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Abstract—We describe a stable method for calibrating digital
waveforms and eye diagrams by use of the measurement system
response function and its regularized inverse. The function de-
scribing the system response includes the response of the oscillo-
scope and any associated cables and test fixtures. We demonstrate
the effectiveness of the method by performing a statistical analysis
of the calculated eye height and eye width obtained from a con-
trolled experiment consisting of multiple cable lengths, bit rates,
and oscilloscope samplers. We also demonstrate our approach by
measuring the transmission through a test device consisting of a
short length of cable, a ball-grid array socket, and complicated
circuit board.

Index Terms—Deconvolution, de-embedding, eye diagram, eye
pattern, inverse problems, regularization.

I. INTRODUCTION

IN the radio and microwave frequency regime, components
are often fabricated on-wafer or are surface-mounted onto

printed circuit boards to reduce manufacturing costs and power
consumption, while increasing signal bandwidth and yield.
Measurements of these components invariably include probing
pads, vias, and interconnects to coaxial interfaces. In this case,
de-embedding techniques are required to remove the parasitics
from the raw measurements to extract the intrinsic device
properties. At high frequencies, techniques that make use of
frequency-domain scattering-parameter matrices are typically
employed, for example [1] and [2].

By contrast, embedded components for digital applications
are often characterized in the time domain. A common config-
uration uses a sampling oscilloscope to measure a bit sequence,
supplied by a pattern generator or on-board processor, and
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transmitted through a passive interconnect and/or test fixture.
The results of such a measurement are displayed in the form of
a sampled waveform or eye diagram [3]. As in the microwave
problem, de-embedding requires the removal of impedance
mismatches of the source and receiver (pattern generator and
oscilloscope), and insertion loss and mismatch of cables and/or
test fixtures. Additionally, data acquired on an oscilloscope
require corrections for the impulse response and timing errors
of the oscilloscope.

Mathematically, the de-embedding problem in both the mi-
crowave and the digital scenarios is the same; frequency domain
division of the measured signal by the system response func-
tion. However, the nature of the system response function for
the time-domain measurement is of a fundamentally different
character. This is because the bandwidths and dynamic ranges
required for high fidelity digital signal measurements can be
orders of magnitude larger than for typical microwave mea-
surements. Simultaneously, the response function for all oscil-
loscopes asymptotically exhibit a low-pass filter characteristic.
Therefore, recovery of the time-domain signal with good fi-
delity requires large amplification at some frequencies. Naively
de-embedding fixture loss and the response of the oscilloscope
by use of the simple division procedure can result in unaccept-
able amplification of measurement noise. Instead, regularized
deconvolution, which balances accuracy with noise amplifica-
tion, must be employed. In contrast to frequency-domain de-
embedding, only recently has there been an industry-wide effort
to investigate the accuracy of de-embedding techniques for
digital applications, for example, see [4].

In this paper, we propose a technique for de-embedding that
uses regularized deconvolution and is appropriate for measure-
ments made with equivalent-time sampling oscilloscope. We
quantitatively show how correction for timebase errors and de-
embedding through the use of regularized deconvolution can
yield stable signal reconstructions with increased eye height
and eye width margins. We validate the numerical algorithms
by varying the bit rate, cable length, and the type of oscillo-
scope sampler to quantify the reproducibility of the technique.
Our analysis provides two conclusions: 1) Signal impairments
arising from measurement configurations including cabling and
sampling oscilloscope can result in significant differences in
eye-diagram measurements, and 2) regularized de-embedding
with a stable parameter selector is capable of consistently
correcting for some of these impairments. We quantify both
claims by analysis of variance. Finally, we demonstrate the
use of the algorithms for a problem of practical interest, i.e.,

0018-9456/$26.00 © 2011 IEEE



476 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 1. Schematic diagram of the measurement apparatus. The synthesized
signal generator produces sine waves that are used to correct for jitter and
timebase distortion in the sampling oscilloscope.

characterization of the degradation of signals transmitted
through a ball-grid array socket and printed-circuit board.

II. DECONVOLUTION

In this section, we show how mismatch, loss, and instrument
response can be de-embedded by regularized deconvolution.
We consider an apparatus for generating a digital pattern and
transmitting the signal directly, or through a length of cable, to
a sampling oscilloscope, as is shown in Fig. 1.

When the oscilloscope is connected directly to the signal
generator, the signal measurement is distorted by impedance
mismatch and the finite response time of the sampler. When
the generator is connected to the oscilloscope through a lossy
cable or adapter, the signal measurement is further distorted by
frequency-dependent loss. Given the oscilloscope measurement
vs(t),1 we wish to solve for vg(t), the voltage the generator
would deliver to a 50 Ω load, uncorrupted by the effects of the
measurement system.

Following the exposition of [5], we model the ideal measure-
ment as a linear time-invariant system with noise. Therefore,
the measured voltage vs can be written as a convolution of the
system impulse response function h(t) with vg . That is

vs(t) =

∞∫
0

h(τ)vg(t − τ)dτ + n(t) (1)

where h is the impulse response function including, where
appropriate, contributions from loss and impedance mismatch.
See Appendix A (11), (17), and (20) for example. The problem
of solving for vg in (1) is the well-studied inverse problem
of deconvolution. Theoretical and practical aspects of solving
inverse problems are described in, for example, [6]–[9].

In practice, the oscilloscope samples the voltage at discrete
times tn = t0 + nΔt to obtain the measured waveform vector
vs = (vs(t0), . . . , vs(tN−1))T . We can then replace the contin-
uous convolution in (1) above with a discrete approximation.
We furthermore treat the convolution as if it were periodic.

1We denote the continuous time-domain functions by lower-case italics, e.g.,
v and h, the discretized representation of a function or measurement in bold
face, i.e., v, matrix operators as bold-face upper case, i.e., H, and their discrete
Fourier transforms (DFTs) with hats as v̂ and Ĥ.

