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ABSTRACT
We report our work on the development of analytical and
numerical methods that enable the detection of failure sce-
narios in distributed grid computing, cloud computing and
other large scale systems.The spectral (i.e. eigenvalue and
eigenvector) properties of the matrices associated with a
non-homogeneous absorbing Markov Chain are used to
quickly compute the long time proportion of tasks com-
pleted at a given setting of parameters. This enables the
discovery of critical ranges of parameter values where sys-
tem performance deteriorates and fails.
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1 Introduction

In recent years, the advent of large scale distributed systems
such as computing grids and commercial cloud systems has
made mass computing services available to populations of
users on demand. These systems are dynamic, heteroge-
neous and- due to the interactions of its many components-
subject to the emergence of unpredictable system wide be-
haviors that can have deleterious consequences [1]. Their
rapid growth and increasing economic importance under-
line the need for tools and methodologies that enable un-
derstanding and prediction of complex system behavior in
order to insure the availability and reliability of these ser-
vices. Key questions are the effect of changes in workload,
system design and other operational parameters on overall
system performance. For example, studies of alternative
economic strategies [2],[3],[4] and system failure scenar-
ios [1] have shown that small variations in key system pa-
rameters can lead to large differences in performance. By
large scale simulation we mean the discrete event simula-
tions that simulate in detail the various stages encountered

by each individual task over time. While the large scale
simulations used in these studies are more practical than
operational testbeds, computational expense rising dramat-
ically with model size and number of tasks is a critical road-
block to extensive investigation of dynamical behavior in
large scale systems.

To address this situation, we introduced in earlier
work, a succinct Markov chain representation of the dy-
namics of a large scale grid system over time. The chain
simulates the progress of a large number of computing
tasks from the time they are submitted by users to the time
they either complete or fail. The evolution of the Markov
chain itself occurs in discrete time through a set of transi-
tion probability matrices (TPMs). Each TPM simulates the
grid sytem over a distinct time period and thus the Markov
chain is piece-wise homogeneous. Changes in system pa-
rameters can be modeled by perturbing the TPMs of the
Markov chain. The corresponding sample paths are altered
and represent altered system execution paths that arise as a
result of perturbed system parameters [8]. Through system-
atic perturbation of the TPM matrices followed by simula-
tion of the resulting perturbed Markov chain we were able
to identify scenarios that led to degradations of system per-
formance and system-wide failure. Our results compared
very favorably with large scale simulation results and were
obtained with a substantial reduction in computational cost
[8]. One reason for this is that the statistics of the behav-
ior of a population of tasks are summarized by the Markov
chain while individual tasks must be tracked in the large
scale simulation. Nevertheless, as the number of states
of the Markov chain grows, the computational cost of this
method significantly increases. Thus it is very difficult to
quickly identify the set of perturbed TPMs that lead to sys-
tem deterioration or failure when the number of states is
large. Prediction and ultimately control of these systems
will depend on the ability discover these scenarios quickly
and perhaps in real time. This is the motivation for the work



that is briefly reported here. Our results constitute a proof
of concept as the Markov model we discuss has just n = 7
states. However current work centers on larger systems in-
cluding cloud computing systems.
In the context of grid computing what do we mean by fail-
ure scenarios? All grid computing systems have basic re-
quirements called service guarantees that must be fulfilled.
The failure to do so results in deterioration or outright fail-
ure in system performance. Service guarantees are of three
types. First, the service discovery gurarantee refers to the
ability of a grid system to provide necessary information to
users about available computing services including relevant
updates. The service engagement guarantee insures that
qualified users who have discovered a needed and available
service are allowed to engage that service. Finally, the ser-
vice fulfillment guarantee simply states that once a service
has been engaged i.e. a service level agreement (SLA) has
been agreed to:both user and service provider must adhere
to its terms. In the large scale simulation and the Markov
model, a failure scenario is a setting of operational param-
eters modeling the non-fulfillment of one or more guaran-
tees, whose corresponding execution paths lead to system
failure. A major goal of perturbation studies is to answer
questions such as ”at what point of incremental increase of
guarantee non-fulfillment does sytem performance begin to
degrade rapidly?” and ”what specific actions by providers
or users affect non-fulfillment of a particular guarantee?”.
This brief paper and the work in [5] argue that a Markov
Chain approach can be used to answer these questions by
approximating the transient behavior of a real world grid
system (using large-scale simulation as a proxy). This pa-
per summarizes our work on the development of analytical
and numerical methods for discovering variation or pertur-
bations in operational parameters that lead to decreases in
system performance and system failure. They are based
on properties of absorbing Markov chains and their associ-
ated matrices. We refer the reader to [5] for more detailed
discussion and derivation of our method. Our contribution
is twofold, first, a method for quickly generating the time
course of a key variable of the system, the proportion of
tasks completed for TPMs modeling the normal operation
of the system as well as for perturbed TPMs depicting the
operating parameters that lead to decreased performance
or failure. When the eigenvalues of the transient subma-
trices associated with the TPMs (see section 3) have well
separated eigenvalues,the method works particularly well.
Secondly we developed a function that measures the effect
of perturbations on the spectral properties(i.e. the eigen-
values and eigenvectors) of the matrices associated with
the Markov chain. Depressed levels of the function (large
changes in the spectral properties) correlate well with dete-
rioration in performance. We were able to identify all of the
failure scenarios found by large scale simulations, however
the correlation is not perfect. In a small number of cases,
depressed values occurred without any sign of a decrease
in system performance. Nevertheless, we believe that this
methodology offers a promising approach to the develop-

