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Abstract: In response to the guidelines issued by the American Society of Crime Laboratory 

Directors/Laboratory Accreditation Board (ASCLD/LAB-International) to establish traceability 

and quality assurance in U.S. crime laboratories, a NIST/ATF joint project entitled National 

Ballistics Imaging Comparison (NBIC) was initialized in 2008.  The NBIC project aims to 

establish a National Traceability and Quality System for ballistics identifications in crime 

laboratories within the National Integrated Ballistics Information Network (NIBIN) of the U.S.  

NIST Standard Reference Material (SRM) 2460 Bullets and 2461 Cartridge Cases are used as 

reference standards.  19 ballistics examiners from 13 U.S. crime laboratories participated in this 

project.  They each performed 24 periodic image acquisitions and correlations of the SRM 

bullets and cartridge cases over the course of a year, but one examiner only participated in Phase 

1 tests of SRM cartridge case.  The correlation scores were collected by NIST for statistical 

analyses, from which control charts and control limits were developed for the proposed Quality 

System and for promoting future assessments and accreditations for firearm evidence in U.S. 

forensic laboratories in accordance with the ISO 17025 Standard. 
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1. Introduction 

 

In the late 1990s, the National Integrated Ballistics Information Network (NIBIN) was 

established in the United States [1,2].  The network currently includes approximately 200 

installations nationwide, in which the Integrated Ballistics Identification Systems (IBIS*) [3] are 

used for ballistics signature acquisitions and correlations.  To establish measurement traceability 

and quality assurance for laboratory assessment and accreditation using the ISO 17025 standard 

[4], the National Institute of Standards and Technology (NIST) in collaboration with the Bureau 

of Alcohol, Tobacco, Firearms and Explosives (ATF) developed Standard Reference Material 

(SRM) 2460 Bullets and 2461 Cartridge Cases [5].  NIST also developed a two-dimensional (2D) 

and three-dimensional (3D) Topography Measurement and Correlation System for ballistics 

signature measurements [5-7].  In response to the guidelines recently issued by the American 

Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/LAB-

International) to establish traceability and quality assurance in U.S. crime labs [8], NIST and 

ATF have recently completed a joint project entitled the National Ballistics Imaging Comparison 

(NBIC) to establish a National Traceability and Quality System using the SRM bullets and  

 
 * 

Certain commercial equipment, instruments, or materials are identified in this paper to specify adequately the 

experimental procedure.  Such identification does not imply recommendation or endorsement by the National 

Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily 

the best available for the purpose. 



2 
 

cartridge cases for NIBIN‘s acquisitions and correlations.  In this paper, the NIST SRM Standard 

Bullets and Cartridge Cases Project, the NIST 2D and 3D Topography Measurement System and 

the proposed Traceability and Quality System are introduced in Sections 2 to 4.  The correlation 

result, statistics analyses, control charts and control limits are described in Sections 5 and 6.  

Finally, in Section 7, quality assurance for NIBIN acquisitions and correlations is discussed.  

 

2. The NIST SRM 2460/2461 Standard Bullets and Cartridge Cases Project 

 

The NIST SRM 2460 Bullets and 2461 Cartridge Cases were developed as reference standards 

for ballistics laboratories to help verify that the computerized optical-imaging equipment in those 

laboratories is operating properly, to establish ballistics measurement traceability and quality 

assurance, and to promote laboratory assessment and accreditation in accordance with the ISO 

17025 standard [4].  The SRM bullets are designed as both a ―virtual‖ and a physical ballistics 

signature standard [5].  The virtual standard is a set of six digitized bullet profiles (see Fig. 1) 

used as the reference profiles to machine bullet signatures on the SRM bullets.  The six profiles 

also serve as the reference standard for measurements of the machined bullet signatures on the 

SRM bullets, and help ensure that these measurements are traceable to the SI unit of length.  

These profiles were originally traced with a stylus instrument on six master bullets fired at the  

 

 
Figure 1.  The virtual bullet signature standard consists of six digitized bullet profile signatures 

measured by a stylus instrument on six master bullets fired at the ATF and FBI.  The virtual 

standard profiles shown above are modified profiles after curvature removal and Gaussian 

filtering defined in national and international standards [9,10] with a short wavelength cutoff of 

0.0025 mm and a long wavelength cutoff of 0.25 mm.  The vertical scale is in µm; the horizontal 

scale is in mm. 
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Figure 2: A SRM 2460 Standard Bullet (left) and a SRM 2461 Standard Cartridge Case (right). 

 

National Laboratory Center of ATF and the Federal Bureau of Investigation (FBI) under 

standardized shooting and recovering procedures [5].  Each bullet was fired by a different 

handgun and the profile signature was taken only on one selected Land Engraved Area (LEA).  

An LEA is a region on the bullet that contains the impression of one of the lands of a rifled barrel.  

There are several lands in a rifled barrel and, consequently, there will be an equal number of 

LEAs on a bullet.  The virtual standard (six bullet profile signatures, see Fig. 1) was stored 

digitally and used for control of the tool path of a numerically controlled (NC) diamond turning 

machine at the NIST Instrument Shop to machine the bullet signatures onto the SRM bullets [5].  