Potentially, this is a nontrivial assumption, as described in [16].
After ensuring that the conditions for a periodic approximation
are met, we replace the integral equation of (1) by a matrix
equation

vs = Hvg + σn (2)

where the matrix H is circulant, the waveform vector vg is
periodic with period T, and the additive noise is assumed to
be uncorrelated and is represented as the product of a random
normal vector n, with unity standard deviation and the noise
standard deviation σ.

As H is circulant, it is diagonalized by the DFT. In the
frequency domain, the system (2) is equivalent to

v̂s = Ĥv̂g + σn̂ (3)

where Ĥ = diag(ĥ1, . . . , ĥN ) is the diagonal matrix of discrete
Fourier coefficients of the sampled response function, and
n̂ is the image of the noise vector n under the DFT. For
our impulse response functions, all entries |ĥn| �= 0, thus, Ĥ
is invertible by division by the Fourier coefficients; Ĥ−1 =
diag(ĥ−1

1 , . . . , ĥ−1
N ). More generally, one may always define

the least-squares solution to (3). However, while it is a theorem
that the least-squares inversion of (3) provides the minimum
variance unbiased estimator of v̂g , it is also well known that
this estimator is often unacceptable, as the operator H is ill-
conditioned (|ĥj | is small for some j) causing noise amplifi-
cation to dominate the inversion. This behavior is common in
inverse problems, and the usual solution is to introduce some
form of regularization into the inversion.

In this paper, we regularize by use of the Tikhonov
regularized inverse ([6]–[9]) along with truncation of the
Fourier expansion at 110 GHz (a limitation of our calibration
method, see Section III-A). Here, we summarize the Tikhonov
method. Given a penalty operator L and a scalar value λ, the
least-squares normal equations are replaced by a regularized
counterpart:

v̂g(λ) = (Ĥ∗Ĥ + λ2L̂∗L̂)−1Ĥ∗v̂s (4)

where Ĥ∗ is the complex conjugate transpose of Ĥ.
There are several ways of deriving (4) that highlight dif-

ferent interpretations, see [7]. One derivation is based on the
minimization of the functional ‖Hvg − vs‖2 subject to the
constraint that the solution vg is picked from the subspace for
which ‖Lvg‖2 is bounded. This leads to the minimization

min
{vg∈Rn}

{
‖Hvg − vs‖2 + λ2‖Lvg‖2

}
. (5)

In (4), prior information on the desired solution may be encoded
by the choice of L. For our problems, we expect that vg is
twice differentiable and use the roughness penalty, L = D2,
where D2 is the periodized second-difference operator. Alter-
natively one may use L = I corresponding to the less stringent
constraint that the solution has bounded norm. We have found
that the D2 choice gives better convergence for the problems
we encounter in the context of waveform metrology [5].

For a given system response operator H and penalty function
L, the Tikhonov equation (4) contains a free regularization
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parameter λ. Under one interpretation, λ provides a mech-
anism for balancing the variance/bias trade off. For λ = 0,
one observes that v̂g(0) is the least-squares solution, which is
unbiased but exhibits a high variance, i.e., the noise is often
unacceptably large. For large λ, the penalty term dominates
the denominator of (4), smoothing the estimate of vg . In the
limit λ → ∞, vg(λ) → 0 resulting in an estimator that is 100%
biased but exhibits zero variance.

For a regularization framework to be rigorous and repro-
ducible, it must state clearly the method by which one chooses
the value of λ. We call such methods selectors. The inverse
problems community has produced a diverse literature on var-
ious selectors but with little quantitative comparison until very
recently (see [8], [10], and [11]). The question of which selector
is best is very context specific. Early work in regularized
deconvolution applied to waveform metrology used subjective
methods for determining the regularization parameter, as in
[12] and [13]. Later work, such as [14], advocated a more
systematic approach. Absent detailed analysis of the selector,
in the appropriate context, the practitioner is left questioning
the regularization parameter choice, severely limiting the value
of de-embedding when applied to eye-pattern measurements.

Recently, [5] provided a preliminary quantitative analysis
demonstrating that the L-curve selector performs favorably in
the context of waveform metrology. The L-curve, so named
because of its resemblance to the letter “L,” is the graph of
(‖Hvg(λ) − vs‖, ‖Lvg(λ)‖) plotted on a log-log scale. These
norms are readily measurable and act as diagnostics of the
behavior of the inversion with respect to λ. By varying λ, either
norm can be minimized at the expense of the other. The L-curve
selector is heuristic, the idea being that the value of λ that “best”
balances the roughness (noise) against the residual (bias) is the
λ = λ∗ corresponding to the corner of the L-curve. The usual
definition of the corner, used here, is the point of maximum
convex curvature, although other definitions are described in
the literature, for example, see [15, pp. 110–111]. Detailed
descriptions and examples of the L-curve method are given in
[6], [8], and [16].

Because there are several other λ selectors whose perfor-
mance is yet to be quantified in the context of waveform
metrology problems, the best choice of selector is an issue of
continuing investigation. The performance of our selector and
our regularized deconvolution will be discussed in the context
at hand in Sections III-C and IV.

III. SIGNAL TRANSMITTED THROUGH LOSSY CABLES

We first investigate our ability to calibrate measurements of
a random bit sequence transmitted through a length of cable
and measured with a sampling oscilloscope. The calibration
removes the effects of cable loss, impedance mismatch, and
sampler response to obtain an estimate of the time-domain
waveform the generator would deliver to an ideal 50 Ω load.
We quantify the effectiveness of our waveform calibration by
use of a statistical analysis of the eye diagrams associated
with measurements made with varying cable lengths (losses)
and with samplers that have different response functions and
reflection coefficients.

A. Measurement Configuration and Calibration

The apparatus of Fig. 1 and our measurement procedures are
designed to correct for timebase errors and the measurement
system response. Although various techniques are available, we
use the National Institute of Standards and Technology (NIST)
timebase correction technique [17] to correct for jitter and
timebase distortion. The synthesized signal generator produces
a sine wave that is used as a clock for the pattern generator. This
signal is also fed into a 90-degree hybrid coupler that produces
quadrature sinusoids that are measured on channels 1 and 2 of
the sampling oscilloscope. The output of the pattern generator is
connected to the sampler in channel 3, either directly or through
cables, and is measured simultaneously with the sinusoids on
channels 1 and 2.