Figure 1. State diagram of distributed grid system

ment of a set of tools for the rapid, high-level monitoring
of large scale systems. The idea of using the spectral prop-
erties of Markov chains to approximate the dynamics of
a perturbed Markov process is an old one and there have
many significant contributions to the theory and its appli-
cations to networks since then (see the references in [5]).
The systems we consider here differ from these applica-
tions in several important respects.The dynamics of grid or
cloud computing systems vary with time and system behav-
ior can be conveniently represented in terms of distinct time
periods. The resulting Markov chain is piecewise homoge-
neous rather than homogeneous and is thus time inhomoge-
neous. Moreover we are dealing with tasks that eventually
leave the system so the dynamics are also absorbing rather
than ergodic. Thus the assumptions commonly encoun-
tered in the literature on perturbations of Markov Chains
do not apply here. In the next section we will present a
very brief review of previous related work. A more exten-
sive discussion along with references can be found in [5].
Following this in section (2.2), we will present a Markov
chain model and explain how it is derived from the large
scale simulation. This is followed in section 3 by a deriva-
tion of equation (8) on which our methods is based.

2 Previous Related Work and Description of
Markov Chain Model

2.1 Previous Related Work

In grid computing, Markov chains have been used to model
workload for schedule and load balancing [6], [7]. These
works emphasize quantitative estimates of performance or
reliability for a fixed set of operational parameters. Our
interest here is understanding what effect the perturbation
of these parameters have on overall system performance,
particularly those associated with the failure to meet funda-



mental service guarantees as discussed in the introduction.

2.2 Markov Chain Model of Grid System

The lifecycle of an individual task can be represented in
seven states, shown in Figure 1. This model is derived from
a large-scale simulation [4] that studies operation of a grid
over an 8-hour day. The Markov chain model is derived
from a previous large-scale grid computing system model
[1], [4] that simulates the progress of a large number of
computing tasks from the time they are submitted to the
grid for execution by an end user to the time they either
complete or fail. The dynamics of the chain occurs at dis-
crete time steps. Figure 1 shows this Markov model as a
state diagram for a single task. The state diagram has n = 7
states: an Initial state, where the task remains prior to sub-
mission; a Discovering state, during which service discov-
ery middleware locates candidate grid service providers to
execute the task; a Negotiating state during which a Service
Level Agreement (SLA) to execute the task is negotiated
with one of the discovered providers; a Waiting state for
tasks that are temporarily unsuccessful in discovery or ne-
gotiation; a Monitoring phase in which a task is executed
by a contracted provider; and finally the Completed and
Fail states. Transitions between states, illustrated by the ar-
rows in Figure 1, represent actions taken by the grid system
to process a task as described in [8]. The Markov model is
described by a state at a given time and the transition to a
successor state occurs at the next discrete time step. It is
considered an absorbing chain because all tasks ultimately
must enter one of two absorbing states, Complete or Fail,
from which they cannot leave. The Markov model is ran-
dom in the sense that the successor state can only be iden-
tified by the probability of its occurrence, given the history,
i.e. the past states of the chain. To understand how the tran-
sitions in time in occur, the Markov property must be de-
fined. Given a fixed time m, let Xm be the state of the chain
at that time. Prob{Xm = sj | Xm−1 = si, · · ·X1} is the
probability that Xm = sj given the past states of the chain.
The Markov property states that the only relevant part of
the past that is needed to determine the probability of tran-
sition to sj is Xm−1. So that Prob{Xm = sj | Xm−1 =
si, · · · , X1} = Prob{Xm = sj | Xm−1 = si} = pij(m)
To convert the state model to a discrete time Markov chain
we observed that the large scale simulation was time in-
homogeneous over the period of a day with 2 hour peri-
ods where the state transitions were homogeneous. Letting
d=7200s be the length of this homogeneous time period,
h=85s was defined to be the duration of a single Markov
chain step. Therefore the number of Markov chain time
steps in a single time period is S = d/h or 85. The values
of the transition probabilities pij(m) were computed count-
ing the frequency of transitions between states i and j over
a simulated duration. Specifically, if fij was the number of
transitions from si → sj that occurred during the homoge-
neous time period into which m fell, and

