivalent halves of the molecule. All group-theoretical
considerations at this stage are performed using the extended PI
group Gð8Þ4 , as in Section 11.2.

Next we multiply the LAM tunneling wavefunctions by five
other factors, namely the three small amplitude vibrational (SAV)
wavefunctions, the electronic wavefunction, and the JKaKc asym-
metric-rotor wavefunction. Following this we discard any total
rovibronic product functions having Gð8Þ4 symmetry species that
do not transform according to single-valued representations of
the G4 PI group. It is this group-theoretical discarding process
(the subject of this section), that leads to the staggering. (To sim-
plify the logic in this section, we assume that the SAV and elec-
tronic wavefunctions are all totally symmetric, so that they can
be ignored. The full complexity of the symmetry of the total wave-
function will be dealt with in Sections 11.4 and 11.5.)

It is important to note that we are not discarding wavefunctions
because of the requirements of Bose–Einstein or Fermi–Dirac sta-
tistics (which can also lead to energy level staggering, as, for exam-
ple, in the K-doubling components of 1P states of O2). That
discarding is based on fundamental quantum mechanical assump-
tions concerning transformation properties of wavefunctions un-
der exchange of identical bosons or fermions. It is a separate
process that takes place after the discarding process of this section,
which is necessary only because of our choice of a multiple-valued
coordinate system and does not reflect any fundamental physics.

The symmetry species rC in Gð8Þ4 of the asymmetric rotor func-
tions JKaKc are (from Ref. [20] or Tables 9 and 10)

rCðJ4n;eÞ ¼ Aþ1g
rCðJ4n;oÞ ¼ A�2g

rCðJ4nþ2;eÞ ¼ Bþ1g

rCðJ4nþ2;oÞ ¼ B�2g

rCðJoe; JooÞ ¼ Eg ; ð33Þ

where we have converted from Wang function notation [20] to JKaKc

notation by noting that C2(c)jJ,K,Mi = C2(y)jJ,K,Mi = (�1)J�KjJ,
�K,Mi, so that C2(c)jJ,K±i = ±(�1)J�KjJ,K±i; Kc thus has the same par-
ity as ±(�1)J when K = even. These rotational species are the same in
the wells with a = 0 and p as in the wells with a = p/2 and 3p/2,
even though the b and c principal axes interchange when a in-
creases by p/2.

The product wavefunctions formed by multiplying the bending-
torsion wave functions by the rotational wavefunctions will have a
variety of Gð8Þ4 symmetry species, but we can only keep vibration-
rotation (total) wavefunctions that belong to single-valued
representations of G4, because: (i) any complete molecular wave-
function can always be expressed in terms of the laboratory-fixed
Cartesian coordinates of the atoms in the molecule; (ii) laboratory-
fixed Cartesian coordinates are a single-valued coordinate system,
and (iii) the Longuet–Higgins PI group is the correct group for
wavefunctions in such a coordinate system. (Note that any bend-
ing, torsional, or rotational factor by itself does not contain enough
information to locate the atoms in the laboratory, and we are
therefore not restricted to using the Longuet-Higgins PI group
when studying such ‘‘partial’’ wavefunctions.)

The multiplication table for Gð8Þ4 and the requirement that the
tunneling-rotational product function must belong to a single-val-
ued representation of G4 then lead, for trans acetylene in its ground
vibrational state, to the conclusions that: (i) Ka = 4n rotational
functions, with rC ¼ Aþ1g or A�2g, can only be associated with the

tunneling energy E btAþlg
� �

¼ E0 þ 2H12 þ 4H13; (ii) Ka = 4n + 2 rota-

tional functions, with rC ¼ Bþ1g or B�2g, can only be associated with

the tunneling energy E btBþlg
� �

¼ E0 þ 2H12 � 4H13; and (iii) Ka = odd

rotational functions, with rC = Eg, can only be associated with the
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tunneling energy E(btEg) = E0 � 2H12. This has the effect of discard-