Because all of the samplers in the oscilloscope are activated
by the same trigger pulse and timebase, the timing errors in
all of the channels in the oscilloscope mainframe are nearly
identical. The NIST timebase correction software [18] uses
an orthogonal distance regression technique [19] to fit the
sinusoids and estimate the timing error in their measurement.
We then use this estimate to compensate for the timing error
(timebase distortion and jitter) in each sample of the signal of
interest (from the pattern generator).

To maximize the bandwidth of the calibrations, we dedicate
1.0 mm adapters to each of the oscilloscope samplers, cables,
and pattern generator, which originally had either 2.4 mm or
1.85 mm connectors. This provides a single-mode interface
up to 110 GHz. The response of the measurement system,
including the response of the oscilloscope samplers, impedance
mismatch, and cable loss, is calibrated up to 110 GHz by
use of the formulas derived in Appendix A. To fully calibrate
our measurements, it is necessary to consider such high fre-
quency (greater than 17 harmonics of our highest data rate
of 12.8 Gbit/s divided by two) because signal energy in our
averaged measurements is clearly visible above the noise level
at frequencies as high as 90 GHz to 100 GHz. However, the
system response above 110 GHz could not be calibrated, and
consequently v̂g was set to zero above 110 GHz as in [16]. This
is an acceptable approximation because the signal is smaller
than the noise at frequencies above 110 GHz in all cases studied
here.

The impulse response of each sampler was calibrated [20] by
use of a photodiode that had been characterized with NIST’s
electro-optic sampling system in 200 MHz increments to
110 GHz [21]–[25], and the absolute scaling was determined
by a swept sine technique [26]. The response and reflec-
tion coefficient of the oscilloscope were approximated on a
12.5 MHz frequency grid by linear interpolation of the
200 MHz data, which is a reasonable approximation because
of the smooth response of the samplers and the short elec-
trical length of the transmission lines from which they are
constructed. The scattering parameters of the cables were mea-
sured in 12.5 MHz increments up to 67 GHz [27]. The loss
of the cables at frequencies above 67 GHz was extrapolated
from the lower-frequency measurements by fitting S21 to a
model of the form (from [28]) S21 = exp(−Cf1/2 − iDf),
where C and D are real constants. The reflection coefficients
of the cables were assumed to be zero above 67 GHz. The
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Fig. 2. Response of samplers used in this study. Samplers #1–#3 are the same
as used in [16]. Sampler #4 is a newer model with about 90 GHz bandwidth.

approximations above 67 GHz are acceptable because the frac-
tion of the energy in the random bit sequence above 67 GHz is
very small (10−5). Deviations of the actual performance of the
components away from these simplifying assumptions would
have only second-order effects. Nonrepeatable variations, such
as those due to high-order modes, may appear as variations
between repeat measurements. Finally, to check for potentially
time varying source impedance, we measured the reflection
coefficient of the generator when set to the high and low states
and found essentially the same result for both settings.

All measurements were made with the pattern generator pro-
grammed to produce a 256-bit random sequence that contained
128 zeros and 128 ones with amplitude 0.5 V.

B. Data Acquisition

We measured the signal both directly and transmitted through
three coaxial cables of varying lengths at three bit rates
(3.2 Gbit/s, 6.4 Gbit/s, and 12.8 Gbit/s) by use of four different
samplers. The magnitude of the sampler response functions is
shown in Fig. 2. The three coaxial cables were designed for
mode-free transmission up to at least 50 GHz and had lengths
of 0.6096 m (24 in.), 1.524 m (60 in.), and 3.048 m (120 in.).
The loss of the cables at 50 GHz was 4.01 dB, 7.23 dB, and
13.07 dB, respectively.

The signal for each cable/bit rate/sampler combination was
initially sampled at N = 65, 536 = 216 points in an 80.4-ns
epoch by concatenating together eight groups of 8192 points,
each spanning nominally consecutive 10.05 ns epochs [17].
This gave us an average sample interval of 1.2 ps, while the
fastest 10% to 90% transition duration in our measurements was
approximately 12 ps.

After correction for timebase errors, the corrected epoch
duration (for our oscilloscope) was compressed slightly and the
time interval between samples was nonuniform. To facilitate
further signal processing, we linearly interpolated the corrected
waveform to N evenly spaced points in an 80.0 ns epoch
that was entirely inside the initially measured waveform. This
80.0 ns epoch corresponded to an integral number of periods of
our 256 bit pattern at each of the bit rates we considered. For
each cable/bit rate/sampler combination, we acquired a data set

consisting of 100 waveforms and, after interpolation, averaged
them to obtain the voltage waveform vector vs. We found that
the drift in the measurements was small and so we did not align
the 100 waveforms before averaging. The above measurement
procedure was repeated on three different dates. In total, we
measured 144 averaged waveform vectors vs corresponding to
3 dates, 4 samplers, 4 cable lengths, and 3 bit rates.

C. Results

Eye diagrams are a particularly convenient way to visualize
and quantify various features of long digital waveforms. We
constructed eye diagrams from each of the 80.0 ns waveform
vectors by use of the technique outlined in Appendix B.
Fig. 3 shows eye diagrams that are constructed after various
processing steps, demonstrating their effects. The plots give
time in terms of unit intervals on the x-axis and voltage on the
y-axis. Eye diagrams constructed from the averaged waveforms
measured with the 12.8 Gbit/s direct signal, sampler #1, without
and with correction for timebase errors are shown in Fig. 3(a)
and (b), respectively. The timebase error increases approxi-
mately linearly with increasing epoch duration, causing the near
closure of the eye diagram constructed from our waveform with
80.0 ns duration. Clearly, timebase errors must be addressed
when long waveforms are used.2

Next, the effects of sampler response, mismatch, and cable
loss are de-embedded by deconvolution of the appropriate
system response function as given by (11) or (17). For the
waveforms acquired with sampler #1 or with the other samplers
and the longer cables, regularization was necessary. For exam-
ple, Fig. 3(c) and (d) show the eye diagram after least squares
and regularized deconvolution of the same waveform used to
construct Fig. 3(b). However, we found that the curvature of
L-curves sometimes had multiple local maxima. In this case,
we chose the λ∗ corresponding to the rightmost L-curve corner,
as suggested by [29]. The effect of adding the 120 in cable to
the above measurement system and removal of its response is
shown in Fig. 3(e) and (f).