∑n
k=1 fik was the

number of transitions out state si during that period, then

pij(m) =
fij∑n
k=1 fik

. (1)

Here n is the number of states. The computation was re-
peated for each pair of states and there resulted a matrix that
can be used to describe the possible states of the Markov
Chain at time m. To see this let a complete description of
the state of the chain be given by the row vector vm whose
j th element is the probability that Xm = sj . The vector
vm is called the state vector at time m. Denote the index
of the homogeneous time period into which m falls by the
notation tp(m), the time period for m. Equation (1) is a
formula for calculating the elements of the matrix Ptp(m)

of transition probabilities. The matrix itself is called the
transition probability matrix or TPM. Using properties of
basic (conditional) probability we have,

vm = vm−1Ptp(m) (2)

Arguing inductively, it can be seen that the value of the
state vector at any time m subsequent to an initial time can
be found by multiplying the current state vector on the right
by the appropriate matrix Ptp(m). If the initial state vector
is v0, the state vector at any time m can be expressed in
terms of the TPMs for the periods that occurred during the
m steps. Therefore if the number of these periods is k we
have m = kS + t, where t is the number of steps that
elapsed in the k + 1st period. The state vector at time is
then,

vm = v0P
S
1 · · ·PS

k P t
k+1 (3)

The elements of the state vector vm at each time step
are ordered so that the first element is the probability or
proportion of tasks in the Initial state at time step m, the
6th element is the probability or proportion of tasks that
are in the Complete state, and the 7th element gives the
probability or proportion of tasks in the Fail state.The
states are divided into absorbing states Complete and Fail
and non-absorbing states-the remaining states. The rows
of the TPM corresponding to the absorbing states have a
single non-zero element 1, non-absorbing states have non-
negative elements.In all the cases the sum of the elements
in any row is 1.Ordering the states as we have also means
that all the TPMs are in the canonical form for absorbing
Markov Chains. This form is illustrated in Figure 2. Here
the TPM is divided into 4 submatrices, Q the matrix of
transition probabilities of si → sj , where si and sj are
non-absorbing states; R is the submatrix of transition prob-
abilities from non-absorbing states to absorbing, 0 is a sub-
matrix of zeroes because transition from an absorbing state
to a non-absorbing state is impossible. Finally, the identity
matrix I shows that once the chain reaches an absorbing
state it remains there. 1

For our application all tasks are initially in the Initial state
so that v0 is the vector with 1 in the first component and 0

1The TPMs are available online at



elsewhere. The measure of system performance at time m
is given by the probability that a task starting in Initial
ends up in the Complete state by time m. Thus we are
interested in computing the 6th component of vm. In the
next section we will outline how the canonical form of the
absorbing Markov Chain and properties of the eigenvalues
and eigenvectors of Q can be used to obtain an analytical
approximation of the cumulative proportion of tasks com-
pleted. The resulting formula is then used to compute the
proportion of tasks completed as a function of time step,
under ”normal” conditions and ”abnormal” conditions aris-
ing from the failure of certain service guarantees that must
be met if the system is to operate properly. We call these
events failure scenarios. In the Markov Chain model these
failures are expressed as perturbations in the elements of
the TPM. The large scale simulation takes place at enough
specificity so that these failure scenarios can be portrayed
fairly accurately. However the connection with specific
perturbations of the TPMs is unfortunately far from obvi-
ous and a scheme of systematic perturbation must be fol-
lowed by calculation of vm. In previous work, such an
approach was discussed and the connection between spe-
cific service guarantee failures and TPM perturbations was
made [8].