ing 7/8 of the vibration-rotation wavefunctions from the Gð8Þ4 treat-
ment, which brings us back to a one-framework count of quantum
states. It has the further effect of introducing a staggering of the Ka

stacks of energy levels in trans acetylene, that divides them into
three categories according to the above rules. Two important
points should be mentioned, however. First, group theory alone
will not tell us the relative magnitudes of jH12j and jH13j, i.e., can-
not tell us whether the local-bend tunneling splittings are greater
or less than the internal rotation tunneling splittings. Thus, with-
out further modeling or some spectral fitting, we cannot predict
whether Ka = odd levels will be ‘‘staggered above’’ or ‘‘staggered
below’’ the Ka = 4n + 2 levels. All we can say is that in the ground
vibrational state the Ka = 4n levels should be ‘‘staggered below’’
the other two sets (in keeping with our assumption that the low-
est-energy wavefunction will be nodeless). Second, the KaKc = oe
and oo asymmetric rotor functions belong to the doubly degener-

ate representation rEg of Gð8Þ4 . These rEg functions must be combined
with the btEg tunneling component to form allowed tunneling-
rotational functions of species btrAþ1g and btrA�2g . It is almost certain
that cases will arise where the ‘‘group-theoretical splitting’’ associ-
ated with this btEg � rEg¼btrAþ1g 	 btrA�2g 	 btrBþ1g 	 btrB�2g product will
be large enough to influence in some way the apparent ‘‘asymme-
try doubling’’ of a given pair of Ka = odd levels (e.g., the Ka = 1 lev-
els). Thus, while the present extended group model clearly predicts
a staggering of Ka levels into three groups, working out the
finer details of this staggering will require a proper tunneling-
Hamiltonian treatment of levels with J > 0 [24–26].

The combination of bending-torsional and rotational functions
for cis acetylene is basically the same, except that rEg rotational
functions will combine with btEu bending-torsional functions to
give allowed btrBþ2u and btrB�1u rovibronic functions. Keeping only
single-valued representations of G4 introduces a very similar stag-
gering in the Ka stacks of the cis molecule.

11.4. Symmetry species in Gð8Þ4 of the S1 electronic state of acetylene

The S1 electronic state of acetylene is known to have the elec-
tron configuration p3

gpu and to transform as 1R�u ;
1Au or 1A2 when

the appropriate point group symmetry is D1h, C2h or C2v, respec-
tively. The correlations at the right of Table 10 show that these
C2h and C2v orbital species are consistent with four possible Gð8Þ4

symmetry species: A�1u; B�1u; E�, and E1. Since the S1 state is nonde-
generate even in the linear configuration, the existence of a partner
state seems unlikely, so we discard the two E possibilities. We now
show that it is possible to construct two types of electronic states
with the point-group correlation properties above, one of which is
A�1u in Gð8Þ4 , the other B�1u.

At this point it is necessary to define the ‘‘molecule-fixed’’ elec-
tronic coordinates. It seems reasonable to require that all electrons
be treated in the same way, since antisymmetrization require-
ments will eventually require exchanging electron coordinates.
The most obvious way to do that within the spirit of the present
treatment is to use the following equation

eRs ¼ Rþ S�1ðv; h;/Þers; ð34Þ

where eRs and ers represent, respectively, the laboratory-fixed and
molecule-fixed Cartesian coordinates of electron s, and R and
S�1(v,h,/) are defined as in Eq. (13), which deals with the LAM part
of the trans and cis acetylene problem when two local bends and
internal rotation are considered as LAMs. It turns out that this def-
inition for the molecule-fixed electron coordinates causes each set
of coordinates {eXs, eYs, eZs} to transform exactly like the molecule-
fixed components of the dipole moment operator {lx,ly,lz} in
Table 10.
For symmetry purposes, we approximate the molecular orbitals
by linear combinations of atomic orbitals (LCAOs), where the
atomic orbitals are expressed as atomic wavefunctions in spherical
coordinates with Condon and Shortley phase factors, i.e., in the
form Rnl(r)Ylm(h,/) [27,28]. An additional complication arises how-
ever, because we want the arguments in the atomic wavefunctions
to represent the polar coordinates of a vector from a given atom to
the electron, rather than from the origin to the electron. This can be
accomplished by defining the vector rsi from atom i = a, b, 1, 2 to
electron s as

