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a b s t r a c t

The high-resolution infrared spectrum of C2Hþ3 recorded in the 3l CH stretching region (J. Phys. Chem. 99
(1995) 15611–15623) is re-analyzed using an effective internal axis method (IAM) Hamiltonian to
account for tunneling splittings associated with the large amplitude hydrogen migration motion. The line
position analysis carried out with this approach allows us to fit 63% of the data with a standard deviation
of 0.05 cm�1, using eight parameters, including the band center, five semi-rigid-rotor spectroscopic con-
stants, and two parameters describing the magnitude of the tunneling splitting and its rotational depen-
dence. The rotational dependence of the observed tunneling splittings is described by an angular offset h,
which can also be calculated theoretically from ab initio equilibrium and transition-state structures
already in the literature. The agreement between fitted and calculated values of h, as well as agreement
with the value determined from a previous treatment of splittings in the vibrational ground state, gives
strong support for the validity of the model. Additional support is provided by the barrier height of
1488 cm�1 determined here from the ground state splittings, which agrees well with an ab initio estimate
of 1300 ± 450 cm�1. The principal problem in the present treatment of the infrared data is the fact that
observed minus calculated residuals for 37% of the assigned lines are greater than 0.05 cm�1. This is
believed to be due to random perturbations by dark states.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction inversion group theoretical thought, to the internal rotation of an
Although the 3l infrared spectrum [1,2] and the sub-millime-
ter-wave spectrum [3,4] of the vibrational ground state of proton-
ated acetylene C2Hþ3 were observed and analyzed some time ago,
with help from a variety of theoretical papers [5–10] stimulated
by these observations, unanswered questions concerning the
hydrogen migration motion in this ion remain. In this paper we re-
visit the treatment of tunneling splittings associated with this
large-amplitude motion (LAM) using an existing high-barrier tun-
neling Hamiltonian [9,10], in an attempt to evaluate that Hamilto-
nian’s level of success for the ground and one fundamental
vibrational state of C2Hþ3 , and to suggest new experimental mea-
surements which could increase our knowledge of the C2Hþ3 energy
levels and the hydrogen migration motion.

The LAM of interest here is one in which the three H atoms ro-
tate around the C–C core. Pictorial representations of this LAM can
be found in Fig. 2 of Ref. [5] and Fig. 1 of Ref. [9], both of which re-
flect two theoretical assumptions on the hydrogen trajectories,
namely that: (i) all five atoms remain in a plane during the LAM,
and (ii) the H atoms do not overtake each other. Fig. 3 of Ref. [9]
indicates that this LAM can be topologically reduced, for simplicity
of classical mechanical, quantum mechanical, and permutation-
ll rights reserved.

.

equilateral triangle of H atoms about a stick connecting the two
C atoms.

Theoretical discussions in the literature can be divided into two
groups. The ground-state sub-mm measurements were first
understood qualitatively and explained semi-quantitatively by
theoretical works [5–8] based on solving the large-amplitude
migration-rotation problem on an ab initio potential surface, which
turned out to have six equivalent potential minima separated by
relatively high potential barriers. In particular, Ref. [6] presents
the minimum energy path from the classical to the non-classical
configuration, as calculated by several ab initio methods, under
the assumption that the molecule remains planar along the path.
Ref. [7] then uses the CAS SCF path determined in Ref. [6] to pre-
dict, without experimental input, the rotational energy levels and
internal-rotation tunneling splittings expected in the ground vibra-
tional state.

Solving Schrödinger’s equation for motion on a potential surface
is certainly the method of choice in principle, but computational
limitations often prevent prediction of spectral line positions with
residuals comparable to experimental measurement precision. We
thus focus here on a phenomenological high-barrier tunneling
Hamiltonian method [9–12], summarized briefly in Section 2, which
does not require explicit knowledge of the potential energy sur-
face, but which is often capable of spectral fits to experimental accu-
racy. It should be noted, however, that such a phenomenological
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Hamiltonian, in contrast to the methods [5–8] described in the
preceding paragraph, has no predictive power until its parameters
have been determined by a least squares fit of some set of mea-
sured and assigned experimental data. Furthermore, the phenom-
enological Hamiltonian [9–12] used here will only work well for
an isolated vibrational state, i.e., a state not suffering from external
perturbations.

Although historically the infrared work preceded the sub-milli-
meter work, we discuss the experimental data in Sections 3 and 4
in the opposite order, to facilitate understanding of the theoretical
questions that arise.

2. Brief summary of the high-barrier tunneling formalism

As a simple analogy, consider two ways of treating the rota-
tional levels of a semi-rigid polyatomic molecule: (i) one can diag-
onalize a matrix containing parameterized matrix elements
derived from an effective rotational Hamiltonian with terms of
the form AJ2

z þ BJ2
x þ CJ2

y � DJJ
4 þ � � �, or (ii) one can numerically

solve Schrödinger’s equation for the vibrational and rotational en-
ergy levels associated with a calculated ab initio potential energy
surface. The high-barrier tunneling formalism [11,12] is analogous
to (i).

Matrix elements of the one-dimensional tunneling Hamiltonian
formalism used here depend on two main parameters. The first
parameter involves a relatively familiar concept, since it represents
the nearest-neighbor tunneling frequency h in the non-rotating
molecule, which corresponds for C2Hþ3 to the frequency of tunnel-
ing between an adjacent pair of the six equivalent minima that can
be drawn for the approximately T-shaped non-classical equilib-
rium structure [1,6]. The other parameter is an ‘‘angular offset’’ h,
which is much less familiar and is described in more detail below.
This parameter controls (to first order) the J and K variation of
the tunneling splittings in the rotating molecule through its
appearance in a Wigner DJ(0,h,0)KK function, which leads to a
damped-oscillation behavior for the tunneling splittings when
they are plotted against J for given K.

We stress again that the tunneling model above does not need a
potential surface as input and does not return a potential surface as
output. All details of the multidimensional potential surface of the
molecule that are important for the tunneling motion considered
(and its associated tunneling splittings) are replaced in this phe-
nomenological Hamiltonian by the two parameters mentioned
above, together with some small J and K centrifugal distortion cor-
rections to these terms.