Twenty SRM bullets were manufactured at the same time with each setup; forty SRM bullets 

have been produced so far.  The virtual standard is also available from the NIST website for the 

Surface Metrology Algorithm Testing Service (SMATS) [11].  At this site, the user can 

download the LEA profiles and directly compare them with the corresponding LEA profiles 

measured on the SRM bullet with the user‘s own topography measurement system.  Alternatively, 

the user can compare the surface topography parameters, such as the rms-roughness Rq, of the 

virtual standard profiles with parameters obtained from the corresponding profiles on the user‘s 

SRM bullet.  Comparisons of profiles performed at NIST will be discussed in Section 3.  

 

A SRM bullet is shown in Fig. 2, left.  It contains six LEAs, each having a unique bullet 

signature manufactured by the NC diamond turning machine with a 5° twist, which helps to 

make the SRM bullet look like a real bullet.  The material was made of oxygen-free, high 

conductivity (OFHC) copper rod with about a 1 mm thick pure-copper coating to avoid the 

crystal boundary effect in the diamond turning process [5].  After machining, a specially 

designed chemical etching process was used for roughening the surface of the bullet to improve 

its diffuse reflection without changing the bullet signatures and make the SRM bullet appear like 

a real bullet when observed under an optical microscope.  Then, a commercial corrosion 

protection process was applied to the surface of the SRM bullets. 

 

A SRM cartridge case is shown in Fig. 2, right.  The SRM cases are manufactured by an electro-

forming technique in which a master cartridge case fired at the National Laboratory Center of 

ATF is placed into an electrolytic tank where a negative replica is fabricated on the surface of the 

master.  By repeating the same process on the negative replica, a positive replica is produced.  

These replicas from the single master comprise the set of SRM cartridge cases.   
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The reproducibility of the SRM bullets depends on the virtual standard and the NC diamond 

turning process.  The reproducibility of the SRM cases depends on the master cartridge case and 

the electro-forming process [12].  Both SRM bullets‘ and cases‘ reproducibility are higher than 

95 % when measured by the cross correlation function maximum CCFmax (see Section 3).  

Production of the SRM cases is currently in progress; about 150 SRM cases are scheduled for 

certification and sell in 2011. 

 

3. NIST 2D and 3D Topography Measurement and Correlation System 

  

The NIST 2D and 3D Topography Measurement and Correlation System is initially designed for 

topography measurements of ballistics signatures of SRM bullets and cartridge cases.  Two 

parameters are used for quantitative representation of the similarity of surface topographies: a 

NIST proposed parameter called the signature (or topography) difference Ds and the cross 

correlation function maximum CCFmax [6].  The parameter CCFmax is the maximum value of the 

cross correlation function (CCF), which occurs when the two correlated surface topographies, the 

measured topography Z(B) and the reference topography Z(A), are registered at their maximum 

correlation position.  At this position, a topography difference Z(B – A) is calculated that equals the 

difference between topography Z(B) and Z(A).  The topography difference parameter, Ds, is 

defined as a ratio of the mean-square roughness Rq
2 

of the topography difference Z(B – A) and the 

mean square roughness of the reference topography Z(A) [6]: 

 

Ds = Rq
2

(B – A) / Rq
2

(A).       (1) 

 

When the two compared topographies Z(B) and Z(A) are exactly the same (point by point), Ds is 

equal to zero (and CCFmax must be 100 %).  And when Ds equals to zero, the two compared 

surface topographies must be exactly the same [6].  Both parameters are given here because the 

value of CCFmax is not sensitive to a difference in scale height between two topographies with 

similar shape, whereas the value of Ds is sensitive to a scale difference [6]. 

 

For data acquisition, the topography measurement system includes a stylus instrument for 

contact measurements of 2D bullet signatures and a confocal microscope for non-contact 

measurements of 3D cartridge case signatures.  A correlation software program is designed for 

topography registration and for calculating the parameters Ds and CCFmax.  So far, 240 bullet 

profiles on 40 SRM bullets, one profile for each of the six Land Engraved Area (LEA) of the 

SRM bullet, have been measured using the stylus instrument with the 2D correlation program.  

The measurement results show high reproducibility for both the measurement system and the 

manufacturing process of the SRM bullets: all the CCFmax values are higher that 95 % and most 

of them are even higher than 99 % [7].  A procedure was developed for reporting the maximum 

value of Ds and minimum value of the CCFmax with 95 % confidence level [13].  3D topography 

measurements for the breech face, firing pin and ejector mark of the SRM cartridge cases using a 

confocal microscope have recently been completed. 

  

Figure 3 shows a user screen for a 2D bullet profile signature correlation of S/N SRM 2460-001 

standard bullet (signature Z(B), shown as the second profile from the top) with the virtual  
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Figure 3.  User screen for a bullet profile signature correlation of S/N SRM 2460-001 Standard 

Bullet (Signature B, shown as the second profile from the top) and the virtual standard (Signature 

A, shown on the top).  The bottom profile shows the signature difference (B – A); the cross 

correlation function maximum CCFmax = 99.55 % ± 0.12 % (k = 2), the signature difference Ds = 

0.92 % ± 0.26 % (k = 2).   

 
Figure 4.  Topography correlation of firing pin images between prototype SRM Cartridge 

Cases 001 (top, left, used here as a reference) and 002 (top, right).  The bottom row shows 

filtered images for 001 (left) and 002 (middle) cartridge case and the topography difference 

(right); CCFmax = 99.29 % ± 0.039 % (k = 2),  Ds =1.34 ± 0.70 % (k = 2).     
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standard (signature Z(A), shown on the top).  The bottom profile shows the signature difference 

Z(B – A).  The cross correlation function maximum CCFmax is calculated to be 99.55 % ± 0.12 % 

(k = 2).  The signature Difference Ds is calculated to be 0.92 % ± 0.26 % (k = 2).   