rsi ¼ Sþ1ðv; h;/Þ½eRs � Ri� ¼ ers � ½aiða; b1; b2Þ þ di�: ð35Þ

It turns out that this definition for the rsi causes them to transform
exactly like the di in Table 9, including the replacement of i by j(i). It
is the polar coordinates {rsi,hsi,/si} associated with the vectors
rsi = (rsisinhsi cos/si)i + (rsi sinhsi sin/si)j + (rsi coshsi)k that will be
used as arguments in the atomic wavefunctions.

If the (unnormalized) pg and pu molecular orbitals for electron 1
are constructed only from 2p atomic orbitals on the carbon atoms a
and b, we can write (in Rnl(r)Ylm(h,/) notation)

pg�ð1Þ ¼ R2;1ðr1aÞY1;m¼�1ðh1a;/1aÞ � R2;1ðr1bÞY1;m¼�1ðh1b;/1bÞ
pu�ð1Þ ¼ R2;1ðr1aÞY1;m¼�1ðh1a;/1aÞ þ R2;1ðr1bÞY1;m¼�1ðh1b;/1bÞ: ð36Þ

These functions can be shown (after some algebra) to have the fol-
lowing transformation properties under the generators of the group
Gð8Þ4 in Eq. (17).

apg�ð1Þ ¼ ð�iÞpg�ð1Þ
bpg�ð1Þ ¼ þpg�ð1Þ
cpg�ð1Þ ¼ þpg�ð1Þ
dpg�ð1Þ ¼ �pg�ð1Þ
apu�ð1Þ ¼ ð�iÞpu�ð1Þ
bpu�ð1Þ ¼ �pu�ð1Þ
cpu�ð1Þ ¼ þpu�ð1Þ
dpu�ð1Þ ¼ �pu�ð1Þ: ð37Þ

We are now in a position to define the first of two possible elec-
tronic states correlating with 1Au and 1A2 in trans and cis bent acet-
ylene. For simplicity, we consider the two-electron configuration
pgpu, which is known [29] to give rise to the same final states as
the four electron configuration p3

gpu, and construct an (unnormal-
ized) two-electron wavefunction of the form

f½pgþð1Þpu�ð2Þ � pg�ð1Þpuþð2Þ� þ ½pgþð2Þpu�ð1Þ
� pg�ð2Þpuþð1Þ�gða1b2 � a2b1Þ: ð38Þ

This function is a singlet, since the two-electron spin function
(a1b2 � a2b1) is a singlet. It is also antisymmetric with respect to ex-
change of electrons 1 and 2, and transforms as B�1u in Table 10 under
the symmetry operations of Gð8Þ4 in Table 9.

Now consider the second possible wavefunction. In Eq. (36) the
/1a and /1b angles, describing rotation of electron 1 about the
CaACb bond are measured from the same zero. This corresponds,
for example, to keeping the 2px orbitals on the two carbon atoms
always ‘‘lined up’’ together. Instead we can require the 2px orbital
on Ca to be aligned with the H1ACaACb plane, and the 2px orbital on
Cb to be aligned with the CaACbAH2 plane. It then makes sense to
measure the / angles from these planes, rather than from a com-
mon origin. These two planes rotate in opposite direction as the
internal rotation angle a changes, and given the sense of rotation
defined in Eq. (14), it (again intuitively) makes sense to replace
/1a by /01a 
 /1a þ a and /1b by /01b 
 /1b � a. Consider thus a set
of alternative p orbitals (with 0 superscripts) defined by
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p0g�ð1Þ ¼ R2;1ðr1aÞY1;m¼�1 h1a;/
0
1a