The appearance of the angular offset h can be understood rela-
tively easily by spectroscopists familiar with the expression for
high-barrier internal-rotation tunneling contributions to energy
levels in a near-symmetric top molecule with a methyl top nearly
coaxial with the principal rotational a axis (e.g., methanol). As is
well known [13], the K-dependence of those tunneling splittings
can be represented for A-species levels (r = 0) and E-species levels
(r = ±1) by a Fourier series of the form

E ¼ F
X

n

an cos½ð2pn=3ÞðqK � rÞ�; ð1Þ

The angle h in the present formalism is the analog of the quantity
(2p/3)q in the n = 1 term of Eq. (1) [14]. This analogy is not perfect,
however, since the first term of Eq. (1) gives rise to undamped oscil-
lations in K which are independent of J. Although not discussed in
detail here, this imperfect analogy arises mathematically from the
fact that hydrogen migration in C2Hþ3 generates angular momentum
about the c axis, so that h appears in the second position in the argu-
ment list of the Wigner function DJ(0,h, 0)KK, whereas internal rota-
tion in methanol generates angular momentum about the a axis, so
that h appears in the first position DJ(h,0,0)KK.
The origin of the angular offset in C2Hþ3 , which represents the
amount that the whole molecule must be rotated backwards about
the c axis to cancel out the angular momentum generated by one
step of the hydrogen migration motion, can be described pictorially
[9,14] as follows. Let the molecule-fixed axis system for the C2Hþ3
molecule in each of its six minima be chosen with the z axis paral-
lel to the C„C bond and the y axis perpendicular to the plane of the
molecule. The H migration motion then generates, as the molecule
moves from one minimum to the next, an angular momentum per-
pendicular to the molecular plane (i.e., along the c inertial axis) in
the molecule-fixed axis system. This angular momentum has a va-
lue of IH3 � 2p/6, where IH3 is some average moment of inertia of
the H3 ‘‘triangle’’ [9] during its ‘‘rotation’’ around the C„C bond.
But traditional vibration–rotation theory tells us [15] that large
and troublesome first-order energy contributions of Coriolis inter-
actions are removed only in the Eckart axis system, in which there
is no residual vibrational angular momentum (to first order). To
change to an Eckart system representation in the present case,
the angular momentum generated by the H3 rotation must be can-
celed by rotating the whole molecule backwards by an angle
h = (2p/6) � [IH3/Imol], where Imol is the moment of inertia of the
whole molecule about its (out-of-plane) y = c axis.

As a result of requiring the molecule to be in an Eckart axis sys-
tem during its tunneling motion, e.g., as a result of simultaneously
rotating the whole molecule backwards in the molecule-fixed axis
system during the tunneling motion from minimum 1 to minimum
2, the C„C bond will no longer be parallel to the z axis when the
molecule and its associated rotational wavefunction from mini-
mum 1 reach the position of minimum 2. But when the 1! 2 tun-
neling matrix element (or for conceptual simplicity, the
hJ,Ka1,Kc1|J,Ka2,Kc2i overlap integral) is calculated mathematically,
all rotational functions must be expressed in the same coordinate
system before integrating. Clearly, since the rotational wavefunc-
tion from minimum 2 still has its C„C bond parallel to the z axis,
while the rotational wavefunction that ‘‘travelled’’ to minimum 2
from minimum 1 does not, there is some angular offset in the ori-
entation of the two molecule-fixed axis systems. This angular off-
set is equivalent for the present C2Hþ3 problem to a rotation
about the y axis through the angle h.

For further qualitative understanding, we note that the angular
offset h plays essentially the same mathematical role in this rota-
tional problem as the internuclear distance offset Dre plays when
calculating diatomic hv0|v00i Franck–Condon factors for electronic
transitions between two potential curves with different equilib-
rium bond lengths. We can thus loosely refer to tunneling integrals
of the type hJ,Ka1,Kc1|J,Ka2,Kc2i as rotational Franck–Condon factors.
For more information on the mathematical details associated with
the rotational offset h, the reader is referred to Refs. [9,11,12].
3. Ground-state millimeter-wave measurements and fit

Tables 3 and 4 of Ref. [10] show the presently existing 20 sub-
mm-wave measurements in the vibrational ground state of C2Hþ3 ,
together with observed-minus-calculated residuals from a least-
squares fit to seven S-reduction rotational constants (A, B, C, DJK,
DJ, d1, and d2) and the two tunneling splitting parameters (h, h)
mentioned above. The fit is excellent, so from one point of view
there is nothing more to be done. From another point of view, how-
ever, that successful fit cannot be taken as an unequivocal demon-
stration of the success of the present phenomenological
Hamiltonian tunneling formalism for treating H migration motion,
because only three observed splittings are fit to two splitting
parameters [10].

Even though the present formalism has been successfully
applied to a number of other molecules with a variety of LAM
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tunneling motions (e.g., to the water dimer with donor–acceptor
H-bond interchange and internal rotations of the H2O moieties
[12,16], to the ethylene glycol large amplitude isomerization
[17], and to the internal rotation of nitric acid [18]), it is neverthe-
less desirable to test its applicability to C2Hþ3 more thoroughly,
since some of the initial assumptions for the H-migration LAM
(e.g., the assumptions that C2Hþ3 remains essentially planar and
that one H atom does not overtake another) may in fact not be true.
To suggest how one might go about further testing in the ground
state of C2Hþ3 , we give in Table 1 a slightly expanded and rear-
ranged version of Table 3 of Ref. [10], which contains calculated
values for all b-type Ka ¼ 1—0 transitions for the P, Q, and R
branches originating in the J0J states with J 6 11, as well as the
splitting Dm(EA) between E and A components of a given asymmet-
ric rotor transition for transitions where both E and A symmetry
species are allowed for the normal isotopolog 12C2

1Hþ3 by nuclear
spin statistics. In addition, for transitions where only the E compo-
nent is allowed, the tunneling shift from the rigid-rotor frequency
for this E transition, i.e., Dm(E) � m(E)calc � mrigid-rotor, is shown.

The experimental evidence for the successful application of the
present model to the large-amplitude hydrogen-migration motion
in the ground vibrational state of C2Hþ3 can be divided into two types.
Table 1
Calculated frequencies in MHz for the E and A species lb-type K = 1–0 tunneling-
rotational transitions among levels allowed by nuclear spin statistics in the ground
state of 12C2

1Hþ3 . Transitions are labeled at the left by (JKaKc)0 � (JKaKc)00 .

mcalc(E)a mcalc(A)a Dm(EA)b Dm(E)c

P branch
111–202 234505.785 �0.144
212–303 166076.863d 166076.541d +0.322
313–404 96295.714 �0.061
414–505 25218.714 25218.681 +0.033
515–606 �47086.046 +0.037
616–707 �120537.740 �120537.512 �0.228
717–808 �195042.742e +0.103
818–909 �270496.730f �270496.389f �0.341
919–10010 �346782.792e +0.108
10110–11011 �423775.708d �423775.446d �0.262

Q branch
110–101 368572.496f 368572.005f +0.491
211–202 371430.508e �0.144
312–303 375749.474f 375749.124f +0.350
413–404 381565.737e �0.085
514–505 388929.725d 388929.572d +0.153
615–606 397902.544e �0.019
716–707 408557.752d 408557.780d �0.028
817–808 420979.607e +0.030
918–909 435262.446d 435262.576d �0.130
1019–10010 451510.012e +0.047
11110–11011 469832.821d 469832.946d �0.125

R branch
111–000 431315.551e �0.164
212–101 494034.255 494033.842 +0.413
313–202 555312.207 �0.099
414–303 615170.752 615170.595 +0.157
515–404 673642.541 �0.004
616–505 730773.936 730774.061 �0.125
717–606 786624.128 +0.078
818–707 841264.568 841264.869 �0.301
919–808 894780.487 +0.108
10110–909 947267.859 947268.158 �0.299
11111–10010 998835.793 +0.077
12112–11011 1049602.417 1049602.551 �0.134

a From the constants in Table 4 of Ref. [10].
b Calculated tunneling splitting between the E and A species lines in that row.
c Calculated tunneling shift of the E line from its rigid-rotor position (see text).
d Measured as an unresolved blended line and fitted as a blend in Table 3 of Ref.