3 Derivation of formulas used for the Results

3.1 Approximating the proportion of tasks completed

The canonical form for absorbing Markov Chains and the
spectral representation theorem (see [5] for details and ref-
erences) are used to derive a convenient approximation for
the task completion probability as a function of time. If i
is the index for the ith time period, the corresponding TPM
in canonical form is

Pi =

(
Qi Ri

0 I

)
(4)

where I is the 2 x 2 is the identity matrix and 0 is the 4 x 2
matrix of zeroes depicted in Figure 2. The matrix product
in (2) can be rewritten in terms of the submatrices as

PS
1 · · ·PkP

t
k+1 =

(
QS

1 · · ·QS
kQ

t
k+1 Am

0 I

)
(5)

where the matrix Am is given by

Am =
(
I +

∑S−1
j=1 Qj

1

)
R1+

∑k
l=2 Q

S
1 · · ·QS

l−1

(
I +

∑S1

j=1 Q
j
l

)
Rl+

QS
1 · · ·QS

k

(
I +

∑t−1
j=1 Q

j
k+1

)
Rk+1.

(6)

where k = tp(m)− 1. The dimensions of the submatrices
in (5) are the same as those in Figure 2. Since v0 is a vector
with a single non-zero element 1 in the first component we
can find the proportion of tasks that complete by time m by
computing the (1,6) of the matrix product on the left hand
side of (2), i.e. the (1,1) element of Am.

Figure 2. TPM in absorbing Markov Chain form

The formula we use is an approximation of Am based
on the eigenvalues and corresponding projections onto the
eigenspaces of the leading eigenvectors of the Qi. First we
note that for all the TPMs derived from the long term sim-
ulations and for all loads, the eigenvalues of the Qi were
distinct. We will therefore assume this condition although
it can be relaxed. Each Qi has 5 eigenvalues which will be
indexed by r = 1 · · · 5 where the ordering is by absolute
value( or modulus), so the first eigenvalue has the largest
absolute value (or modulus). We found and we assume that
the first eigenvalue of Qi is not close to the boundary of
the unit circle in the complex plane. The rth eigenvalue of
Qi is denoted by λ

(r)
i . The matrix Qi and its powers can

be written in terms of the eigenvalues and corresponding
projections as:

Qi =
∑5

r=1 λ
(r)
i Ψ

(r)
i

Qe
i =

∑5
r=1(λ

(r)
i )eΨ

(r)
i

(7)

where Ψ
(r)
i is the projection onto the eigenspace of the rth

eigenvector of Qi and e is a power of Qi. Here the facts that
the product Ψ(r)

i Ψ
(r′)
i = 0 if r 6= r′ and Ψ

(r)
i Ψ

(r)
i = Ψ

(r)
i

are used. Our approximation centers on the case in (7)
where e = S, the number of time steps in a period. Since
S = 85, it is clear that |(λ(r)

i )S | is very small for |λ(r)
i |

small enough. In fact any eigenvector with modulus less
than .88 will satisfy |(λ(r)

i )S | < 2∗10−5 so that if equation
(7) is substituted in (6), the contribution from terms con-
taining those eigenvalues is quite small. The approxima-
tion is based on retaining just the terms in the spectral ex-
pansion of powers of QS

i that come from eigenvalues with
modulus more than .88. The choice of .88 is based on S
and the desired accuracy. The question of how many lead-
ing eigenvalues are needed depends on the value of S, the
number of Markov chain steps in a period, and ε, the order
of the approximation desired. In particular one would ac-
cept only eigenvalues λ for which |λ| > (ε)

1
S . In our appli-

catons the matrices do have a well separated spectrum and



for the choice of S and ε (see section 2), two or three eigen-
values suffice. The argument we have presented here really
only depends on a sufficient separation between the lead-
ing eigenvalues and the remaining ones. In all the TPMs
derived from the 8 hour simulation,there were 3 eigenval-
ues larger than .88. Thus the expansion in (7) for e = S and
be approximated by the first 3 terms. In the 640 hour sim-
ulation there were 2 eigenvalues larger than .88 so 2 terms
were used. A useful property of absorbing Markov Chains
permits the submatrix R of any TPM P to be written in
terms of the the eigenvalues and projections of Q and the
matrix V whose columns are the leading eigenvectors cor-
responding to the double eigenvalue 1 of P with the rows
corresponding to the absorbing states removed. We omit
many details because of space and refer the reader to [9]
where this is discussed and then applied in [5]. For the
640 hour simulation where only terms containing the two
leading eigenvalues are retained an approximation to QS

i

results. Substituting these expressions into (6) produces
the following approximation for Am :