� �
� R2;1ðr1bÞY1;m¼�1 h1b;/

0
1b

� �

¼ R2;1ðr1aÞY1;m¼�1ðh1a;/1aÞe�ia � R2;1ðr1bÞY1;m¼�1ðh1b;/1bÞe�ia

p0u�ð1Þ ¼ R2;1ðr1aÞY1;m¼�1 h1a;/
0
1a

� �
þ R2;1ðr1bÞY1;m¼�1ðh1b;/

0
1bÞ

¼ R2;1ðr1aÞY1;m¼�1ðh1a;/1aÞe�ia þ R2;1ðr1bÞY1;m¼�1ðh1b;/1bÞe�ia:

ð39Þ

These p0 orbitals give rise to an (unnormalized) two-electron wave-
function of the form

p0gþð1Þp0u�ð2Þ � p0g�ð1Þp0uþð2Þ
h in

þ p0gþð2Þp0u�ð1Þ � p0g�ð2Þp0uþð1Þ
h io

ða1b2 � a2b1Þ: ð40Þ

This function is again a singlet and is again antisymmetric with re-
spect to exchange of electrons 1 and 2, but transforms as A�1u in Gð8Þ4

under the symmetry operations of Table 9.
An unambiguous way to determine whether Eq. (38) or Eq. (40)

better describes the S1 electronic state of acetylene would be to fol-
low carefully how the phases of various coefficients in the LCAO-
type molecular orbitals change during an ab initio calculation
‘‘going around the circle’’ of Fig. 5. In the rest of this paper, we sim-
ply assume that the 2p orbitals on the carbon atoms maintain their
alignment with respect to each other during internal rotation,
rather than with respect to the CCH planes. This is equivalent to
assuming that the S1 electronic state has B�1u symmetry in Gð8Þ4 .

11.5. Normal mode vibrational coordinates and harmonic oscillator
functions localized in each of the eight minima of cis acetylene

Since the vibrational states considered in Section 12 both be-
long to cis acetylene, we consider the vibrational problem in detail
for the eight cis minima. (A treatment for the trans minima would
follow the same procedure with very slight modifications.) The
goal of this section is to obtain symmetrized coordinates approxi-
mating the normal modes for the vibrations in cis bent acetylene,
and then to construct harmonic-oscillator-like wavefunctions
localized in each cis minimum, which can be excited with a given
number of quanta, and which are suitable for use in a high-barrier
tunneling basis set.

Consider first (unnormalized) infinitesimal coordinates d for the
three small-amplitude (by hypothesis) stretching vibrations, de-
fined (for the purpose of symmetry considerations) by

dCC ¼ jRa � Rbj � Ro
CC

dss ¼ jR1 � Raj � Ro
CH þ jR2 � Rbj � Ro

CH

das ¼ jR1 � Raj � jR2 � Rbj; ð41Þ

where the Ri with i = a, b, 1, 2 are laboratory-fixed Cartesian coordi-
nates for the atoms, jRa � Rbj is the length of the vector Ra � Rb, the
Ro quantities are equilibrium bond lengths, and the subscripts ss
and as refer to the symmetric and asymmetric CH stretch, respec-
tively. It can easily be seen that dCC and dss are of species Aþ1g , and
das is of species Bþ2u in Gð8Þ4 . If we represent harmonic oscillator wave-
functions of the stretching variables d with vibrational quantum
number v by hv(d), then all such functions are of symmetry Aþ1g ex-
cept for hvas(das), which are of symmetry Bþ2u when vas is odd.