[10].
e Measured as a single line and fitted as a single line in Table 3 of Ref. [10].
f Measured as a partially resolved line and fitted as two lines in Table 3 of Ref.

[10].
First, we note that the E–A splittings in Table 1 have a maximum
magnitude near 500 kHz at low J, decrease to nearly zero around
J00 = 5 or 6, then change sign and increase again in magnitude. The
three large splittings indicated by the superscript d in Table 1 were
obtained by deconvoluting partially resolved doublets in the spec-
trum and were used in the original fit, as shown in Table 5 of Ref.
[10], and agreed well with theory (although as already mentioned,
this was essentially a fit of three splittings to two parameters). How-
ever, Table 1 also shows that the tunneling shifts of four unblended E
lines used in the fit [10] range in magnitude from 100 to 160 kHz.
The fact that these significantly shifted and precisely measurable
unblended E lines are also well reproduced by the theory represents
a second type of support for the applicability of the model.

Nevertheless, further support would be desirable. First, future
instrumental advances (e.g., molecular beam or sub-Doppler mea-
surements) may permit more precise determinations of the split-
tings and shifts indicated in Table 1. Second, one might look for
splittings in transitions involving levels with Ka P 2. The Supple-
mentary Material thus contains predictions for all b-type
Ka = 2 � 1 lines that have J00 6 11 and that fall in the range from 0.4
to 1.9 THz. Note, however, that calculations for these lines involve
extrapolation to K = 2 rotational levels using constants determined
only from K = 0 and 1 levels, so that errors of several MHz may occur.

Finally, as a pictorial aid to understanding, Fig. 1 gives a graph-
ical display of somewhat idealized hydrogen-migration tunneling
shifts in the ground vibrational state of C2Hþ3 plotted against
J(J + 1) for 0 6 J 6 9, in separate K-panels for 0 6 Ka 6 3. This figure
is actually an unscaled version of the panels in Fig. 11 of Ref. [9] (to
which the reader is referred for a much lengthier discussion), with
the m = 3 symmetry species changed as appropriate for the now
well established [1] non-classical equilibrium configuration, with
the K± labels related also to JKa,Kc labels, and with the points for
J = 8 and 9 added. Tunneling shifts from near-symmetric-top ri-
gid-rotor energies (obtained from the approximate Eqs. (23)–(26)
in Ref. [9] rather than from exact matrix-diagonalization calcula-
tions [10]) are indicated by solid lines. For a given series of JKa,J�Ka

or JKa,J�Ka+1 levels, i.e., for levels in a given panel, these lines all pass
through zero (and change sign) at the same (non-integral) value of
J. This value of J depends on the angular offset h and is nearly con-
stant for all Ka, except for the two Ka = 1 panels, which are strongly
affected by asymmetric-rotor-like DKa = ±2 tunneling matrix ele-
ments. Symbols indicating G24 tunneling-rotational symmetry spe-
cies are placed over all (J,Ka,m) levels allowed by nuclear spin
statistics [9] in 12C2

1Hþ3 . These symbols indicate that some JKa,Kc

asymmetric rotor levels have only an E species tunneling compo-
nent, while others have both an E and an A species component. It
can be seen from Fig. 1 (and the ground-state h parameter in Ta-
ble 2) that when both E and A tunneling components are allowed,
then the E–A splitting of a given asymmetric rotor energy level has
a maximum unscaled (scaled) magnitude near 3 (250 kHz) at low J,
which decreases to zero around J � 5.5, where it changes sign and
then increases again in magnitude.

Fig. 1 can also be used to visualize mm-wave transitions be-
tween various pairs of allowed tunneling components. The G24

electric-dipole selection rules for allowed levels are Aþ2g $ A�2g

and Eþg $ E�g , which corresponds, for the symbols used in Fig. 1,
to open circles M filled circles and open squares M filled squares.
The b-type selection rules appropriate for pure rotational transi-
tions in C2Hþ3 then require that Q-branch transitions take the form
of lines connecting two levels having the same J and appropriately
different symmetries in adjacent panels of the upper (JKa,J-Ka) strip
or in adjacent panels of the lower (JKa,J�Ka+1) strip. P and R-branch
transitions take the form of lines connecting some level in the
JKa,J�Ka (upper) strip with a level in the JKa,J�Ka+1 (lower) strip having
J and Ka values that differ by unity from the corresponding upper
strip quantum numbers and having an appropriate symmetry.



Fig. 1. First-order tunneling splittings (unitless) for levels with 0 6 Ka 6 3 and 0 6m 6 3 in C2Hþ3 (see text) plotted as a function of JðJþ 1Þ. The top four panels show
JKa;Kc ¼ JKa;J�Ka states, for 0 6 Ka 6 3; the bottom three panels show JKa;Kc ¼ JKa;J�Kaþ1 states for 1 6 Ka 6 3. This figure is essentially a redrawing of the splitting patterns shown
in Fig. 11 and Eqs. (23) of Ref. [9], with: (i) symmetry species for the m ¼ 3 levels changed to correspond to the non-classical equilibrium configuration [1] of C2Hþ3 , (ii)
kscale = �1 in Eqs. (25) and (26) of Ref. [9], so that the negatives of sums and differences of the Wigner D(J){0,h,0}KK’ functions [19] are shown, and (iii) h = 0.402665 rad, as
obtained from the fit in Ref. [10]. To obtain the actual first-order tunneling splittings, the ordinate should be multiplied by |h| = 2.8 � 10�6 cm�1 (ground state) or |h| =
0.1115 cm�1 (excited vibrational state) from Table 2. Tunneling splitting contributions are shown for all levels by the solid curves. Levels allowed by nuclear spin statistics for
the ground vibrational state of 12C2Hþ3 are represented by symbols indicating their torsion-rotation symmetry species, using the notation of Fig. 7 of Ref. [9], i.e., filled and
unfilled circles are Aþ2g and A�2g levels with statistical weight 4, and filled and unfilled squares are Eþg and E�g levels with statistical weight 2, respectively. Electric-dipole-
allowed transitions take place between filled and open circles, or between filled and open squares. Asymmetric-rotor b-type Q branch transitions correspond to lines
connecting appropriate symmetry levels of the same J in adjacent K panels; b-type P and R branch transitions correspond to lines connecting levels in an upper panel of given
K with appropriate symmetry and J levels in a lower panel labeled by K ± 1. Note that all these b-type transitions ‘‘go across the tunneling splitting’’.