 

Figure 4 shows a 3D topography correlation of firing pin images between prototype SRM 

Cartridge Case 001 (top, left, used here as a reference) and 002 (top, right).  The bottom row 

shows filtered images for 001 (left) and 002 cartridge case (middle) and the topography 

difference (right).  The Gaussian filter long wavelength cutoff length is 0.25 mm.  The CCFmax  

= 99.29 % ± 0.039 % (k = 2),  Ds =1.34 ± 0.70 % (k = 2).   

 

Besides the topography measurements for SRM bullets and cartridge cases, the NIST topography 

measurement system has been used for tests of ballistics identifications in designed experiments, 

and has produced matching accuracies for cartridge cases and bullets higher than those of a 

commercial system for all experiments thus far [14,15].  It can also be used in other areas such as 

instrument characterization in surface metrology [16] and surface defect testing [17]. 

 

The NIST proposed CCFmax and Ds parameters have several features [6]: 

 They are common available algebraic concepts and may be calculated from surface 

measurements traceable to the SI unit of length.   

 The same parameters CCFmax and Ds can be used for quantifying signature differences 

for both 2D bullet profiles and 3D cartridge case topographies. 

 For any 2D profile and 3D topography correlation, the minimum signature difference Ds 

is equal to zero (and CCFmax must be 100 %), which occurs when, and only when, these 

two profiles or topographies are exactly the same (point by point).   

 Because surface information of all 2D or 3D data points is used for correlation, the 

CCFmax and Ds parameters have potential for improved accuracy of identification relative 

to methods using features obtained from subsets of the data points [14,15]. 

 Besides ballistics identifications, the CCFmax and Ds parameters can be generally used for 

topography measurements and correlations in other areas [16,17].   

 

4. The Proposed Traceability and Quality System for NIBIN Acquisitions and 

Correlations 

 

According to the International vocabulary of metrology - Basic and general concepts and 

associated terms (VIM) [18], metrological traceability is defined as: 

 

property of a measurement result whereby the result can be related to a reference 

through a documented unbroken chain of calibrations, each contributing to the 

measurement uncertainty. 

 

By the above definition, three key steps for establishing the metrological traceability for the 

topography measurements and imaging correlations of 2D and 3D ballistics signatures are 

proposed [19]: 
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Figure 5. The Golden Image of six Land Engraved Areas (LEA) of the SRM 2460 Standard 

Bullet. 

   

Figure 6. The Golden Image of the breech face (left), firing pin (middle) and ejector mark (right) 

of the SRM 2461 Standard Cartridge Case. 

 

 Establish a reference standard, the NIST SRM bullets and cartridge cases, which are used 

as a reference for both the topography measurements at NIST and the imaging 

correlations for NIBIN acquisitions. 

 Establish an unbroken chain of calibrations from the national laboratories, NIST and the 

National Laboratory Center of ATF, to local laboratories and customers using the SRM 

bullets and cartridge cases as reference standards.  The unbroken chain of calibration 

covers both topography measurements at NIST and image correlations for NIBIN.  For 

the topography measurements, the measurement traceability is established using the 

virtual/physical SRM standard and the proposed parameters Ds and CCFmax.  For the 

image correlation systems like IBIS, the traceability is established by image acquisitions 

of SRM bullets and cartridge cases at local IBIS sites, and correlations with the image  

G olden Images  of S R M B ullet

Land 1 to 3

Land 4 to 6
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Figure 7:    Establishment of a Traceability and Quality System for NIBIN acquisitions and 

correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.  A control chart for NIST check standard SRM 2460-001, LEA 1. 
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 standard, termed the ―Golden Images‖ (see Fig. 5 and 6, to be discussed later) established 

at the National Laboratory Center of ATF.  

 Evaluate measurement uncertainty for both the topography measurements and imaging 

correlations. 

 

A flow diagram for the establishment of a Traceability and Quality System using the SRM 

bullets is shown in Fig. 7.  The six master bullets were profiled by NIST as shown by branch 1.  

The resulting set of six digitized 2D profile signatures was used as the virtual standard (see Fig. 1) 

that determined the tool path of a numerically controlled diamond turning machine at NIST to 

produce the physical standard of the SRM bullets.  One of them, numbered SRM 2460-001, was 

kept at NIST as a check standard for measurement quality assurance, as shown in branch 2 of Fig. 

7.  Since 2003, this check standard has been routinely measured and correlated with the virtual 

standard more than 35 times and has demonstrated high measurement reproducibility: all the 

correlation values CCFmax are higher than 99 % [20].  Figure 8 shows the control chart for 35 

measurements of LEA 1 of the NIST check standard SRM 2460-001.  The top line shows the 35 

correlation results of CCFmax, the bottom line represents the specified control limit of 95 %.  The 

middle line is a ―dynamic control limit‖ based on the measured data, which was proposed and 

used by NIST for measurement assurance of surface calibrations [21].  The dynamic control 

chart will be further discussed in Section 6.   