Consider next the two LAM in-plane bending angles b1 and b2,
with equilibrium values of ±bcis in the various cis minima of Eq.
(16). Even though these two variables are angles, they are not per-
mitted to take values outside the range �2p/3 6 b 6 +2p/3, so the
question of 2p periodicity does not arise. The species of {b1,b2} is E+

in Gð8Þ4 , which correlates with A1	 B2 in cis acetylene, but this cor-
relation is rather subtle, since b1 + b2 and b1 � b2 are of species B2

and A1, respectively, in the C2v point group containing the opera-
tions e, b, bcd, cd, as appropriate for the cis minima in Eqs. (16a)
and (16c), but they are of species A1 and B2, respectively, in the
C2v point group containing e, a2b, a2bc and c, as appropriate for
the cis minima in Eqs. (16b) and (16d). To help separate the differ-
ent types of vibrational functions, we use the symbol gv(x) for har-
monic oscillator wavefunctions of linear combinations of the b
variables. To maintain group-theoretically determined phase fac-
tors, we define the harmonic oscillator functions for the symmetric
bend (sb) and asymmetric bend (ab) only for framework 1 (as de-
fined in connection with Fig. 4) and generate the rest using opera-
tions from Gð8Þ4 , as indicated below.

j1bi ¼ gvsbðþb1 � b2 � 2bcisÞgvabðþb1 þ b2Þ
j2bi ¼ a2j1bi ¼ gvsbð�b1 þ b2 � 2bcisÞgvabð�b1 � b2Þ
j3bi ¼ a3cdj1bi ¼ gvsbð�b2 � b1 � 2bcisÞgvabð�b2 þ b1Þ
j4bi ¼ a3cdj2bi ¼ gvsbðþb2 þ b1 � 2bcisÞgvabðþb2 � b1Þ
j5bi ¼ ða3cdÞ2j1bi ¼ a2dj1bi ¼ gvsbð�b1 þ b2 � 2bcisÞgvabð�b1 � b2Þ
j6bi ¼ ða3cdÞ2j2bi ¼ a2dj2bi ¼ gvsbðþb1 � b2 � 2bcisÞgvabðþb1 þ b2Þ
j7bi ¼ ða3cdÞ3j1bi ¼ acj1bi ¼ gvsbðþb2 þ b1 � 2bcisÞgvabðþb2 � b1Þ
j8bi ¼ ða3cdÞ3j2bi ¼ acj2bi ¼ gvsbð�b2 � b1 � 2bcisÞgvabð�b2 þ b1Þ;

ð42Þ

where the subscript b is meant to imply that only bending coordi-
nates are present in these localized harmonic oscillator basis func-
tions. (The point of localization can be obtained by setting the
argument in gvsb = 0. For example, j6bi is centered at
+b1 � b2 � 2bcis = 0, i.e., at b1 = +bcis and b2 = �bcis.)

By applying the operations used in Eq. (42) to the matrix ele-
ment h1bjHj1bi, i.e., by considering a2h1bjHj1bi = h2bjHj2bi, etc., it
is possible to show that all eight diagonal elements are equal for
any pair of bending quantum numbers vsb and vab. Similarly, it is
possible to show by considering a3cdh1bjHj2bi = h3bjHj4bi, etc., that
the eight nearest neighbor bending tunneling matrix elements are
all equal. By applying the symmetry operations occurring in Eq.
(42) to the torsional tunneling matrix element h1bjHj3bi, we can
generate a set of eight equal matrix elements. By noting that the
nondegenerate harmonic oscillator wave function j1bi can be taken
to be real, which makes all of the jnbi real, we can take Hermitian
conjugates of the first eight equal matrix elements to obtain a total
of 16 equal matrix elements. We then note that

a2bj1bi ¼ gvsbðþb2 � b1 � 2bcisÞgvabðþb2 þ b1Þ ¼ ð�1Þvabj2bi
a2bj3bi ¼ gvsbð�b1 � b2 � 2bcisÞgvabð�b1 þ b2Þ ¼ ð�1Þvabj3bi; ð43Þ

where we have used the property of harmonic oscillator functions
that gv(�x) = (�1)vgv(x). Eq. (43) can be used to show that
a2bh1bjHj3bi = h2bjHj3bi, from which, applying the earlier proce-
dures, a total of 32 torsional tunneling matrix elements equal to
h1bjHj3bi are obtained, for any set of vsb and vab.