The eye diagram constructed from the waveform for direct
connection to the higher bandwidth sampler #2 is shown with
only timebase correction in Fig. 3(g) and after deconvolution
in Fig. 3(h). We observe that Fig. 3(d), (f), and (h) are visually
similar to each other, but different from the diagrams that have
not been corrected for the system response in Fig. 3(b) and (e),
and even with the high bandwidth sampler in the post-transition
regions as shown in Fig. 3(g).

In the cases of the higher bandwidth samplers (#2–#4), the
curvature of the L-curve had only a weak maximum and, mov-
ing to the left, a region of flat curvature, followed by possibly
multiple values of very high curvature at the lowest values of λ.
We speculate that the weak maximum and constant curvature
region may be due to the regularizing effect of the hard cutoff
at 110 GHz in the calibrated system response function. The
very large curvatures may be due to round-off error. Whatever

2We note that timebase correction options are available commercially and
may give comparable or better performance to our acquisition and timebase
correction procedure.
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Fig. 3. Plots show voltage on y-axis and time in terms of unit intervals on the x-axis. Eye diagrams at 12.8 Gbit/s were constructed from the (a) waveform as
measured with direct connection to sampler #1, (b) waveform shown in (a) corrected for timebase errors, (c) waveform shown in (b) with correction/deconvolution
of system response but without regularization, d) waveform shown in (b) with regularized deconvolution. Eye diagrams constructed from timebase corrected
waveform for transmission through the 120 in cable (e) without deconvolution and (f) with regularized deconvolution. Eye patterns constructed from timebase
corrected waveform for direct connection to sampler #2 (g) with only correction for timebase errors and (h) with regularized deconvolution. Timebase corrected
eye diagrams constructed from a typical 6.4 Gbit/s 256 bit signal transmitted through the the 60 in cable and the printed circuit board (discussed in Section IV)
are shown in (i) without correction for the system response and (j) with regularized deconvolution.

the cause of these features, it is clear that implementation of a
robust selector requires further study. A fruitful line of investi-
gation might be found in [11], where it was suggested that the
search space for λ be bounded. However, we ultimately found
in these cases that there was little difference between choosing
the λ corresponding to the weak maximum and setting λ = 0.

We next describe a detailed statistical analysis of the results
to determine if the calibration has a significant and consistent ef-
fect on the measurements. We note that the calibration corrects
for the response of the samplers and the mismatch and loss of
the different cables. Although the bit rate changes the contribu-
tion from these effects before calibration, lingering dependence
on bit rate after calibration may be explained by the intrinsic
properties of the pattern generator or calibration applied.

1) Normalized Eye Height: We calculate the eye height
from the central 20% of the eye diagram by use of the methods
described in [30]. We define the normalized eye height as
the measured eye height divided by the eye amplitude pro-
grammed into the pattern generator. We use analysis of variance
(ANOVA, see [31]) to investigate the effects of sampler, cable
length, and data rate on normalized eye height based on mea-
surements with and without calibration. We partition the total
sum of squares of deviation from the mean for un-calibrated eye
height data into individual sums of squares corresponding to the
main effects, two-factor interactions, three-factor interaction,
and measurement error. These sums of squares and other results
are summarized in the ANOVA table given in Table I. We use
A × B to designate the interaction between factors A and B.
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TABLE I
ANOVA TABLE FOR UN-CALIBRATED NORMALIZED EYE HEIGHT

Fig. 4. Interaction plot for cable length and bit rate.

The first, second, and third columns contain, respectively, the
name, the degrees of freedom, and mean sum of squares of each
effect, which is obtained by dividing the sum of squares by
its degrees of freedom. The F -value is the ratio of the effect’s
mean square to the mean square of measurement error. The last
column contains the p-value for each effect, which is the
probability of obtaining an F -value at least as extreme as the
one that was actually observed, given that the null hypothesis
is true [31]. The null hypothesis for sampler (the first row),
for example, is that sampler has no effect on eye height. The
smaller the p-value, the less likely the null hypothesis is true, or
more significant the effect is. A commonly used threshold for
p-value is 0.05. That is, we reject the null hypothesis and
conclude that the effect is significant if its p-value is less
than 0.05. Table I indicates that for normalized eye height all
the main effects, two-factor, and three-factor interactions are
significant.

A two-factor interaction, say, between cable length and
bit rate can be explained by use of Fig. 4, which plots eye
height versus bit rate at four different cable lengths for the
un-calibrated data. The calibrated data are also shown (empty
circles) and are shifted down by 0.05 to improve the presen-
tation. It is obvious from the plot that the effect of bit rate in
un-calibrated eye height is greater with 120-in cable than for
the direct connection (0-in cable). The interaction arises from
the differences in eye height due to change in bit rate for the
four cable lengths. These differences are significant relative to
measurement error. Because the main effect of a factor can be
individually interpreted only if there is no evidence that the fac-

TABLE II
ANOVA TABLE FOR CALIBRATED NORMALIZED EYE HEIGHT

Fig. 5. Plot of calibrated normalized eye height as a function of four samplers
(1 to 4), four cable lengths (0, 24, 60, 120 inches), and three bit rates (3.2,
6.4, 12.8 Gb). Error bars with flat heads indicate 95% confidence intervals
of the corrected data. Error bar with arrow heads is 95% confidence interval
of uncorrected measurement with no cable. Since the two error bars (with no
cable) do not everlap, the correction is significant even when the oscilloscope
is connected directly to the pattern generator.

tor interacts with other factors [31], we can draw no conclusion
on how different samplers, cable lengths, and bit rates affect eye
height by use of the un-calibrated measurements.