Table 2
Fitted values of upper state parametersa from a global fitb of somec of the lines reported in Table 1 of Ref. [2] using the high-barrier
tunneling computer program of Ref. [10], together with fittedd and calculatede values for some of the corresponding ground state
parameters.

Parametera 3 lm Valuea Gnd. Stated Ab Initioe

m0 3142.0867(63) f
A 13.34975(71) 13.3411020(4) 13.883
B 1.135254(48) 1.1420419(2) 1.144
C 1.040808(38) 1.0464490(4) 1.057
DJ � 106 f 1.260(2)
DJK � 103 0.1910(52) 0.20141(7)
d1 � 106 f �0.1116(8)
d2 � 106 0.712(54) �0.084(9)
h �0.1115(54) �0.0000028(1)
h 0.4046(42) 0.40(3) 0.402

a The eight upper-state parameters consist of a vibrational frequency, five of the usual S-reduction rotational and centrifugal dis-
tortion constants, a tunneling frequency h, and an angular offset h (see text). All parameters are in cm�1 except h, which is in radians.
One standard uncertainty (type A, k = 1 [21]) for each parameter is given in parentheses.

b The root-mean-square residual for this fit is 0.050 cm�1.
c Only 297 of the 468 assigned transitions (63%) in Table 1 of Ref. [2] are included in the fit (see text).
d From Table 4 of Ref. [10].
e Ground state rotational constants from the MP2/TZ2Pf equilibrium geometry in Table 1 of Ref. [22]. For calculation of the h value,

see the text.
f Not used in the fit.
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4. 3l Infrared measurements and fit

Hydrogen-migration tunneling splittings in the infrared spec-
trum of the fundamental band of the acetylenic asymmetric
stretching vibration near 3140 cm�1 [1,2] are approximately
30000 times larger than in the ground state (0.3 cm�1 vs
0.3 MHz), which, at first glance, makes them very attractive for
testing the phenomenological tunneling Hamiltonian under dis-
cussion here. Furthermore, an extensive set of assignments in the
3l infrared spectrum for 0 6 Ka 6 4 and 0 6 J 6 24, carried out
using ground state combination differences, has been reported
[2]. As implied by the discussion in Section 3, ground state rota-
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tional levels, at the measurement precision of the infrared spec-
trum (0.001 cm�1), show no tunneling splittings, which permitted
fitting the ground-state microwave measurements truncated to
infrared accuracy together with ground-state combination differ-
ences from the infrared spectrum to an ordinary asymmetric-rotor
Hamiltonian [2]. (We note in passing that ground state rotational
levels of C2Hþ3 calculated in this way have recently been added to
the Cologne data base for molecular spectroscopy [20].)

After a relatively large number of fits of the assigned transitions
reported in Ref. [2] using the program from Ref. [10], we found that
the observed-minus-calculated residuals of a relatively unchang-
ing set of strong lines remained in the range of 0.4–1.1 cm�1. This
was quite disappointing, because such residuals are significantly
larger than the tunneling splittings, which are generally 0.4 cm�1

or smaller, and are also hundreds of times larger than measure-
ment error. We considered three plausible explanations for these
large residuals: (i) conceptual or programming errors in the pres-
ent phenomenological Hamiltonian, (ii) assignment errors in Ref.
[2], and (iii) perturbations in the 0.5–1 cm�1 range of many rota-
tional levels of the upper state of this vibrational band by the
numerous unseen and uncharacterized dark states that make up
the bath in which this CH stretching fundamental near
3140 cm�1 is embedded [8]. We believe, as explained below, that
it is random perturbations, rather than program or assignment er-
rors, that are responsible for the fitting difficulties.

4.1. Global fits

Since no global fits of the 3l spectrum of C2Hþ3 have yet been
reported in the literature, we briefly describe our results, focusing
on two fits in which we used exactly the assignments and wave-
numbers reported in Ref. [2], with two additional remarks. (i)
When two alternative assignments were given (indicated by ⁄’d
lines in Table 1 of Ref. [2]) we chose for our fit only the alternative
that agreed best with our theoretical predictions and discarded the
other one. (ii) When the Kc quantum number and/or the A or E
symmetry species were not given (mainly for Ka = 3, 4, or 5 lines
in Table 1 of Ref. [2]), we used the choice for those quantities that
gave best agreement with our theoretical predictions.

In one such fit, summarized in Table 2 and deposited in full in
the Supplementary Material, 297 C2Hþ3 IR lines are fit to eight
parameters with a root-mean-square (rms) residual of
0.050 cm�1. This corresponds (approximately) to using one param-
eter for every 37 lines, which is not unreasonable. The eight param-
eters consist of the vibrational frequency m0, five S-reduction
asymmetric-rotor constants (A,B,C,DJK and d2), and two parame-
ters describing the tunneling splitting (the tunneling frequency h
and the angular offset h (see Section 3)). This set of parameters is
also not unreasonable for the J 6 24 and K 6 4 range of fitted data
for this light molecule.

Two characteristics of this fit are quite unreasonable, however.
First, only 63% of the 468 assigned lines are included in the fit. Sec-
ond, the rms of observed-minus-calculated residuals is about 50
times the experimental measurement error, where the latter can
be estimated to be 0.001 cm�1 either from the halfwidths shown
in Fig. 3 of Ref. [2] or from the ground-state combination-differ-
ence agreements shown in Table 1 of Ref. [2].

In a second fit (not shown), which was carried out to explore the
rms degradation caused by including more measurements, 348 of
the 468 lines (74%) were fit to the same 8 constants with a rms
deviation of 0.068 cm�1 = 68 times measurement error. The nature
of the residuals in both of the fits described here is such that add-
ing more adjustable constants to the fit did not significantly reduce
the rms.