Consider finally the internal rotation angle a, which has 2p
periodicity. We use the notation fvt(a) to represent a harmonic-
oscillator-like wavefunction centered at a = 0, except that this
function, as defined in the interval �p 6 a 6 +p, must actually be
expressed as a Fourier series in cosna with integer n for even vt,
and as a Fourier series in sin na with integer n for odd vt, to insure
that it has 2p periodicity. The procedure illustrated in Eq. (42)
yields

j1ti ¼ j2ti ¼ fvtðaÞ
j3ti ¼ j4ti ¼ fvtða� p=2Þ
j5ti ¼ j6ti ¼ fvtða� pÞ
j7ti ¼ j8ti ¼ fvtða� 3p=2Þ: ð44Þ

Applying the operations in Eq. (42) to the matrix elements h1tjHj1ti,
h1tjHj2ti, and h1tjHj3ti we again generate three sets of eight ele-
ments equal to the original. Choosing j1ti to be real leads to
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h1tjHj3ti = h3tjHj1ti⁄ = h3tjHj1ti. The definitions in Eq. (44) indicate
that h1tjHj3ti = h2tjHj3ti. So we again obtain 32 matrix elements
equal to h1tjHj3ti.

As a consequence of the equalities obtained above, the Hamilto-
nian matrix set up in the basis set jni = jnbijnti, for n = 1–8, has the
form given in Fig. 6 for any set of values of the bending and tor-
sional harmonic oscillator quantum numbers. The numerical en-
tries in the eigenvectors in Fig. 6 and their associated energy
level expressions in Eq. (32) also remain unchanged. What does
change with vibrational excitation, however, is the symmetry spe-
cies C of these various eigenfunctions. Their species can be ob-
tained by acting with one element from each class of Gð8Þ4 on the
eigenfunctions, as illustrated by the following example for the
operation ab:

ðabÞ½c1j1i þ c2j2i þ c3j3i þ c4j4i þ c5j5i þ c6j6i þ c7j7i þ c8j8i�
¼ ð�1Þvabþvt ½c1j4i þ c2j3i þ c3j2i þ c4j1i þ c5j8i þ c6j7i
þ c7j6i þ c8j5i�; ð45Þ

where the eight coefficients ci represent the numerical entries in
one of the eigenvectors of Fig. 6, and where the (�1)vab+vt factor
arises, as in Eq. (43), because of sign changes in the harmonic oscil-
lator functions that occur when a transformed function is brought
back into one of the standard forms given in Eqs. (42) and (44). It
turns out there are four sets of bending torsional symmetry species
btC, depending on the (e)ven or (o)dd character of vab and vt.

btCðvabv t ¼ eeÞ ¼ Aþ1g 	 Bþ1g 	 Eu 	 E1 	 Eþ ð46aÞ
btCðvabv t ¼ eoÞ ¼ B�1u 	 A�1u 	 Eg 	 E1 	 E� ð46bÞ
btCðvabv t ¼ oeÞ ¼ Aþ2u 	 Bþ2u 	 Eg 	 E2 	 Eþ ð46cÞ
btCðvabv t ¼ ooÞ ¼ B�2g 	 A�2g 	 Eu 	 E2 	 E�; ð46dÞ

where the symmetry species are given in the same order as the
eigenvectors in Fig. 6, and where Eq. (46a) corresponds to the pre-
viously derived Eq. (30).

A corresponding set of equations for trans bent acetylene takes
the form

btCðvabv t ¼ eeÞ ¼ Aþ1g 	 Bþ1g 	 Eg 	 E1 	 Eþ ð47aÞ
btCðvabv t ¼ eoÞ ¼ B�1u 	 A�1u 	 Eu 	 E1 	 E� ð47bÞ
btCðvabv t ¼ oeÞ ¼ Aþ2u 	 Bþ2u 	 Eu 	 E2 	 Eþ ð47cÞ
btCðvabv t ¼ ooÞ ¼ B�2g 	 A�2g 	 Eg 	 E2 	 E�; ð47dÞ

where vab and vt again represent the number of quanta in the anti-
symmetric bend and in the torsion, respectively.