Am ≈
[
I − (λ1)

SΨ
(1)
i − (λ

(2)
1 )SΨ

(2)
1

]
V1

+
∑k

l=2

∏l−1
i=1

[
(λ

(1)
i )SΨ

(1)
i + (λ

(2)
i )SΨ

(2)
i

]
·[

I − (λ
(1)
l )SΨ

(1)
l − (λ

(2)
l )SΨ

(2)
l

]
Vl

+
∏k

i=1

[
(λ

(1)
i )SΨ

(1)
i + (λ

(2)
1 )SΨ

(2)
i

]
·[

I − (λ
(1)
k+1)

SΨ
(1)
k+1 − (λ

(2)
k+1)

SΨ
(2)
k+1

]
Vk+1

(8)

At each time step the complexity of using (8) for comput-
ing the cumulative proportion of tasks completed (includ-
ing a count of the number of operations required to find
the leading eigenvectors and eigenvalues) is O(n2) and is
no larger than the complexity of (2) [10]. Thus (8) is sig-
nificantly faster than the large scale simulation when n is
large. Equation (8) gives an analytical expression for the
cumulative proportion of tasks completed as a function of
time and compares well with the exact calculation obtained
using (2) (see the Results section). Moreover, the formula
links the changes in system performance arising from pa-
rameter perturbations to changes in the spectra of the sub-
matrices Qi. A natural question then is ’Can changes in the
spectra due to perturbations signal the potential for system
failure?’. We address this question in the next section.

3.2 A Spectral Based Signal for Deleterious Perturba-
tions

In addition to gaining some analytical insight into the
mechanism of system failure, (8) also shows that {λ(p)

i },
{Ψ(p)

i }, and {Vi}, where p is the index of eigenvalues that
are retained and i = 1, · · ·N is the index for completed
time periods; determine (to a good approximation) the cu-
mulative proportion of tasks that complete at time step m.
Thus changes in the TPMs due to parameter changes will
also change these spectral quantities. Starting with a set of
TPMs with transition values that produce a normal set of

execution paths and task completion profiles, we introduce
measures of the deviation in spectral quantities resulting
from a perturbation, Λ1, the average over all N time peri-
ods of the change (in percent) in the first two eigenvalues,

Λ1 = 100 · 1

N

N∑

i=1

∣∣∣(λ(1)′

i + λ
(2)′

i )− (λ
(1)
i + λ

(2)
i )

∣∣∣
(λ

(1)
i + λ

(2)
i )

. (9)

The perturbed value of each variable in (9) and subsequent
equations is distinguished by a prime symbol ′.

Λ2 measures the average percentage change in the
projections onto the eigenspace for the first two eigenvec-
tors. Here norm(A) is the square root of the sum of squares
of the entries of the matrix A.

Λ2 = 100· 1
N

N∑

i=1

norm
(
(Ψ

(1)′

i +Ψ
(2)′

i )− (Ψ
(1)
i +Ψ

(2)
i )

)

norm
(
Ψ

(1)
i +Ψ

(2)
i

)

(10)

The percentage change in the leading eigenvectors (corre-
sponding to the eigenvalue 1) of the TPM Pi is given by,

Λ3 = 100 · 1

N

N∑

i=1

norm (V ′
i − Vi)

norm (Vi)
(11)

The next two quantities involve the percentage change
in bilinear functions of the eigenvalues, eigenvectors and
projections we discussed.

Λ4 = Λ1 · Λ2 (12)

Λ5 = 100 · 1
N ·

∑N
i=1

norm
(
(λ

(1)′
i

Ψ
(1)′
i

+λ
(2)′
i

Ψ
(2)′
i

)V ′
i −(λ

(1)
i

Ψ
(1)
i

+λ
(2)
i

Ψ
(2)
i

)Vi

)

norm
(
(λ

(1)
i

Ψ
(1)
i

+λ
(2)
i

Ψ
(2)
i

)Vi

) .