We next consider Table II, the ANOVA table based on
calibrated eye height. Since Table II shows no evidence of
interaction effects, we assume them to be zero and use a model
containing only the main effects to analyze the data.

Fig. 5 plots calibrated eye height versus sampler, cable
length, and bit rate. A 95% confidence interval for mean eye
height for each sampler, cable length, and bit rate is also shown
at the right side of the data. The confidence interval is based
on the variance calculated from the data within each individual
level.

Fig. 5 shows that the confidence intervals corresponding
to the four samplers overlap with each other, indicating that
after calibration, the sampler has no effect on eye height.
The graphical analysis of Fig. 5 is equivalent to the result
obtained from three separate one-way ANOVA on sampler,
cable length, and bit rate. The one-way ANOVA on sampler,
for example, produces a p-value of 0.05543 for sampler effect.
This marginally insignificant p-value is seen by the two barely
overlapping 95% confidence intervals of samplers 1 and 2.

The confidence interval corresponding to the 60-in cable
length does not overlap with the intervals of the other three
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Fig. 6. Plot of difference between mean normalized eye height with cal-
ibration (solid circles) and mean normalized eye height without calibration
(empty circles). Error bars are 95% confidence intervals of each factor while
the rightmost column shows 95% confidence intervals pooled over all factors.
Error bars for the calibrated data are too small to be visible on this scale but are
shown in Fig. 5.

cable lengths. Consequently, cable length is a significant effect
on eye height. However, if the seven smallest points from the
60-in column, which all have bit rate of 3.2 Gb, were removed
from consideration, then the effect of cable length would not be
significant at a 0.05 level. Fig. 5 also indicates that bit rate has
a significant effect on eye height.

We offer two possible explanations for the significant effect
of the bit rate on the eye height after calibration (right three
columns of Fig. 5). 1) Since the (normalized) eye height is a
function of the pattern generator calibration and software, it is
possible that the eye height that the generator produces is actu-
ally a function of the bit rate because of a calibration error in the
generator. For example, if the oscilloscope used for calibrating
the generator’s amplitude at the factory showed decreasing
response for higher data rates, a calibration factor would have
been applied that erroneously compensates by amplifying the
signal more for high data rates. 2) Eye height measurements are
based on the central 20% of the eye. As the bit rate decreases,
the low-frequency content of the eye pattern increases. Low-
frequency errors in the NIST oscilloscope calibration might
cause a systematic error in the measured eye height that is bit-
rate dependent. The low-frequency response of the oscilloscope
could be better estimated by use of a swept-sine technique, as
in [26]. Further investigation is required to determine the true
explanation for this observed trend.

Next, we investigate whether calibration produces a signif-
icant change on eye height. Fig. 6 plots the mean eye height
with calibration (solid circles) and without calibration (empty
circles) for each level of sampler, cable length, and bit rate. It is
apparent that the differences are substantial, both in magnitude
and in variation (notice the scale in y-axis compared with
the scale of the calibrated data shown in Fig. 5). Even in
the case where no cable is included between the generator
and the oscilloscope, the increase in eye height is significant
(see Fig. 5) The rightmost column of Fig. 6 displays the 95%
confidence intervals for mean eye height based on calibrated

TABLE III
ANOVA TABLE FOR UN-CALIBRATED NORMALIZED EYE WIDTH

TABLE IV
ANOVA TABLE FOR CALIBRATED NORMALIZED EYE WIDTH

and un-calibrated data. The separation of the two intervals
indicates that the eye height is significantly increased due to
calibration and the width of the confidence interval shows that
the calibrated eye height is more stable than the un-calibrated
eye height. From Figs. 5 and 6, we conclude that we have
effectively and consistently removed the impairments on the
measurement that are produced by cable loss and sampler
response.

2) Normalized Eye Width: Next, we carry out the same
analysis for normalized eye width, which we define as the eye
width divided by the nominal bit period. We calculate the eye
width by use of samples whose voltages are within ±2% of the
crossing level (relative to the eye height) [30]. The analysis-
of-variance table based on the un-calibrated data is given in
Table III. Again, because the sampler, cable, and data rate
interact with each other, we make no statement about the effects
of each factor.

The analysis-of-variance table based on calibrated normal-
ized eye width is given in Table IV. Since there is no evidence
of interaction effects, we again examine each factor separately.
Based on Figs. 7 and 8, we draw the following conclusions:

1) After calibration, sampler and cable length have no effect
on normalized eye width.

2) The calibration increases the normalized eye width. The
increase, averaging over different samplers, cable lengths,
and bit rates, is significant.

Because the dependence on sampler and cable length has
been removed, the remaining significant dependence on bit rate
(shown clearly in the right three columns of Fig. 7) may be
attributable to the intrinsic properties of the pattern generator.
Because the normalized eye width is given by (T − 6σj)/T ,
where T is the bit period and σj is the jitter standard deviation,
the decreasing trend in the last three columns of Fig. 7 might
be explained by a roughly fixed generator jitter contribution
(between 0.8 ps and 1.0 ps), while the the bit period decreases
by a factor of four.
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Fig. 7. Plot of calibrated normalized eye width as a function of four samplers
(1 to 4), four cable lengths (0, 24, 60, 120 inches), and three bit rates (3.2,
6.4, 12.8 Gb). Error bars with flat heads indicate 95% confidence intervals
of the corrected data. Error bar with arrow heads is 95% confidence interval
of uncorrected measurement with no cable. Since the two error bars (with no
cable) do everlap, the correction does not have a significant effect on normalized
eye width when the oscilloscope is connected directly to the pattern generator.

Fig. 8. Plot of difference between mean normalized eye width with calibration
(solid circles, dashed error bars) and mean normalized eye width without
calibration (empty circles, solid error bars). Error bars are 95% confidence
intervals of each factor while the rightmost column shows 95% confidence
intervals pooled over all factors.