 

Another SRM bullet, numbered SRM 2460-002, was sent to the National Laboratory Center of 

ATF as a reference standard.  After the topography measurements at NIST, all the SRM bullets 

were imaged at the National Laboratory Center of ATF using their reference IBIS system under 

standard operating conditions [22].  A set of the best images with the highest correlation scores 

was selected as the Golden Image (see Fig. 5).  By acquiring images of the SRM bullets at local 

IBIS sites, and correlating the images with the Golden Image, differences in IBIS operating 

conditions between the local IBIS sites and the National Laboratory Center of ATF can be 

detected.  This system, therefore, can enable both the topography measurements of ballistics 

signatures at NIST to be traceable to the virtual standard and the SI unit of length; and the image 

correlations at local IBIS sites to be traceable to the Golden Images of ATF‘s National 

Laboratory Center.   

 

A similar approach is used for SRM cartridge cases.  Fig. 6 shows the Golden Image established 

at the ATF National Laboratory Center for the breech face (left), firing pin (middle) and ejector 

mark (right) of the SRM cartridge cases.  The proposed traceability and quality system for SRM 

cartridge cases also includes 3D topography measurements at NIST and image acquisitions and 

correlations for NIBIN.  

  

5. The National Ballistics Imaging Comparison (NBIC) Project 

 

During the 2008 NIBIN Users Congress held on June 17
th

 and 18
th

 in Orlando, FL, a protocol for 

the National Ballistics Imaging Comparison (NBIC) Project was initiated at the first NIST/ATF 

Workshop and agreed upon by ballistics experts across the country.  The project goal is to 

establish a Traceability and Quality System for ballistics signature measurements in U.S. crime 

laboratories within the NIBIN.  NIST SRM 2460 bullets and 2461 cartridge cases are used as 

reference standards.  By repeating tests of the SRM bullets and cartridge cases at local IBIS sites, 
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and correlating the images with the Golden Images established at the ATF, control charts and 

control limits were developed for quality assurance of ballistics acquisitions and correlations in 

NIBIN.  The quality assurance system can then be used for detecting and exploring any quality 

problems arising from operators‘ acquisition procedures, IBIS systems and correlation networks, 

as well as from the SRM standards themselves.   

 

All participants agreed to use their IBIS for image acquisitions and correlations of a SRM bullet 

and a SRM cartridge case.  These tests include three phases: 

 Phase 1 - Measurement repeatability tests:  Ten repeat tests in one or two days on a single 

SRM bullet and cartridge case by the same IBIS operator under the same measurement 

setup and the same instrument calibration.  Detailed measurement setup and calibration 

procedure can be found in [13,22].   

 Phase 2 - Short term measurement reproducibility tests:  Four weekly tests (including one 

from the Phase 1 tests) on the same SRM bullet and cartridge case by the same IBIS 

operator under different measurement setups and different instrument calibrations. 

 Phase 3 - Long term measurement reproducibility tests:  12 monthly tests (including one 

from the Phase 1 tests) on the same SRM bullet and cartridge case by the same IBIS 

operator under different measurement setups and different instrument calibrations. 

 

In summary, the protocol called for 24 acquisitions of both a SRM bullet and a cartridge case for 

each participant over the course of about a year.  The correlation scores were entered on a 

spreadsheet designed by NIST for statistical analyses, from which control charts and control 

limits were developed for the proposed Traceability and Quality System. 

 

19 ballistics examiners from 13 IBIS sites participated in this project from July 2008 to July 

2009.  The first set of test data was sent to NIST in September 2008.  Based on the data analyses, 

a feedback report was sent to the participating examiners in October 2008, and discussed at the 

second NIST/ATF workshop held in New Orleans on January 8
th

, 2009.  After October 2008, 

significant improvements were observed for some IBIS sites that previously had low IBIS scores 

before the feedback report.  The second set of test data was sent to NIST between February and 

March, 2009.  The final set of test data was sent to NIST in September 2009.  After statistical 

analyses, draft control charts and control limits were developed for the proposed Traceability and 

Quality System.  The third workshop was held from March 23
rd

 to 24
th

, 2010 in St. Louis to 

review the overall project to that time and summarize the draft control charts and control limits. 

 

6. Statistical Analyses, Control Charts and Control Limits 

 

Figure 9 shows the initial collective distribution of IBIS correlations for breech face (BF), firing 

pin (FP) and ejector mark (EM) scores [22] of SRM cartridge cases (top), and for the Max Phase 

(MP) and Max LEA (ML) scores [22] of the SRM bullets (bottom).  The MP represents the total 

score of six LEAs at their maximum registration position of the two correlated bullets; the ML 

represents the maximum score of any individual LEA.  One of the 19 examiners only 

participated in Phase 1 tests of SRM cartridge case.  The collective distribution models are, 

roughly speaking, close to a Gaussian distribution except for the ejector mark scores, which 

include a lot of correlation scores either close or equal to zero (to be discussed in Section 7.3).   



11 
 

 
Figure 9.  The collective distribution of initial IBIS correlation scores of 19 examiners for 

breech face (BF), firing pin (FP) and ejector mark (EM) scores (before correction) of the SRM 

cartridge cases (top), and the Max Phase (MP) and Max LEA (ML) scores of the SRM bullets 

(bottom).  The correlations were performed with respect to the Golden Images (see Fig. 5 and 6) 

housed in the Region 6 Server of the NIBIN at the ATF National Laboratory Center, Ammendale, 

MD.   