After carrying out the two fits above, it seemed natural to reex-
amine the spectral assignments in Ref. [2]. After looking carefully
at original spectral records kindly provided by Oka [23], it became
evident that a few spectral reassignments could indeed be sug-
gested, but that: (i) such reassignments could reasonably be pro-
posed for only a very small fraction of the ‘‘bad’’ lines, and (ii)
they could not reasonably be proposed for any of the strong low-
J, low-K ‘‘very bad’’ lines. It thus became unmistakably clear that
misassignments in Ref. [2] were not the cause of our 0.5–1 cm�1

fitting troubles in the 3l spectrum of Ref. [2]. To make this discus-
sion more concrete, Table 3 gives illustrations of lines that: (i) fit
well, (ii) fit poorly, but could plausibly be reassigned, and (iii) fit
poorly, but cannot be reassigned. Even though some improvement
in the fit could be expected by a thorough search for reassignment
possibilities in the 3l spectrum, such a search was not carried out
here because: (i) it is a very time consuming procedure, (ii) most of
the large residuals examined in our preliminary search were asso-
ciated with clean strong lines, for which no plausible reassignment
candidates could be found, and (iii) without double resonance
experiments, there is no way to ‘‘prove’’ that any suggested reas-
signments are actually correct. In short, such a search cannot be
expected to lead to significantly stronger experimental support
for applicability of the present theoretical model to C2Hþ3 .

4.2. J and K dependence of the A–E splittings

One way to organize the tunneling splitting information is to
keep Ka constant and list A/E splittings for increasing J, as in Table 4
of Ref. [2]. Symmetry considerations suggest separating even and
odd J values, to avoid mixing splittings that involve quite different
damped oscillation curves in Fig. 1. Figs. 2–4 thus display observed
(thin line with filled circles at each J value) A/E splittings as given in
Table 4 of Ref. [2], and calculated (thick line with no points) A/E
splittings from the present fit, for the Ka = 0, J = even, J0,J upper
states (Fig. 2), the Ka = 1, J = odd, J1,J upper states (Fig. 3), and the
Ka = 1, J = even, J1,J�1 upper states (Fig. 4). Observed A/E splittings
follow the calculated trend moderately well in Figs. 2 and 3, but
poorly in Fig. 4.

4.3. Summary of the 3l fitting situation

Table 2 gives a comparison of the constants obtained from the
present fit of tunneling-rotational levels in the asymmetric stretch-
ing fundamental state with those obtained from a ground-state fit
using the same formalism [10], and with ground-state constants
obtained from ab initio calculations [22]. It can be seen that fitted
values of the rotational constants A, B, C, and DJK in the ground
and excited vibrational state are close in value, as would be ex-
pected for a small-amplitude vibrational excitation (although the
error bars on the excited vibrational state are large because of
the poor fit), and that both sets of rotational constants are within
4% of the ab initio values. DJ could not be determined in the upper
state, presumably because its influence on the high-J energy levels
is overwhelmed by the large random perturbations. The tunneling
splitting parameter h increases by more than four orders of magni-
tude upon vibrational excitation, which implies that exciting the
acetylenic asymmetric stretch greatly facilitates the H migration.
It is thus somewhat surprising, that there is no distortion apparent
to the eye of the ab initio calculated b2 (in C2v symmetry) asymmet-
ric C–H stretching harmonic normal mode displacements shown in
Fig. 2h of Ref. [24] caused by mixing in some of the calculated b2

‘‘hydrogen migration internal rotation’’ harmonic normal mode
displacements shown in Fig. 2b, i.e., on the basis of those two fig-
ures, one would not intuitively expect such a large increase in the
hydrogen migration tunneling frequency upon excitation of the
asymmetric C–H stretch. On the other hand, these two vibrations
are both of species b2 in C2v, so it is at least possible to imagine
that significant mixing occurs as soon as the large-amplitude



Table 3
Fitting results for representative Ka = 0–0 transitions from Table 1 of Ref. [2].

Assignmenta Wavenumberb O–Cb Assignmenta Wavenumberb O–Cb

000Aþ2g 101 A�2g 3140.091 �0.030c 808Eþg 707E�g 3158.854 �0.302g

000Eþg 101 E�g (3139.787)d 808Eþg 909E�g 3121.774 �0.298g

808Eþg 707E�g 3159.188 0.032h

202Aþ2g 101 A�2g 3146.626 0.029e 808Eþg 909E�g 3122.104 0.032h

202Aþ2g 303 A�2g 3135.684 0.027e

202Eþg 101 E�g 3146.286 �0.053e 10010 Aþ2g 909A�2g 3163.379 0.263f

202Eþg 3 0 3 Eg 3135.346 �0.054e 10010 Aþ2g 11011A�2g 3117.646 0.263f

10010 Eþg 909E�g 3163.356 0.095i

404Aþ2g 303 A�2g 3150.912 0.130f 10010 Eþg 11011E�g 3117.623 0.095i

404Aþ2g 505 A�2g 3131.234 0.131f

404Eþg 303 E�g 3150.839 0.166f 16016Aþ2g 15015A�2g 3175.349 0.086i

404Eþg 505 E�g 3131.167 0.172f 16016Aþ2g 17017A�2g 3103.960 0.080i

16016Eþg 15015E�g 3175.398 0.287f

808Aþ2g 707 A�2g 3158.885 �0.123f 16016Eþg 17017E�g 3104.016 0.288f

808Aþ2g 909A�2g 3121.801 �0.123f

a Assignments give JKaKc and total vibrational-tunneling-rotational symmetry species for the upper and lower states. Lines are given as R-branch/P-branch pairs, so that
ground-state combination differences can be checked [2].

b Observed wavenumbers and observed-calculated (O-C) residuals from the present fit, in cm�1.
c Line given in Ref. [1], but not in Ref. [2], since it cannot be confirmed by a P-R branch combination difference check. It was not included in the fit.
d Calculated value. No observed candidate available.
e Frequencies and assignments from Ref. [2]. These lines fit well and are included in the fit.
f Frequencies and assignments from Ref. [2]. These lines fit very poorly and are not included in the fit. No candidates for reassignments could be found in the spectral traces.
g Frequencies and assignments from Ref. [2]. These lines fit poorly, and are not included in the fit, but possible alternative assignments exist, as indicated immediately

below.
h Alternative assignments for the 8 0 8–7 0 7 and 8 0 8–9 0 9 E lines of footnote g. These alternatives fit much better, and could be used in a new fit, but without double