IV. SIGNAL TRANSMITTED THROUGH A

PRINTED CIRCUIT BOARD

Our second experiment was to characterize the transmission
of a digital pattern through a complicated test structure that
included short cables, a ball-grid array socket, and three dif-
ferent lanes (traces) of a printed circuit board. The goal of
this experiment is to see if calibration removes the effects of
sampler response, mismatch, and cable loss from the measured
transmission of a device of practical interest. To be clear,
we characterize transmission through the printed circuit board
lanes and do not remove/de-embed distortions due to their
presence. Thus, the measurand is the signal vg convolved with
the loss of the structure under test, as discussed in Appendix A.

We conducted transmission measurements of three lanes
which were roughly 6 to 12 inches in length, at two bit rates
(3.2 Gbit/s and 6.4 Gbit/s), three word lengths (32 bits, 128 bits,
and 256 bits), two different cable lengths, and three differ-
ent samplers. Because of time limitations, we measured only
24 of the possible 108 combinations. For these experiments,
the pattern generator produced random sequences with ampli-
tude 0.7 V. Data were acquired, corrected for timebase errors,
interpolated to an 80.0 ns epoch, and averaged as before. The
measurement was then calibrated (de-embedded, deconvolved)
by use of the system response function given in (20) or (23) of
Appendix A and the regularization techniques of Section II.

Example eye diagrams for a 6.4 Gbit/s measurement with
the 60 in cable and printed circuit board are shown in Fig. 3(i)
with timebase correction only, and in Fig. 3(j) after regularized
deconvolution of the system response. Notice that although the
eye opening is much smaller than in Fig. 3(d), (f), and (h), the
effect of calibration is still quite noticeable.

We next proceed to a statistical analysis of the effect of
calibration on the measurement of eye height and width. Note
that we wish to test for significant changes in the eye height
or eye width due to calibration. However, we expect that
transmission through the PCB lanes with different reflections
and frequency dependent loss will strongly depend on bit rate
and word length so the factors lane, bit rate, and word length
may remain significant after calibration.

A. Normalized Eye Height

The analysis-of-variance table for calibrated eye height and
width is given in Table V. Because there are no repeated
measurements, the F -statistic-based significance tests cannot
be performed. For eye height data, we assume that all the inter-
action effects are negligible, which is a reasonable assumption
given that the mean squares (column 3) corresponding to the
interaction effects are relatively smaller than the mean squares
of the main effects, so we can examine the effect of each factor
individually. Based on the rightmost column of Fig. 9, showing
95% confidence intervals based on all 24 measurements, the
calibration increases the eye height and the increase is signif-
icant. Also, bit rate appears to have significant effect on eye
height, presumably due to the intrinsic properties of the lossy
lanes. However, due to the small number of measurements, the
error bars in some factors may not be too meaningful and a
more extensive study, preferably with repeated measurements,
is needed to make further conclusions regarding individual
factors.

B. Normalized Eye Width

We assume that all the interaction effects for eye width are
negligible, which is based on the fact that the mean squares
(column 4 of Table V) corresponding to the interaction effects
are relatively smaller than the mean squares of the main effects.
From Fig. 10, we conclude that the calibration increases the
eye width. However, the increase, averaging over different
samplers, cable lengths, bit rates, lanes, and word lengths, is
not significant. Again, the error bars in some factors may not be
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TABLE V
ANOVA TABLE FOR TRANSMISSION THROUGH PRINTED CIRCUIT

BOARD: CALIBRATED NORMALIZED EYE HEIGHT AND

NORMALIZED EYE WIDTH

Fig. 9. Plot of difference between mean normalized eye height for printed
circuit board with calibration (solid circles, dashed error bars) and mean
normalized eye height without calibration (empty circles, solid error bars).
Error bars are 95% confidence intervals of each factor while the right-most
column shows 95% confidence intervals pooled over all factors.

too meaningful, and a more extensive study is needed to make
conclusions regarding individual factors.

V. CONCLUSION

Software for de-embedding measurement mismatch, loss,
and sampler response from eye diagram measurements is
available for real-time and equivalent-time oscilloscopes from
most manufacturers. The accuracy of the de-embedded results
depends on the noise and timing accuracy of the measurements,
the accuracy of the system response employed for deconvo-
lution, and the manner in which the deconvolution noise am-
plification is controlled (regularized). In commercial systems,
the regularization framework varies from platform to platform.
In some cases, the regularization parameter (or its equivalent)
can be arbitrarily adjusted by the user. These variations can
have a significant effect on the de-embedded waveform. As an
example, changes in a de-embedded waveform can clearly be
observed while manually adjusting the cutoff frequency used
for de-embedding about one meter of cable. Without a well-
defined regularization framework (e.g., Tikhonov, truncation,

Fig. 10. Plot of difference between mean normalized eye width for printed
circuit board with calibration (solid circles, dashed error bars) and mean
normalized eye width without calibration (empty circles, solid error bars). Error
bars are 95% confidence intervals of each factor while the rightmost column
shows 95% confidence intervals pooled over all factors.

etc.) and a regularization parameter selector (or its equivalent),
it is unlikely that de-embedded measurements will be repeat-
able between measurement platforms, regardless of the quality
of the system response data.

In this paper, we proposed the Tikhonov regularization strat-
egy with the L-curve regularization parameter selector and used
these procedures to de-embed digital waveform measurement
distortions caused by cable loss, mismatch, and sampler re-
sponse. We applied traceable measurements to construct a sys-
tem response function over a broad range of loss, mismatch, and
oscilloscope response functions and de-embedded their effect
from the measurements. We found that our previous L-curve
selector ([5], [16]) needed to be modified to accommodate
multiple curvature maxima. Use of the largest λ corresponding
to a maximum gave consistent results. We also found that in
some cases with high bandwidth and low noise, the curvature
maximum was very weak. In these cases, a minimum bound for
λ may be useful, as suggested in [11].

We have noticed it commonly said, after visual inspection,
that the de-embedded waveform appears “improved,” implying
that it is more accurate. We maintain that improvement of
any observable waveform parameter (e.g., eye height, transition
duration, eye width) is not necessary for an accurate result.
For example, the transition duration of a digital waveform can
be made almost arbitrarily small by application of the wrong
system response function. We have also seen examples where a
more closed eye is the more correct result. Accuracy can only be
validated by a careful uncertainty analysis of the deconvolution
algorithms and the estimated system response.