  

Table 1.  Control limits for Max Phase and Max LEA scores of SRM bullets, and for breech face, 

firing pin and ejector mark scores of SRM cartridge case with a one sided 95 % confidence level 

 

 Mean Standard 

deviation 

95 % Control limit 

Maximum phase  5562 1373 3404 

Maximum LEA 1498 273 1049 

Breech phase 276 38 214 

Firing pin 233 38 171 

Ejector mark 968 345 400 

(After correction)  
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Figure 10.  A dynamic control chart for IBIS max phase scores of a SRM bullet 

 

 

For the Gaussian distribution, the one sided control limit (CL), which controls the low values 

only, with a 95 % confidence level can be calculated as  

 

CL = (µ – 1.645 σ),   (2) 

 

where µ and σ represent the collective mean and standard deviation, respectively.  1.645 is the t-

factor of Gaussian distribution corresponding to a one sided 95 % confidence level for the 

control of low IBIS scores.  Some correlations show unstable scores in Phase 1 tests, hence, only 

the correlation scores of Phase 2 and 3 tests are used for developing the control limits.  Table 1 

shows the control limits for the IBIS MP and ML scores of the SRM bullets and the IBIS BF, FP 

and EM scores of the SRM cartridge cases.  The control limit for EM scores (400) is calculated 

from a new set of re-corrected scores which will be discussed in Section 7.3. 

 

For each examiner, when the correlation scores are entered in the spreadsheet, a dynamic control 

chart with dynamic and fixed control limits is automatically generated.  One example is shown in 

Fig. 10 which is a dynamic control chart of IBIS Max Phase scores of a SRM bullet, based on 24 

inputs of an examiner for about a year period.  The top line represents the correlation scores; the 

middle line represents the dynamic lower control limit, CLD, corresponding to approximately a 

one sided 95 % confidence level, which is calculated by: 

 

,
1

645.1
1

N

i

iNND X
N

CL

   (3)

 

where 

,
1

1

N

i

iN X
N

 

 

Xi is the value of the parameter, i is the index, and N is the number of tests performed.  The 

dynamic control limit reflects a variation trend of the correlation scores.  When the correlations 
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Figure 11.  The effect of lighting direction on the change of image patterns of LEA 1 of SRM 

bullet S/N SRM 2460-038 at: (a) 0°, (b) +1°, (c) +2°, (d) +3°, (e) +4° and (f) +5° position.  The 

rotation uncertainty for the rotary stage is estimated as ±0.1° (k = 2).  The circled defects A, B, C 

shown in Fig. 11a indicate that the same portion of surface remains in the left hand field of view 

for images a – f. 

 

scores are below the dynamic control limit, it provides an early warning sign for the ballistics 

examiners.  The bottom line in Fig. 10 shows the fixed control limit (CL) for the Max Phase 

scores of SRM bullets (CL = 3404) with a one sided 95 % confidence level as shown in Table 1. 

 

7. Quality Assurance for NIBIN Acquisitions and Correlations 

 

Three major uncertainty sources for NIBIN acquisitions and correlations may come from: 

1. Operator, acquisition process, and IBIS acquisition hardware including the optical 

microscope. 

2. IBIS correlation software and NIBIN correlation network.   

A 

B 
C 
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3. Calibration and reference standards including the SRM bullets and cartridge cases. 

   

During the IBIS project, we selected some questionable IBIS correlations from the control charts 

and analyzed their corresponding images, by which we have identified different quality problems 

associated with the operator and acquisition procedure, with the IBIS correlation process, and 

even with the SRM standard cartridge case itself. 

 

7.1. Quality problems from the IBIS operator and acquisition process 

 

In ballistics image acquisition, lighting conditions including the type of light source, the light 

direction, the intensity, the color and material reflectivity, and the image contrast have a 

significant effect on imaging quality and correlation scores, and should be standardized and well 

controlled.  Even for standardized lighting conditions such as the automatic lighting [22] used in 

the IBIS microscopes, variations caused by the measurement setup and acquisition process may 

significantly affect signature acquisitions and correlations. 

 

We have recently tested how the lighting direction can change the image patterns of a bullet LEA 

in an optical microscope.  The same LEA of a SRM bullet is imaged in an Olympus optical 

microscope.  The optical axis is kept stationary, but the bullet is rotated around its central axis by 

a rotary stage so that the relative lighting direction is changed from 0° to ±5° [23].  The rotation 

uncertainty for the rotary stage is estimated as ±0.1° (k = 2).  In Fig. 11, the left hand images 

obtained with the relative lighting direction varying from 0° to +5° are compared with the right 

hand image taken with the lighting direction at 0°.  A small surface defect ―A‖ as shown in the 

center of the LEA (see Fig. 11a) is used for alignment of the left and right hand images to avoid 

registration error.  When the lighting direction is the same 0°, the two striation patterns are 

essentially identical (Fig. 11a).  This indicates a high degree of repeatability in the imaging 

system.  When the bullet rotation of the left image is changed to +1°, some image differences can 

be observed (Fig. 11b), but their image patterns are similar.  When the bullet rotation changed to 

+2° and +3°, the differences in image patterns become significant (Fig. 11c and 11d).  When the 

bullet rotation is changed to +4° and +5°, the image changes become so significant that the 

image patterns would likely be concluded as ―non-matching‖ when compared with the reference 

image at 0° (Fig. 11e and 11f).   

 

Although the microscope images of bullet striations can change significantly with lighting 

direction, the surface topography itself and the surface defects do not change and can still be 

identified if the topography can be accurately measured (see Fig. 3) or if the defects can be 

clearly imaged independent of surface orientation.  From the six left hand images in Fig. 11, the 

circled defects pattern A, B, C shown in Fig. 11a persists unchanged with the changing of the 

relative lighting directions.   