resonance experiments there is no way to decide experimentally which assignment is actually correct.
i Frequencies and assignments from Ref. [2]. These lines fit poorly, but are included in the fit.
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Fig. 2. Observed [2] (filled circles) and calculated (thicker solid line) values for A–E
splittings in the J0,J levels of the C–H asymmetric stretching fundamental state.
Because of nuclear spin statistics, this difference can be determined experimentally
only for J = even. The calculated splittings have a damped-oscillation behavior about
zero, that is approximately given (without asymmetric-rotor and centrifugal-
distortion effects) by the Wigner function DJ(0,23.18�,0)00 [19]. The observed
splittings follow this trend, except for J = 8, 10, 16, and 22, which represent clear
disagreements with the theory. Measurement error is ±0.001 cm�1, i.e., about one
tenth the diameter of the filled circles.
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Fig. 3. Observed [2] (filled circles) and calculated (thicker solid line) values for A–E
splittings in the J1,J levels of the C–H asymmetric stretching fundamental state.
Because of nuclear spin statistics, this difference can be determined experimentally
only for J = odd. The calculated splittings have a damped-oscillation behavior about
zero, that is approximately given (without asymmetric-rotor and centrifugal-
distortion effects) by the difference of two Wigner functions [19] (1/
2)[DJ(0,23.18�,0)+1,+1 � DJ(0,23.18�,0)+1,�1]. The observed splittings (with measure-
ment error �0.001 cm�1) follow the calculated trend for all J.
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H-migration tunneling motion progresses far enough to invalidate
the small-amplitude harmonic oscillator approximation. (We note
in passing that C2Hþ3 in its C2v equilibrium configuration has four
vibrations of species a1, one of species a2, one of b1 and three of
b2, if the conventions specified in connection with Table III of the
Mulliken report [25] are followed, so that the asymmetric C–H
stretch at 3140 cm�1 should be of species b2, as in Ref. [24], rather
than b1, as in Ref. [22]. As a consequence of this b1 M b2 symmetry
species relabeling, the asymmetric C–H stretch should actually be
called m7, rather than m6, as in Refs. [1,2].)

The nearly equal values of the angular offset h determined from
the fits to the ground and excited vibrational state, and from (see
Section 5) the ab initio structures for the minimum and saddle point
[22], give support for the present model, since this parameter is
essentially determined by mass and structure considerations (just
as the rotational constants are) and would thus be expected to vary
between the two fits by about as much as the rotational constants
vary (i.e., by less than a few percent), and this is what is observed.

The main conclusion from this section is that the phenomeno-
logical tunneling Hamiltonian can describe many, but not all, of
the lines in the 3-lm infrared spectrum, but that none of the cal-
culated transitions fit to within experimental error. Our present
thinking is that most of the difficulty arises because of extensive
perturbations of the CH asymmetric stretching energy levels by
surrounding dark states, rather than because of model error,
though we have no proof of this.

5. Comparison with ab initio results

There are two ways that the fitting parameters from the present
treatment can be compared with quantum chemistry results. First,
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Fig. 4. Observed [2] (filled circles) and calculated (thicker solid line) values for A–E
splittings in the J1, J-1 levels of the C–H asymmetric stretching fundamental state.
Because of nuclear spin statistics, this difference can be determined experimentally
only for J = even. The calculated splittings have a damped-oscillation behavior about
zero, that is approximately given (without asymmetric-rotor and centrifugal-
distortion effects) by the Wigner function [19] sum (1/2)[DJ(0,23.18�,0)+1,+1 +
DJ(0,23.18�,0)+1,�1]. Many of the observed splittings do not agree well with the
theoretical curve. Angstroms

An
gs

tro
m

s 

H3H3

H3

H1

H1 H1

Ca  Cb  H2

Fig. 5. An overlay of three C2Hþ3 structures from Tables 1 and 2 of Ref. [22], all
drawn with their center of mass at the origin and their principal z axes along the
abscissa. Solid circles give the equilibrium (nonclassical) structure from Table 1
with H1–Ca–Cb–H2 as the nearly linear acetylene moiety and H3 as the proton
attached to the p cloud about 1.12 Å above the z axis. These solid circles can be
considered to be the atom starting positions for one step of the hydrogen migration
motion. Open circles also give the structure from Table 1, but now with H3–Ca–Cb–
H2 as the linear acetylene moiety (z axis), and H1 as the proton attached to the p
cloud about 1.12 Å below the z axis. These open circles can be considered to be the
atom positions after completion of the first of six steps in a full cycle of the
hydrogen migration motion. Open triangles give the saddle-point (classical)
structure from Table 2 of Ref. [22], with Ca–Cb–H2 as the linear part of the
vinylidene moiety (z axis), and H1 and H3 as the two hydrogens attached to the
same carbon atom (Ca). These open triangles can be considered to be the atom
positions at the intermediate (saddle) point of the hydrogen migration tunneling
path. The 
? D ? o tunneling trajectory of the H3 atom is assumed to approxi-
mately follow the curved dashed line. A similar pair of arrows has been drawn for
H1, but the dashed curve is omitted to avoid clutter in the diagram. Note that the
three atoms Ca, Cb and H2 barely move during this step of the hydrogen migration.
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one can use ab initio structural information to estimate a value for
the offset angle h. Second, one can use ab initio structural informa-
tion to estimate an effective moment of inertia for the hydrogen
migration motion and then use a conventional internal rotation
Hamiltonian to determine a barrier height from the observed tun-
neling splittings. This ‘‘experimental’’ barrier height can then be
compared with ab initio values.

In the ideal case, one would want structural information all
along the hydrogen migration path, determined by some steep-
est-descent calculation from the top of the barrier down to the
minimum. What is available in the recent literature, however, are
quantum chemical structures at two points along the path, one
at the non-classical minimum-energy configuration and one at
the classical configuration. In particular, Ref. [22] finds that the
classical structure corresponds to a first-order saddle point (transi-
tion state) at the top of the barrier. Based on the different values
given by different computational techniques, they estimate the
barrier height to be in the range of V ffi 1300 ± 450 cm�1. Ref.
[24], on the other hand, gives an estimate of V ffi 1260 cm�1, with
a shallow local minimum slightly below this barrier at the classical
configuration. To avoid theoretical complications introduced by
this secondary minimum, we use the structures from Ref. [22] in
the calculations below.

To visualize one step of the hydrogen migration tunneling path,
three structures from Ref. [22] are shown in Fig. 5, all drawn with a
common center of mass and a common principal z axis of inertia,
as is appropriate when considering the hydrogen migration motion
in a molecule in the gas phase. If one assumes that the tunneling
motion starts and ends in the non-classical equilibrium structure
and passes through an intermediate classical saddle point struc-
ture, then the motion of each atom can be approximated by a
curved path that starts at a solid circle in Fig. 5, passes through
an open triangle, and ends at an open circle. One such a trajectory
is indicated schematically by the dashed curve for H3. Note that
only H3 and H1 carry out large-amplitude motion during the migra-
tion step shown in Fig. 5 (the first of six); the two carbon atoms
and the remaining hydrogen barely move.
5.1. The theoretical offset angle hth