We used a statistical analysis of eye height and width to
demonstrate that 1) distortions due to the measurement sys-
tem were significant (even in the case where no cables were
included) and 2) the corrections of the various measurements
were consistent in the generator/oscilloscope configurations
considered in this work. De-embedding resulted in an increase
in eye height that was significant at the 95% confidence level.
In the experiment with losses added by cables only, we showed
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significantly increased eye width. In the measurement of the
eye of the signal transmitted through the printed circuit boards,
we observed noticeable, but not significant, increase in the eye
width. Because our results are consistent for various system
response functions, we are confident that our numerical algo-
rithms are behaving as designed. All the measurements that we
used to construct our system response function were traceable
to fundamental physical principles ([17], [21]–[27]), thus we
are confident that our de-embedded waveforms are accurate.

As next steps, the robustness of the L-curve, and other
λ selectors, with respect to varying noise levels should be
investigated. Also, the uncertainties in our system response
function should be propagated through to the de-embedded
waveform to quantify the accuracy of our waveforms. These
system response uncertainties are correlated, and the correla-
tions must be accounted for to accurately estimate the time and
magnitude of the expected clumps of uncertainty. However, the
covariance matrix-based methods used in [16], [24], and [25]
become impractical when the number N of elements of the
waveform vector becomes large, because the covariance matrix
scales as N2. We are working on methods to reduce the amount
of data required to adequately account for possible long-time
correlations arising in our waveform measurements. The scaled
Jacobian method of [32] is one possible approach. Finally, the
extent to which our digital signal measurements are effected by
sampler nonlinearity and source impedance nonlinearity should
be investigated.

APPENDIX A
SYSTEM RESPONSE FUNCTION

A. Microwave Circuit Theory Preliminaries and Direct
Connection Between a Signal Generator and the Oscilloscope

We start with an abbreviated version of the background
provided in [24]. The complex power-normalized (frequency-
domain) forward and backward wave amplitudes3a and b nor-
malized to a 50 Ω reference impedance are commonly used in
place of voltages and currents at microwave frequencies [33].

When the system is time invariant and linear, the circuit dia-
gram in Fig. 11 can be applied (see [24] for details). The gener-
ator can be described by its forward-wave source amplitude bg

and its reflection coefficient Γg . Conversions between the wave-
based representation and the Thevenin and Norton equivalent
circuits can be found in [21], [34], and [35]. The oscilloscope
on the right-hand side of Fig. 11 can be characterized by its
reflection coefficient Γs and its frequency response function
i.e., the Fourier transform ĥ0 of its impulse response h0(t).
Generally, ĥ0 is designed to behave as a low-pass filter.

For quasi-TEM guides with a suitable choice of voltage
path, we can express the complex voltage amplitude v̂g of the
“forward voltage wave” associated with the wave amplitude bg

in Fig. 11 as [24], [33]

v̂g = bg

√
50 Ω. (6)

3As there is no risk of confusing time- and frequency-domain representations
of the a and b waves, power, and scattering parameters, we neglect the hats on
these quantities to simplify our presentation.

Fig. 11. Schematic diagram showing a signal generator connected directly to
an oscilloscope and the quantities of interest (defined in text). The junction
between the devices is represented as a dotted line.

The square root of 50 Ω converts the power-normalized wave
amplitude bg to a voltage. The voltage v̂g is the voltage ampli-
tude that the generator would produce across a perfect 50 Ω
load. The relation between the voltage v̂s that the oscilloscope
measures (on its display or in a stored data file) and the wave
as = ĥ0b2 is

v̂s = as

√
50 Ω. (7)

The voltage v̂g should not be confused with the total voltage
at the generator’s output port when the impedance of the
oscilloscope is not equal to 50 Ω. This is because the voltage
at the output of the source depends on the impedance of the
load connected to it. Measurement accuracy can be improved,
particularly at high frequencies, by accounting for the imperfect
impedances of the generator, oscilloscope, and device under test
with a “mismatch correction.”

Now, we can relate the generated signal to the voltage
measured by the oscilloscope. The wave amplitudes at junction
between the generator and the oscilloscope are given by [34]

a1 = bg + Γgb1 (8)

a2 = Γsb2. (9)

Since the generator and oscilloscope are connected directly
together, the waves are continuous across the junction, and we
have a1 = b2 and b1 = a2. Combining equations (6)–(9), we
obtain

v̂g = ĥ−1
A v̂s (10)

where we define the system response function ĥA when the
generator and oscilloscope are directly connected as

ĥA = ĥ0(1 − ΓsΓg)−1. (11)

Notice that (10) is written in terms of an estimated input
function on the left-hand side and, on the right-hand side, an
inverse system response function operating on a measurement,
and should be compared with the frequency by frequency
expansion of the inverse of (3).

B. De-Embedding Measurements That Include One Adapter,
Cable, or Other Two-Port Connection

We next show how a device D connected between the gener-
ator and oscilloscope alters the signal and how its effects can be
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Fig. 12. Schematic diagram showing a signal generator connected to an
oscilloscope through a device under test D. The device is characterized by the
its scattering matrix or it cascade matrix TD . The generator and oscilloscope
can also be connected to the device through cables/test fixtures A and B that
are characterized by the cascade matrices TA and TB .

de-embedded. Referring to Fig. 12, we can relate the measured
signal to the desired signal by use of the cascade matrix T ,
defined as

TD =
1

S21

(
−Δ S11

−S22 1

)
(12)

where

Δ = S11S22 − S12S21 (13)

and Sij are the S-parameters of the device D. We then relate
the waves at the generator port to the waves at the oscilloscope
port using the cascade matrix,(

b1

a1

)
= TD

(
a2

b2

)
. (14)

Using (8) and (9), we obtain(
b1

bg + Γgb1

)
= ĥ−1

0 TD

(
Γs

1

)
as. (15)

Finally, using (12) and eliminating b1 from (15), we obtain

v̂g = ĥ−1
B v̂s (16)

where

ĥB = ĥ0S21(1 − S22Γs − S11Γg + ΓsΓgΔ)−1. (17)