 

The above experiments only demonstrate the effect of lighting direction on the image patterns of 

the fine striations: a few degrees of change in the lighting direction can totally change the image 

patterns.  Other instrument conditions, such as light intensity, spectral distribution, and recorded 

image contrast, also affect image quality, and should be controlled and documented.  A 

procedure for maintaining the correct lighting direction is provided by the IBIS Operation 

Manual [22].  In this procedure, a scanned laser beam ‗paints‘ two stripes on the top and bottom  
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Figure 12.  Two IBIS user screens show the X-translation values (top plots) and the Y-

translation values (middle plots) [22].  For a typical acquisition of IBIS, the Y-translation plot 

shows very little variation in the Y-translation value (left, middle), whereas the other Y-

translation plot (right, middle) reveals an error in the image stitching operation.  See text for 

more explanation on the X-Y translations.  

 
Figure 13.  Collective Max Phase correlation scores for SRM bullets for 18 NBIC participants.  

The vertical dotted lines indicate the demarcation between Phases 1, 2, and 3 tests.  The dashed 

red line represents the initial estimated control limits and the dashed green line represents the 

final control limit.  See text for more explanation on these control limits. 
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shoulders of a bullet LEA that are used for adjusting the bullet position when acquiring an image 

on one of the bullet‘s LEAs.  Both the IBIS Operation Manual [22] and the NIST Certificate of 

SRM 2460 Standard Bullets [13] specify that the ―Anchor positions for top and bottom shoulders 

of each LEA must be set correctly,‖ and that ―Translation/rotation needs to be adjusted at both 

shoulders to ensure that the laser stripes are parallel throughout the land impression.‖  If the 

anchor positions and laser stripes are set incorrectly, significant differences between the 

operator‘s lighting condition and the standard lighting condition [13,22] may occur.  The IBIS 

standard lighting alignment conditions were used at the National Laboratory Center at ATF for 

capture of the Golden Images.  These conditions must be reproduced by the operators in local 

IBIS sites in order to achieve high correlation with the Golden Images.  The standard lighting 

alignment conditions can be established by correct measurement setup as described in both the 

NIST SRM Certificate [13] and the IBIS Operation Manual [22].   
 

In addition to the change in lighting conditions discussed above, errors in the IBIS image 

stitching could also affect image correlation.  The IBIS microscope captures images at a small 

part of the Land Engraved Area (LEA) each time, and stitches these images together as a whole 

image for correlation.  A rotation and X-Y translation stage is used for the rotating and 

translating the bullet so that different parts of the LEA could be synchronously imaged with a 

designed overlap for image stitching.  The rotation stage rotates the bullet around its central axis 

(or the X-axis), the Y-stage moves the bullet in the direction perpendicular to the X-axis.  If the 

rotation-translation stage works insynchronously, the IBIS microscope may produce disjoint 

images of the LEA striations caused by the stitching errors, which are indicated by a large 

deviation in the pixel plot of Y-translation (see the right-middle plot in Fig. 12) [23].  Whatever 

the cause, the acquired images and correlation scores may be invalid and the images may need to 

be reacquired. 

 
Fig. 14a.  Correlation images of SRM bullet between a local IBIS site (left) and the Golden 

Image (right), the Max Phase score of 5592 is well above the control limit of 3404. 
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Fig. 14b.  Correlation images of SRM bullet between a local IBIS site (left) and the Golden 

Image (right), the Max Phase score of 3169 is just below the control limit of 3404. 

 

 
Fig. 14c.  Correlation images of SRM bullet between a local IBIS site (left) and the Golden 

Image (right), the Maximum Phase score of 1415 is far below the control limit of 3404. 
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Another quality issue for image acquisition of SRM bullets is the control of the LEA width.  In 

the Appendix of the SRM Certificate [13], it is specified that ―Anchor positions for top and 

bottom shoulders should be set such that the difference of LEA width is no more than ±0.08 mm 

(±0.003‖) from the nominal LEA width.‖  The nominal LEA width of SRM bullets can be found 

in the SRM Certificate [13].  If the LEA width shows significant difference from the specified 

width, the acquired images may show ―scale differences‖ with respect to the Golden Image, i.e., 

the acquired images have the same image pattern but are either wider or narrower than the 

Golden Image.  That may also result in decreased correlation scores. 

 

Figure 13 shows a summary of the Max Phase scores of SRM bullets from the 18 NBIC 

participants.  Each took 24 correlations over the course of a year.  The vertical dotted lines 

indicate the demarcation between Phases 1, 2, and 3 tests.  The dashed red horizontal line 

represents the initial estimated control limit from previous IBIS acquisitions from 2002 to 2006 

performed at ATF, FTI (Forensic Technology Inc. Canada) and the IBIS training center in Largo, 

FL.  The green dased horizontal line represents the control limit (CL) calculated from the 

correlation scores of the NBIC project (CL = 3404, see Table 1), which is lower than the initial 

estimated control limit.  Four sets of correlations are selected for discussion: the first set is for a 

correlation score of 5592, which is well above the control limit of 3404; the second set (3169) is 

just below the control limit; and the other two sets (1415 and 1927) are far below the control 

limit.  Figure 14 shows the sets of IBIS images corresponding to the 5592, 3169, and 1415 scores 

(see left hand images) each juxtaposed with the Golden Images established at the ATF (right 

images).  For the first set of images with maximum phase score of 5592 (see Fig. 14a), all six 

LEA images show close striation patterns with the Golden Images.  However, the images for 

LEA 5 and LEA 6 show minor scale differences, i.e., the operator‘s images (left) have the same 

pattern but are wider than the Golden Image (right). 