12. Application to specific vibrational states of S1–cis acetylene
12.1. The 3161 state of cis acetylene near 46 200 cm�1

The 3161 vibrational state of cis bent acetylene, near
46200 cm�1, has one quantum of excitation in m3 = msb and one in
m6 = mab. We thus take the tunneling splittings from Eq. (32) and
the bending-torsional symmetry species from Eq. (46c). We take
the electronic symmetry species to be B�1u from Section 11.3, so that
the vibronic species ebtC become

ebtCðvabv t ¼ oeÞ ¼ B�2g 	 A�2g 	 Eu 	 E2 	 E�: ð48Þ

Following the procedure in Section 11.3, we find that: (i) Ka = 4n
rotational wavefunctions are associated with ebtCðvabv t ¼ oeÞ ¼
ebtA�2g; (ii) Ka = 4n + 2 rotational functions are associated with
ebtB�2g; (iii) Ka = odd rotational functions are associated with ebtEu,
and (iv) no rotational functions are associated with ebtE2 and ebtE�,
so these two tunneling components ‘‘do not exist.’’
The observed spectrum [21] gives the separations between the
Ka = 0, 1 and 2 subbands, which can be expressed from the present
formalism (ignoring asymmetric rotor and centrifugal distortion
effects) as

EðJ ¼ 2;Ka ¼ 2Þ � EðJ ¼ 2;Ka ¼ 0Þ ¼ 4½A� ðBþ CÞ=2� þ 8H13

ð49aÞ
EðJ ¼ 2;Ka ¼ 1Þ � EðJ ¼ 2;Ka ¼ 0Þ ¼ ½A� ðBþ CÞ=2� þ 4H13 � 4H12:

ð49bÞ

For low-lying levels in trans acetylene, we could now have invoked
the rule that both H12 and H13 must be negative, to insure that the
lowest-energy wavefunction has no nodes, but these signs cannot
be deduced so simply for low-lying levels in cis acetylene. Fig. 5
indicates that the lowest (zero-point) level in cis bent acetylene
passes through a region that lies above the bottom of the trans well,
where the wavefunction oscillates and picks up some unknown
number of additional nodes. Since the tunneling components lie
at slightly different energies, and since the wavefunction carries
out many oscillations high above the bottom of the trans potential
well, it is conceivable that different tunneling components could
pick up different numbers of nodes. Arguments based on node
counts thus appear dangerous (at least in the absence of further
study), so the authors prefer to use the signs of the cis tunneling
parameters as adjustable parameters.

As it happens [21], the experimentally observed value of
E(K = 2) � E(K = 0) is almost the same as the ab initio value of
4[A � (B + C)/2], suggesting that H13 � 0, which is equivalent to
saying that the effects of internal rotation tunneling are too small
to be observed in the 3161 state. Setting H13 = 0 in Eqs. (49a) and
(49b) then leads to the conclusion that that the band origin differ-
ence E(K = 1) � E(K = 0) should be [A � (B + C)/2] - 4H12. The exper-
imental observations [21] give 4H12 = �3.9 cm�1. The fact that the
K = 1 level is seriously displaced from its expected position can
thus be understood in terms of the present theory, which then fur-
ther predicts (on the basis of the H12 and H13 values just deter-
mined) that the K = even levels of the cis 3161 state should
behave normally, but that all K = odd levels should be displaced
upward by about 3.9 cm�1 from their expected position. Unfortu-
nately, the experiments of Ref. [21] do not allow these higher K lev-
els to be observed, so that this theoretical prediction cannot be
tested.

The negative sign for H12 determined above happens to agree
with the sign that would be predicted if the energy differences in
Eq. (49) were for the ground vibrational state, and if the nodes
above the trans well could be ignored. Since the state in question
is not the ground vibrational state, a calculation similar to that pre-
sented in Eq. (7) of Ref. [30] must be carried out to determine how
the sign of H12 should change when one quantum is excited in each
of the two bends. Even this information would not be immediately
useful, however, since we cannot predict the sign of H12 in the
vibrational ground state of cis acetylene because of the node prob-
lem above the trans well.