C. Transmission Through a Lossy Device

Here, we want to solve for the effect of a lossy device D on
the transmitted signal when Γs = Γg = 0. Rewriting (16) and
(17), we see that the transmitted wave is given by

S21v̂g = ĥ−1
0 v̂s. (18)

In a typical measurement, Γs, Γg �= 0. However, we still want
to solve for the wave that would be transmitted through D if it
were connected to an ideal generator and load; that is, we want
to solve for S21v̂g. In this case, (18) becomes

S21v̂g = ĥ−1
C v̂s (19)

where

ĥC = ĥ0(1 − S22Γs − S11Γg + ΓsΓgΔ)−1. (20)

The form of (19) warrants some discussion. First, S21 is
shown explicitly as part of the unknown S21v̂g but is also

included in the system response function ĥC . That is, we
must measure S21 to calibrate our measurement of the signal
transmitted through D. Why do we not measure S21, multiply
by a reasonable model for the generator signal, inverse DFT,
and be done with the problem? We take the approach that
a direct measurement of the waveform does not require any
approximations or assumptions regarding the generator wave-
form and can therefore give a more accurate estimate of the
transmitted waveform.

Also, various approximations could be made to reduce the
number of multipath terms in (20). However, measurements of
the device’s S-parameters would typically be required to judge
the validity of the approximation, perhaps canceling any benefit
from the approximations. We found that in the cases studied
here, the multipath term in (20) and in (23) had negligible
effect on the measured eye height and width. We caution the
reader that these are not general results and that approximations
regarding the multipath effects should be attempted only after a
careful, contextual study of the measurement system and device
under test.

Finally, the signal S21v̂g transmitted by D changes when v̂g

is changed, for example, by using a different generator. One
might consider calculation of the transmission of a standardized
voltage source V̂S , as a way to obtain consistent measurements
with different generators. This might be accomplished by mea-
suring the Fourier transform v̂g of the generator waveform
independently of the transmission measurement. The new stan-
dardized waveform is given by (S21v̂g)(V̂S/v̂g), where V̂S is
the Fourier transform of the waveform produced by the standard
generator. However, we expect that this naive approach will be
unstable in some cases because of zeros in the spectrum of v̂g.
Duty cycle distortion in either the desired or actual generator
may further complicate the problem. In this paper, we assume
that the source is fixed and approximates an ideal generator.
WE may, in a later work, consider regularized transformation
to calculate the transmitted waveform when different or non-
standard generators are utilized.

D. Device Embedded Between Two Test Fixtures

We now refer to the lower part of Fig. 12. Proceeding as in
the previous section, we write

(
b1

bg + Γgb1

)
=

ĥ−1
0

S21
TAT ′

DT B

(
Γs

1

)
as (21)

where

T ′
D = S21TD.

We make the substitution
(

P
Q

)
= TAT ′

DT B

(
Γs

1

)

and solve (21) for the response of device D in a lossless,
impedance-matched measurement system:

S21v̂g = ĥ−1
D v̂s (22)
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where

ĥD = ĥ0(Q − ΓgP )−1. (23)

As in the previous section, exact calculation of the transmit-
ted waveform requires inclusion of all four S-parameters in T ′

D.

APPENDIX B
CONSTRUCTING AN EYE DIAGRAM FROM A WAVEFORM

The waveform vectors vs and vg contain one or more
256-bit words and are measured in an 80 ns epoch. We use these
waveforms to construct eye diagrams which, in turn, are used to
calculate the parameters eye height, jitter, and eye width by the
procedures described in [30]. We construct an eye diagram by
mapping each bit from the parent waveform into a time interval
(t0, t0 + Ψ), for Ψ ≥ T , where T is the bit period. That is, if the
waveform is represented by the set of ordered pairs (tn, vn),
the eye waveform is represented by the set of ordered pairs
(ψn, vn), where

tn ≡ ψn(mod Ψ) − Ψ0 (24)

and Ψ0 is used to center the eye.
There is an implicit assumption that an eye is periodic on

average, that is, an eye that spans one bit period is equivalent
to an eye that is shifted in time by ±T . For example, if a
sampling oscilloscope is used to acquire an eye diagram, and
the displayed time interval is greater than 2T , two eyes will be
displayed. We expect that eye parameters extracted from each
displayed eye would be indistinguishable. However, when we
construct an eye from a sequential waveform that spans only a
small number of bits and use Ψ > T , the eye does not appear to
be periodic. Furthermore, it is impossible to estimate the width
of an eye diagram that spans exactly one bit period without
assuming that the eye waveform at time ψ is equivalent to the
eye waveform at time ψ ± T . Therefore, we must synthesize
an eye diagram with duration longer than T while enforcing
periodicity and using only the small amount of data we have.
We must also choose Ψ0 to center the eye in this extended
eye waveform epoch. For our application, we extend the eye
from the original eye with ψ ∈ [0, T ) to ψ′ ∈ (−T/4, 5T/4)
and find an acceptable value of Ψ0 that places the leftmost eye
level crossing instant approximately at ψ′ = 0 by use of the
following iterative procedure:

1) Do.
2) Let Ψ0 = −T/4.
3) Map the waveform to an eye diagram E0 = {(ψn, vn)}

by use of (24) above with Ψ = T .
4) Find all ordered pairs in E0 where 0 ≤ ψj < T/4, and

create copy of these pairs right shifted by one period:
E+ = {(ψj + T, vj)}.

5) Find all ordered pairs in E0 where 3T/4 ≤ ψk < T , and
create copy of these pairs left shifted by one period: E− =
{(ψk − T, vk)}.

6) The extended eye is now the sum of the sets E0, E+,
and E−.

7) Calculate left and right level crossing times tL and tR.

8) Ψ0 = Ψ0 + δT .
9) Loop until (−ΔT < tL < ΔT and T − ΔT < tR <

T + ΔT ).
We use δT = 0.025T and ΔT = 0.05T . In some high jitter

cases, it may be advisable to extend the eye diagram to the time
interval ψ′ ∈ (−T/2, 3T/2).
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