It is relatively straightforward to use the ab initio atom positions
[22] in Fig. 5, together with five computational simplifications, to
obtain a theoretical estimate hth of the offset angle. The first step
involves calculating the angular momentum generated about the
center of mass of the molecule by the hydrogen migration motion.
Since one of the initial hypotheses of the present model is that all
five atoms of C2Hþ3 remain in the xz plane during this large ampli-
tude motion (LAM), the angular momentum generated will always
point out of the plane of the molecule. The first four computational
simplifications and their intuitive justifications are then as follows.
(i) The atom positions for the starting, intermediate, and final con-
figurations in Fig. 5 suggest that it is a good approximation to con-
sider contributions to the angular momentum only from H1 and H3.
H2 has the same mass as H1 and H3, but it barely moves during the
LAM, so its contribution should be negligible. Ca and Cb are much
heavier than the H atoms, but their small motions generate contri-
butions to the angular momentum about the center of mass which
have similar magnitude, but opposite sign. Their combined contri-
bution should thus involve significant cancelation, and therefore
also be negligible. (ii) Instead of calculating the angular momen-
tum generated about the true center of mass of the molecule, we
calculate it about the midpoint of the Ca–Cb bond, which lies very
close to the center of mass. In addition, the true center of mass
moves from one side of the Ca–Cb bond to the other during each
of the six steps of the hydrogen migration motion, so that using
some ‘‘average’’ position located at the midpoint of this bond is
not an unreasonable approximation. (iii) We assume that the initial
motion of H1 in Fig. 5 corresponds to that produced by rotating the
Ca–H1 bond about the Ca atom with an angular velocity da/dt, and
that the initial motion of H3 corresponds to that produced by rotat-
ing the Ca–H3 bond about the Ca atom in the same sense and with
the same angular velocity, but shortening the Ca–H3 bond as it ro-
tates, so that the starting H3 motion is parallel to the Ca–Cb bond.
This corresponds pictorially to imagining that the ‘‘track’’ along
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which all hydrogen atoms move resembles an ellipse centered at
the midpoint of the Ca–Cb bond, with major axis parallel, and minor
axis perpendicular, to this bond. One fourth of this track is indi-
cated schematically by the dashed line in Fig. 5. (iv) We use the
MP2/TZ2Pf structures from Tables 1 and 2 of Ref. [22], but change
the angle \H1CaH3 = 118.3� in Table 1 to \H1CaH3 = 118.7�, so that
the four atoms in the H1CaCbH2 part of the molecule (see the filled
circles in Fig. 5) are colinear. Using the atom labels for the black
dots in Fig. 5 as subscripts, Table 1 of Ref. [22] then gives
r1a = 1.076 Å, r3a = 1.276 Å, rab = 1.224 Å, and \CaCbH3„a0 = 61.3�.
These quantities can be used to define two distances from the cen-
ter of mass (subscript o), namely z1o = r1a + rab/2 and x3o = r3asina0,
which will be useful in the expressions below.

With the assumptions above, the positions and velocities of H1

and H3 at the beginning of step 1, as shown in Fig. 5, are

x1 ¼ 0 dx1=dt ¼ �r1aðda=dtÞ
z1 ¼ �z1o dz1=dt ¼ 0
x3 ¼ x3o dx3=dt ¼ 0
z3 ¼ 0 dz3=dt ¼ �x3oðda=dtÞ ð2Þ

A simple classical mechanical calculation then leads to an angular
momentum in the y direction of

L1 þ L3 ¼ mHðz1or1a þ x2
1oÞuÅ

2ðda=dtÞ ð3Þ

at the beginning of the hydrogen migration motion. By symmetry
this expression must hold also at the end of the motion, so our fifth
computational simplification is to assume that it describes the
angular momentum generated all along the hydrogen migration
motion.

In the present tunneling formalism, the angular momentum in
Eq. (3) must be canceled by rotating the whole molecule back-
wards about the principal c axis at some smaller angular velocity
�qth(da/dt) [11,12,14], where the dimensionless quantity qth,
which plays the same role as q in the usual internal rotation for-
malism [13], is chosen to satisfy

ðL1 þ L3Þ � Icqthðda=dtÞ ¼ 0: ð4Þ

Ic in Eq. (4) is the value for the moment-of-inertia of the equilibrium
structure of the whole molecule about its principal c axis. For the
present problem we calculate Ic from the MP2/TZ2Pf structure in
Table 1 of Ref. [22], to obtain

qth ¼ mHðz1or1a þ x2
1oÞ=Ic ¼ 0:1940: ð5Þ

This theoretical value for qth can then be converted to a theoretical
value hth for the offset angle (the angle of backward rotation of the
whole molecule corresponding to one step of the hydrogen migra-
tion motion) by using the relation

hth ¼ ð118:7=120:0Þð2p=3Þqth ¼ 0:402 radians; ð6Þ

where the (118.7/120.0)(2p/3) factor arises because the Ca–H1 and
Ca–H3 bonds each rotate through an angle of 118.7�. It can be seen
from Table 2 that hth in Eq. (6) is in quite good agreement (to about
1%) with our fitted values for both the ground and excited vibra-
tional states of C2Hþ3 .

An estimate of the error bars on hth can be obtained by calculat-
ing qth at the saddle-point structure [22], to obtain

qthðsaddleÞ ¼ ðL1 þ L3Þ=Icðda=dtÞ ¼ 0:1835; ð7Þ

which is smaller than the initial qth value given in Eq. (5) and used
in Eq. (6) by only 6%. If we crudely average the migration path over
one third initial part, one third intermediate part, and one third final
part, then the value for hth in Eq. (6) would be decreased by only 2%.
The authors consider the results in Eqs. (5)–(7) to be further support
for the applicability of the present tunneling model to the hydrogen
migration motion in C2Hþ3 .

5.2. The ‘‘experimental’’ barrier height V6

Fits using the phenomenological high-barrier tunneling Hamil-
tonian suggest that the observed tunneling splittings in C2Hþ3 in the
vibrational ground state contain only enough information to deter-
mine two independent parameters (h and h in that model). To
determine the barrier height from the tunneling splitting using a
more complete one-dimensional LAM model, we need to: (i)
choose the LAM coordinate, (ii) set up the kinetic T and potential
V energy operators using this coordinate, and (iii) determine the
functional form of all molecular parameters in H = T + V along the
LAM. Since most of the quantities above are not yet reliably known
for C2Hþ3 , we resort to use of an approximate Hamiltonian inspired
by Fig. 5 and simplified according to the five assumptions of
Section 5.1.