 

For the second set of images with Max Phase score of 3169 (see Fig. 14b) just below the control 

limit of 3404, more significant image differences (when comparing with Fig. 14a) from the 

Golden Images are found, such as in LEA 5 in Fig. 14b.  For the correlations with Max Phase 

scores of 1415 and 1927, which are far below the control limit of 3404, most of the image 

patterns show significant differences with the Golden Images.  One set of the images with 

maximum score of 1415 is shown in Fig. 14c.  That indicates an invalid image acquisition. 

 

Generally speaking, whenever a Max Phase score falls below the control limit (3404), it may be 

caused either by a problem in the measurement setup just prior to acquisition of the SRM bullet, 

or by the image stitching problem described above.  Quality problems in the image acquisition of 

SRM bullets can be avoided by strictly following the operation procedure described in the SRM 

Certificate [13] and the IBIS Operation Manual [22]—by carefully checking every procedural 

detail including the ‗laser stripes‘ and anchor positions at both shoulders of the LEA, the LEA 

width, and by looking for disjoint images and for large deviations in the Y-translation plot on the 

IBIS screen (Fig. 12). 

 

It should be noted that for correlation scores higher than the control limit, minor imperfections in 

the correlation images might still be found (see Fig. 14a, LEA 5 and 6).  If the correlation scores 

are just above but very close to the control limit, it might be necessary to check the correlation 

images and operation procedures to pinpoint possible quality problems. 



19 
 

7.2. A quality problem discovered and corrected with SRM cartridge cases 

 

The control chart and control limit also helped us to find a quality problem with the SRM 

cartridge cases.  Figure 15 shows the collective correlation scores for breech face (BF) of SRM 

cartridge cases for 19 participants.  Each took 24 correlations in three phases over the course of a 

year but one examiner ―S‖ participated in Phase 1 tests only.  The control limit, shown as the 

dashed green horizontal line, is calculated to be 214 (see Table 1).  The dashed red horizontal  

 
Figure 15.  Collective correlation scores for breech face (BF) impressions of SRM cartridge 

cases for 19 NBIC participants with respect to the BF Golden Image.   The vertical dotted lines 

indicate demarcation between Phases 1, 2, and 3 tests.  The dashed red line represents the initial 

estimated control limits and the dashed green line represents the final control limit.  See text for 

more explanation on these control limits. 

 

 
Figure 16.  Surface contamination on the surfaces of the breech face impression on a SRM 

cartridge case (left) and on firing pin impression of another SRM case (right), both are likely 

caused by a soldering process during the manufacture of the SRM cartridge cases. 
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Figure 17.  Collective correlation scores for firing pin (FP) impressions of SRM cartridge cases 

for 19 participants with respect to the FP Golden Image. The vertical dotted lines indicate 

demarcation between Phases 1, 2, and 3 tests.  The dashed red line represents the initial 

estimated control limits and the dashed green line represents the final control limit.  See text for 

more explanation on these control limits. 

 

line represents the estimated control limit as mentioned before.  It can be seen that the breech 

face scores of examiner ―R‖ show a sudden drop below the control limit after the Phase 2 tests.  

This SRM cartridge case was then sent to another IBIS site for a verification test by another 

examiner; and the correlation score again fell below to the control limit.  Upon checking this 

SRM cartridge case in a microscope, some surface contamination was found (see Fig. 16 left) 

which had not been found during the initial inspection and topography measurement at NIST. 

 

The same problem was also found on the firing pin impression of another SRM cartridge case.  

Figure 17 shows the collective correlation scores for the firing pin impressions (FP) of SRM 

cartridge cases for 19 participants.  One examiner ―S‖ participated in Phase 1 tests only.  The 

control limit is 171 (see Table 1).  It can be seen that correlation scores for examiner ―A‖ are 

below the average value for all participants and most are either close to or below the control limit.  

By checking the SRM cartridge case in a microscope, the same kind of surface contaminations 

was found on the firing pin impression (see Fig. 16 right) as was found on the breech face 

impression of the other SRM cartridge case described above.  This contamination had also not 

been found during the initial inspection and topography measurement at NIST. 
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Figure 18.  Cross-correlation maximum CCFmax tested from the topography measurements of 

firing pin impressions of 173 SRM cartridge cases.  The manufacturing procedure for the first 

and second shipment had included a soldering process.  But a gluing process was used for the 

third shipment.  The topography image of SRM cartridge case 007 is used as a correlation 

reference. 

 

Contamination had been found initially on some other SRM cartridge cases (but not on the two 

cartridge cases mentioned above) during the initial surface inspection and topography 

measurements at NIST.  Figure 18 shows the measurement result of CCFmax values for firing pin 

surface of 173 SRM cartridge cases.  These SRM cartridge cases were delivered to NIST by 

three shipments, one each in 2007 (31 cartridge cases), 2008 (71 cartridge cases) and 2009 (71 

cartridge cases).  Surface contamination was found on some of the SRM cartridge cases from the 

2007 and 2008 shipments.  The correlation values CCFmax for these SRM cartridge cases are 

below the designed certification of 95%, and these cartridge cases were rejected. 