12.2. The 41 state of cis acetylene near 45700 cm�1

The cis 41 vibrational state of acetylene, near 45700 cm�1, has
only one quantum of vibrational excitation in v4 = vt, so the bend-
ing-torsional symmetry species should be taken from Eq. (46b).
This leads to vibronic species of

ebtCðvabv t ¼ eoÞ ¼ Aþ1g 	 Bþ1g 	 Eu 	 E1 	 Eþ; ð50Þ

with Ka = 4n levels associated with ebtAþ1g ; Ka ¼ 4nþ 2 levels associ-
ated with ebtBþ1g , and Ka = odd levels associated with ebtEu. The inter-
vals for Ka = 0, 1, and 2 states then become
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EðJ ¼ 2;Ka ¼ 2Þ � EðJ ¼ 2;Ka ¼ 0Þ ¼ 4½A� ðBþ CÞ=2� � 8H13

ð51aÞ
EðJ ¼ 2;Ka ¼ 1Þ � EðJ ¼ 2;Ka ¼ 0Þ ¼ ½A� ðBþ CÞ=2� � 4H13 � 4H12:

ð51bÞ

Unfortunately only Ka = 0 and 2 levels have so far been observed for
the cis 41 state.

It might be expected that internal rotation tunneling effects,
represented by the parameter H13, would become large enough
to see when one quantum of torsion is excited, but experimentally,
the E(K = 2)–E(K = 0) splitting is only about 4 cm�1 larger than the
ab initio value of 4[A � (B + C)/2], so it is difficult to decide whether
tunneling effects or other small effects (e.g., centrifugal distortion)
are the cause. If torsional tunneling effects are just barely observa-
ble in 41, they should be clearly observable in 42, but this state has
not yet been identified.

13. Conclusions

This paper deals with the extended permutation-inversion
groups that are needed to classify the rovibronic states of electron-
ically-excited acetylene when large amplitude vibrational motions
allow the interconversion of three non-linear isomers, cis, trans
and vinylidene. It is assumed that there is always a large potential
maximum at the linear configuration, so that the complications
that arise when the a-axis rotation of a bent conformer becomes
a component of a degenerate vibration of the linear molecule are
not considered.

Specifically, we first consider the group theory for the intercon-
version of cis and trans isomers when the large amplitude vibra-
tions allowing the interconversion are assumed to be (i) local
CCH bends at the two ends of the molecule, (ii) internal rotation
or (iii) a combination of local CCH bends and internal rotation.
The PI group for these cases is always G4, but the extended PI
groups are Gð2Þ4 ; Gð2Þ4 , and Gð8Þ4 , respectively. After that we consider
the interconversion of cis and trans acetylene to vinylidene, where
the large amplitude vibrations are taken to be hydrogen migra-
tions, (iv) without or (v) with internal rotation. The PI group for
these cases is always G8, but the extended PI groups are Gð2Þ8 and
Gð8Þ8 , respectively. The group theoretical results indicate that there
will be no splittings of the rovibronic levels unless CH bond break-
ing occurs. Even with no bond breaking, however, states of the cis
and trans isomers just below their interconversion barrier will
show ‘‘staggerings’’ in their K-structures. A given vibrational level
will have three tunneling components, at different energies: one
component will have levels with K = 4n only (where n is an inte-
ger), a second component will have levels with K = 4n + 2 only,
and the third will have only odd-K levels.

The group theory mentioned above consists mainly of: (i) a
choice of large amplitude coordinates that capture the essence of
the feasible motions and their symmetries, (ii) explicitly defined
coordinate transformations for all elements of the molecular sym-
metry group, and (iii) character tables, which for the twofold and
eightfold extended PI groups contain one or seven limited identi-
ties, respectively.

The new experimental results for the S1–cis electronic state of
acetylene [21] are reviewed in the light of the group theory results,
and are found to be consistent with them in so far as comparisons
are possible.
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