At the beginning of the H migration step illustrated in Fig. 5,
the non-zero velocities of the atoms of C2Hþ3 in the angular-
momentum-free axis system of the backward rotating molecule
described in Section 5.1 (which in fact corresponds to the IAM system
in traditional internal rotation problems [13], or to the Eckart axis
system in traditional vibration–rotation problems [15]) are given by

dx1=dt ¼ �r1aðda=dtÞ þ z1oqthðda=dtÞ
dz3=dt ¼ �x3oðda=dtÞ þ x3oqthðda=dtÞ
dxa=dt ¼ �dxb=dt ¼ þðrab=2Þqthðda=dtÞ
dx2=dt ¼ �z1oqthðda=dtÞ; ð8Þ

so that the classical kinetic energy expression T at the beginning,
and by symmetry at the end, of any given hydrogen migration step
becomes

T ¼ ð1=2ÞRimiv2
i

¼ ð1=2ÞmHðr1a � z1oqthÞ
2ðda=dtÞ2 þ ð1=2ÞmHx2

3oð1

� qthÞ
2ðda=dtÞ2 þ 2ð1=2ÞmCðrab=2Þ2q2

thðda=dtÞ2

þ ð1=2ÞmHz2
1oq

2
thðda=dtÞ2

� ð1=2ÞIa;eff ðda=dtÞ2 ¼ ð1=2Þð2:5274ÞuÅ
2ðda=dtÞ2: ð9Þ

A subtle point now arises. Because the hydrogen migration mo-
tion requires six steps to return the C2Hþ3 molecule to its original
atom-numbered configuration, we wish to use a ‘‘sixfold-barrier
internal rotation Hamiltonian’’ of the form

H ¼ FP2
c þ ð1=2ÞV6ð1� cos 6cÞ ð10Þ

to determine the barrier height V6 from the observed tunneling
splittings. One step of the hydrogen migration motion thus corre-
sponds to a change in c of 60� in Eq. (10). On the other hand, one
step in the hydrogen migration motion corresponds [22] to a
change in a of 118.7� in Eq. (9). Making the variable change
a = (118.7/60)c in Eq. (9) yields

T ¼ ð1=2ÞIa;eff ðda=dtÞ2 ¼ ð1=2ÞIa;eff ð118:7=60Þ2ðdc=dtÞ2

¼ ð1=2Þð9:8917ÞuÅ
2ðdc=dtÞ2 � ð1=2ÞIc;eff ðdc=dtÞ2; ð11Þ

which then yields a value of F = 1.7042 cm�1 for use in Eq. (10).
The question of whether Eq. (10) is applicable to the present

problem reduces now to the two questions of: (i) whether or not
the form of the potential surface along the LAM path resembles a
sixfold cosine function, and (ii) whether or not F is approximately
constant along that path. The answer to the first question for the
potential function shown in Fig. 4 of Ref. [24] is no, since that func-
tion has a secondary minimum where the cosine maximum should
be. Otherwise, however, the potential curve along the LAM path in



J.T. Hougen, L.H. Coudert / Journal of Molecular Spectroscopy 270 (2011) 123–131 131
that figure is quite smooth with no unexpected additional struc-
ture. The fact that the highest-level calculations of Ref. [22] do
not produce a secondary minimum, suggests that high-level calcu-
lations will lead to a nearly cos6c form for the potential curve
along the LAM, and we therefore make that assumption here. The
answer to the second question is that the structural parameter F
is probably constant to some reasonable approximation, since Eq.
(7) shows that the structural parameter qth at the saddle differs
from qth at the minimum by only 6%.

Thus, a calculation using Eq. (10) with F = 1.7042 cm�1 from Eq.
(11), in which V6 is adjusted to give agreement with a rotationless
(J = 0) A–E splitting of 3h = �8.54 � 10�6 cm�1 in the ground state
[10] gives a barrier height of V6 � 1488 cm�1, which agrees well
with the ab initio estimate of V6 � 1300 ± 450 cm�1 in Ref. [22].

The result of a similar calculation for the excited vibrational
state, using 3h = �0.3345 cm�1 (as given by the fit in Table 2) gives
a barrier height of V6 � 222 cm�1. This large decrease, which arises
because of the increase in observed tunneling splittings by more
than four orders of magnitude, suggests (surprisingly) that 40% of
the 3142 cm�1 of C–H stretching vibrational excitation energy
can be used to reduce the effective barrier to hydrogen migration.
6. Discussion

In this work we have shown that rotational levels of C2Hþ3 to-
gether with their hydrogen-migration tunneling splittings can be
treated in a unified way in two different vibrational states, i.e.,
transitions involving levels in the ground state and in the funda-
mental of the C–H asymmetric stretch can be fit using the same
high-barrier tunneling formalism. The least-squares fits obtained
are quite consistent from two points of view. First, nearly the same
A, B, C, and DJK rotational constants are found for the two states,
and the A, B, C constants agree with recent ab initio structures. Sec-
ond, one of the two parameters in the tunneling part of the formal-
ism, namely an offset angle associated with the amount of angular
momentum generated during the large amplitude tunneling mo-
tion, is found to be nearly the same for both vibrational states,
and the values from these two separate least squares fits agree
with a theoretical value calculated from a reasonable tunneling
path based on the ab initio structural calculations.

Problems with the fit can be seen in the excited vibrational
state, however, since: (i) about 1/3 of the assigned levels had to
be excluded from the fit because of large observed-minus-
calculated values, and (ii) the root-mean-square residual of the
fit of the remaining 2/3 of the lines is about 50 times measurement
uncertainty. At present, the authors believe that these problems re-
sult from many random perturbations in the excited vibrational
state, since its position near 3140 cm�1 means that it is immersed
in a relatively dense bath of dark states. The conjecture that the
theoretical model is not at fault for these fitting problems could
be tested by the acquisition of more experimental data. One possi-
bility is to augment the relatively small sub-millimeter data set in
the ground state (J 6 11, Ka 6 1) by higher J and K measurements
(see Supplementary Material for Ka = 2 predictions in the THz re-
gion). A second possibility is to record and analyze one or more
lower lying fundamental transitions in the infrared (see Refs.
[22,24] for vibrational frequency and intensity predictions), where
perturbations from unknown dark states are expected to cause
fewer problems.
In this work we have also shown that the conventional sixfold-
barrier internal rotation Hamiltonian for CH3NO2 can be used to
determine, from the observed tunneling splittings, a barrier to
the hydrogen migration motion in the ground state of C2Hþ3 that
falls in the range of ab initio predictions, provided that structural
results from these same ab initio calculations for the non-classical
equilibrium structure and the classical transition-state structure
are used to calculate a realistic value for the coefficient in the ki-
netic energy operator of this Hamiltonian.

Using the same internal rotation Hamiltonian to treat tunneling
splittings in the excited vibrational state leads to a surprisingly
large decrease (by nearly a factor of 7) in the effective barrier to
hydrogen migration. Here again, study of lower wavenumber
vibrational bands in the infrared would tell us whether the excita-
tion of other small-amplitude motions has such a dramatic effect
on the hydrogen migration barrier height (or more directly, on
the observed tunneling splittings).
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