 

After a discussion with the contractor, it was found that the surface contamination was caused by 

the soldering process by which the electro-formed nickel SRM cartridge case was fixed onto its 

brass cylinder holder.  It was decided to eliminate the soldering process and switch to a gluing 

process for the production of the SRM cartridge cases.  As a result, none of the 71 cartridge cases 

of the third shipment made by the new process reveals any surface contamination so far, and 

their CCFmax values are all higher than 95% (see Fig. 18). 

 

To ensure the quality of the SRM cartridge cases and to prevent the reappearance of surface 

contamination, the project team has decided to replace all 102 SRM cartridge cases shipped in 

2007 and 2008 using the soldering process.  In March 2010, the fourth shipment of 105 cartridge 

cases made with the gluing process was delivered to NIST to replace the cartridge cases received 

from the 2007 and 2008 shipments.  These topography measurements at NIST and IBIS 

correlations at ATF have been completed; these SRM cartridge cases will be certified for sell in 

2011. 
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Figure 19.  Initial collective correlations for ejector marker (EM) scores of SRM cartridge cases 

for 19 participants.  A quality problem was found in the inter-region correlations for examiners 

from A to N. 

 

 

7.3  Quality problems discovered and corrected with the IBIS systems and correlation 

network 

 

Figure 19 shows the initial set of collective correlation scores for the ejector marks of the SRM 

cartridge cases for 19 participants.  Each participant took 24 correlations in three phases over the 

course of a year but one examiner, ―S,‖ participated in Phase 1 tests only.  It can be seen that 

there are many meaningless correlation scores, which are either close or equal to zero (see 

examiners from A to N), except for five examiners (O, P, Q, R, S).  It was found that all the five 

examiners are located in the same correlation Region 6 of the NIBIN (there are 13 correlation 

regions in NIBIN altogether) where the ATF‘s Golden Images are located.  This quality problem 

was reported to Forensic Technology Inc. (FTI) during the NBIC project.  At the NIST/ATF 

workshop in March 2010, FTI representatives reported that FTI engineers had discovered a fault 

in the inter-region correlation software that caused errors in some of the correlation scores when 

ejector marks from different NIBIN regions are correlated. When a manual correlation request 

was generated against a site in a different region, the paired ejector mark image signatures taken 

under different lighting condition were occasionally switched because of a database access 

anomaly.  The NBIC tests required a manual correlation against the Golden Image exhibit 

housed on the Region 6 server at ATF‘s National Laboratory Center in Ammendale, MD.  So the 

results of correlations of exhibits from outside Region 6 contained inconsistencies.  This issue 

has been resolved throughout NIBIN as of January 2010.  As a result, the project team agreed to  
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Figure 20.  Collective correlations for ejector marker (EM) scores of SRM cartridge cases for 18 

participants after the quality problem of inter-region correlation software was corrected. 

 

a re-correlation of the existing cartridge case images with respect to the Golden Image.  Figure 

20 shows the re-correlation results for 18 examiners who completed the tests of all three phases, 

from which a control limit of 400 was developed for ejector mark acquisitions (see Table 1).  It 

must be noted that all the control limits developed from the NBIC project (as shown in Table 1) 

are preliminary and may be modified in the future. 

 

During the re-correlation process, another problem was found with the breech face re-

correlations.  When the same pair of breech face images was input to the IBIS correlation 

software for re-correlation, the correlation score can be somewhat different than the score of the 

first round of correlations.  The project team has worked with FTI engineers and solved this 

problem.  It is found that the Golden Image of the breech face was modified on May 29
th

, 2009.  

This was an inadvertent modification associated with inspection of the ring boundaries.  As a 

result, when the breech face image captured before May 29, 2009 was re-correlated with the 

modified Golden Image, some of the correlation scores were modified as well.  This problem has 

been corrected. 

 

8. Summary 

 

The National Ballistics Imaging Comparison (NBIC) project was initialized in 2008 and was 

aimed at establishing a Nationwide Traceability and Quality System for NIBIN acquisitions and 
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correlations.  19 ballistics examiners from 13 U.S. crime labs participated in this project.  They 

each took 24 acquisitions of NIST SRM Bullets and Cartridge Cases over the course of a year, 

but one examiner only participated in Phase 1 tests of SRM cartridge case.  The acquired images 

were correlated with Golden Images at the National Laboratory Center of ATF, from which 

control charts and control limits have been developed.  These will be used for maintaining the 

proposed Traceability and Quality System of NIBIN and for promoting future assessments and 

accreditations for U.S. ballistics laboratories in accordance with the ISO 17025 Standard. 

 

NIST SRM Standard Bullets and Cartridge Cases function as reference standards for establishing 

metrological traceability for both the topography measurements at NIST and for the image 

correlations of NIBIN.  For the topography measurements, the measurement traceability is 

established using the SRM Bullets and Cartridge Cases and NIST proposed parameters Ds and 

CCFmax traceable to the SI unit of length.  For the image acquisitions of NIBIN, traceability is 

supported by correlation of SRM bullet and cartridge case images at local IBIS sites with respect 

to the Golden Images of the National Laboratory Center of ATF. 

 

NIST SRM Bullets and Cartridge Cases, combined with the use of control charts and control 

limits, are powerful tools for quality assurance of NIBIN acquisitions and correlations.  During 

the NBIC project, several quality problems related to the operator and acquisition procedure, the 

IBIS software and correlation network, as well as the SRM cartridge cases themselves, have been 

successfully identified and have been corrected. 
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