(13)

To determine a function for detecting deleterious perturba-
tions we treated Λr, r = 1, · · · 5, as independent variables
and performed a fit to the percentage change in the pro-
portion of tasks completed. Specifically, elements of the
TPMs were systematically perturbed. Each perturbation
corresponded to a change in the transition probability be-
tween two non-absorbing states. The spectral quantities Λr

were computed for each such perturbation and the corre-
sponding percentage change in the cumulative proportion
of tasks completed was also computed. A multilinear re-
gression fit of these values resulted in a fitted expression
for the percentage change in the proportion of completed
tasks as a function of the spectral quantities:

Fspec =

5∑
r=1

crΛr (14)



4 Results

Large scale simulations depicting the operation of a grid
computing system over a day lasting 8 hours and another
depicting 80 8-hour days (640 hours) with loads varying
between 50 and 100% were compared with the Markov
model and the theoretical approximations discussed in sec-
tion3.1. The cumulative proportion of tasks completed was
plotted as a function of time for the large scale simula-
tion. The corresponding quantity for the Markov model,
the tasks completed or 6th component of the state vector
was also plotted as a function of time, along with the the-
oretical approximation of this same quantity, based on the
formula (8) for a variety of loads. In Figure 3, the 8 hour
large scale simulation is in black while the Markov model
and theoretical approximation are plotted in red and blue
dashes respectively. Figure 4 shows the results of the 640
hour simulation. Both systems are at a 75% load. The re-
sults of (2) and (8) closely agree.

In the light of our discussion in the introduction we
examine failure scenarios in terms of a critical level of
non-fulfillment of a service guarantee. The degree of non-
fulfillment can be quantified in both the large scale simula-
tion and the Markov model by its effect on the frequency of
transition between relevant states. For example the failure
to fulfill the task service guarantee can increase the prob-
ability of transition from Monitoring to Negotiation while
simultaneously and proportionately lowering the probabil-
ity of transition from Monitoring to Completion. Methods
for modeling these events in a Markov chain involve per-
turbation of individual elements of the TPMs. Choosing
which elements to perturb and at what level is a difficult
and computationally expensive task. In [8], we discussed
a systematic method for doing this based on the Markov
chain that resulted in a two orders of magnitude reduction
in time to identify all failure scenarios including the ser-
vice guarantee and the associated transition we mentioned.
For lack of space we cannot describe the procedure here
but refer to the references for a discussion. Figure 5 shows
the change in the final cumulative proportion of tasks com-
pleted, as a function of the transition probability of Moni-
toring to Negotiation for the large scale simulation and the
Markov model. The computation for the large scale simu-
lation was done by direct simulation for each level of per-
turbation. Equation (2) was used to compute vm for the
final time step m at each level of perturbation. Using the
approximation in (8) instead, we see that the cumulative
tasks completed curve is in very close agreement to the
exact Markov model . All of the curves show the dete-
rioration and eventual failure of the system after a critical
transition probability is reached. Figure 6 is the result com-
puting the (cumulative) proportion of tasks completed as a
result of a violation of the discovery guarantee. Here this
event is measured in terms of the probability of transition
from Discovery to itself. The Markov model and the ap-
proximate computation through (8) agree very well and are
good enough for the approximation to identify the critical

transition probability that leads to a significant decrease in
tasks completed and then system failure.

We explored the question of how well changes in the
spectral properties of the submatrices Qi predict decreases
in the cumulative proportion of tasks completed, by fitting
the {Λr : r = 1 · · · 5} , a measure of these changes to
changes in the tasks completed (see section 3.2). In the 640
hour simulation the changes were produced by systematic
and exhaustive perturbations of the TPMs at 75% load.We
used perturbation cases where an entry that is decreased is
decreased to zero while the remaining entries are increased.
This was done to maximize the chances of identifying dele-
terious perturbations. Using multilinear regression analysis
a fitted function Fspec was produced with {cr : r = 1 · · · 5}
as the regression coefficients. Two perturbation methods
were employed. Under the primary decrease perturbation
method we obtained

c1 = −6.6057, c2 = 0.8297 , c3 = −1.0580
c4 = −.0102 , c5 = −0.0287

The quality of the fit was determined by the coefficient of
determination r2 = 0.9373 and the residuals shown in Fig-
ure 7. The horizontal axis indexes the perturbation cases
while the horizontal axis shows the residuals (dots) and
vertical bars that delineate the confidence interval for the
residuals. There are 2 outliers at cases 5 and 34. Thus,
Fspec defined in (14) is a good fit. From the magnitude of
the cr it can be seen changes that in the leading eigenval-
ues of Qi and the Vi, i.e. the leading eigenvectors of the
TPM Pi are the most influential in determining changes
in the proportion of tasks completed. The same analysis
was carried out for the same simulation using a different
perturbation method and similar results were obtained. El-
evated values of Λr (see (9)-(13))were associated with all
of the deleterious perturbations found using graph theory
methods. However in a small number of cases, values were
elevated but there was no drop in the proportion of tasks
completed.The predictive power is not absolute. Thus ele-
vated values of Λr or low values of Fspec are necessary but
not sufficient indicators of performance loss but are still
valuable signals e.g. in exploratory efforts to identify dele-
terious perturbations.

5 Conclusion and Future Work

We reported on the development of analytical and numer-
ical methods that enable the detection of failure scenarios
in large scale systems. The properties of an absorbing non-
homogeneous Markov chain model of the system are used
to quickly compute the tasks completed under varying sys-
tem conditions. Our method is particularly effective when
the submatrices Qi associated with the homogeneous time
periods have well separated eigenvalues (i.e. there is a large
spectral gap). In the model the operating parameters of
the system are values of the transition probabilities (ele-
ments of the TPMs) controlling the rate of transition be-
tween states in the system (see Figure 1). Changes in these
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Figure 3. Cumulative proportion of tasks completed vs.
time in 8hr simulation
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Figure 4. Cumulative proportion of tasks completed vs.
Time in 640 hr. simulation

values depict perturbations in real system parameters that
occur because of violations of service guarantees as dis-
cussed in the introduction. A systematic search for such
deleterious perturbations is facilitated by measuring their
effect on the spectral properties of the Qi. In section 3.2,
we introduced a function Fspec that measures the devia-
tion of spectrum corresponding to perturbed TPMs from
the spectrum corresponding to unperturbed TPMs of a sys-
tem under ”normal” operating conditions. The multilinear
regression analysis we performed indicates that low values
of Fspec are a good indicator of potential performance loss
due to deleterious perturbations. The regression analysis
shows that changes in the leading eigenvalues of Qi and
the eigenvectors Vi (see section 3.1)are most influential in
affecting system performance. Although the correlation is
not perfect, we demonstrate that Fspec can be used as an
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Figure 5. Final cumulative proportion of tasks completed
vs. transition probability Monitoring to Negotiation

effective warning signal indicating that further analysis of
the large scale system is needed. Alternatively, it can be
used in conjunction with other methodologies such as the
minimal cut set analysis discussed in [5].

To be able to predict threshold effects, where large
changes in dynamics occur with relatively small parame-
ter changes,we introduce an analytical formula which like
(2) quickly generates the system dynamics over time. The
agreement between the predicted transient behavior of the
system under arbitrary conditions, calculated according to
a straightforward computation of the cumulative proportion
of tasks completed (2) and the approximation using (8) is
very good. Both calculations agreed well with the large
scale simulation. Tracking the long term cumulative pro-
portion of tasks completed as a function of transition prob-
ability revealed the existence of a critical range of values
(and therefore perturbations) that produce system deterio-
ration due to service guarantee violations. Increasing the
transition from Monitoring to Negotiation models a sce-
nario where the level of non-fulfillment of the task service
guarantee violation increases. The computations based on
the Markov model and the approximation (8) are in good
enough agreement to conclude that this critical range and
its threshold are correctly identified (see Figure 5). Figure
6 shows the analogous computation for the self transition of
Discovery to itself, modeling the violation of the discovery
guarantee. As in the previous case the threshold for per-
formance deterioration is identified. Finally these figures
also show that the Markov approach has uncovered the un-
intuitive fact that the system is very robust to violations of
the discovery guarantee under this scenario; in contrast, un-
der increasing violations of the task service guarantee, sys-
tem performance deteriorates rapidly. Our future work will
center on the application of the methods discussed here to
large scale systems where the state space of the absorbing



Figure 6. Final cumulative proportion of tasks completed
vs. transition probability Discovery to Discovery

Markov chain is quite large. Research has already begun
on a cloud computing system. The spectral properties dis-
cussed here depend subtly on the underlying topology of
the network and it would be interesting to explore the con-
nections between the spectral approach and the minimal cut
set analysis. The latter discussed in [5] is based on the un-
derlying graph topology of the Markov chain.
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