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Abstract—Understanding queuing dynamics of TCP is impor-
tant for correct router buffer sizing as well as for optimizi ng
the performance of the TCP protocol itself. However, modeling
of buffer content dynamics under TCP has received relatively
little attention given its importance. Commonly used queuing
models are based on overly simplistic assumptions about the
packet arrival process. As a consequence, there are no quanti-
tatively accurate closed loop TCP models capable of predicting
performance even for a single link shared by multiple flows. Our
present paper aims to close this gap by proposing a simple TCP
queuing model, which is based on experimental observationsand
validated by extensive packet level simulations.

I. I NTRODUCTION

Queuing dynamics of TCP packet traffic has long been a re-
search topic of great interest. Understanding queuing dynamics
of TCP is important for correct router buffer sizing as well as
for optimizing the performance of the TCP protocol itself.
However, modeling of buffer content dynamics under TCP
has received relatively little attention given its importance.
Commonly used queuing models, on which packet loss models
of closed loop TCP models are based, are often ad hoc and
are based on overly simplistic assumptions, such as Poisson
arrivals of buffer overflow moments and Poisson packet ar-
rivals. As a consequence, there are no quantitatively accurate
closed loop models (i.e. mathematical models parametrized
solely by the a priori known network parameters, such as
router capacity, propagation delay and buffer size) capable
of predicting performance even for a single link shared by
multiple flows. This is the gap that our present paper aims
to fill by proposing a simple TCP queuing model, which is
based on experimental observations and validated by extensive
packet level simulations.

Before describing the proposed model we give a brief survey
of the queuing and packet loss models that have appeared in
TCP literature. Mathematical models of TCP require some way
of modeling packet loss in order to close the control loop of
the TCP congestion avoidance mechanism. Since packet losses
occur most often at buffer overflow1 it is natural to take packet
loss probability as the blocking probability in a single server
queue. Thus there is a close connection between packet loss
models and queuing models.

There are two distinct approaches to modeling packet loss:
stateless and stateful. The former assumes that in equilibrium
queue length sampled at the times of packet arrivals behaves
as a sequence of i.i.d. random variables. Correctness of this

1at least in wired networks, which today constitute the bulk of the Internet

assumption has been experimentally tested for cross-WAN and
-Internet TCP flows but it appears to be wrong for LAN flows
[1]. On the other hand, the stateful approach assumes that
queue length has long range autocorrelation and so the queue
state needs to be a part of the whole TCP model. Packet loss
probability is then expressed as a function or a random process
(depending on the specific model) which depends on the length
of the queue.

For the stateless models the queue length distribution is typi-
cally assumed to be one of the standard queuing theory models
– M/M/1, M/M/1/B or M/D/1/B. The advantage of these mod-
els is the ready availability of explicit analytical expressions
for most quantities interest, including the blocking probability.
Models based on M/M/1/B queues have been extensively used
in publications on fluid approximation, which are numerous,
e.g. [10],[27],[25],[21],[23],[18], as well as in some papers
on the problem of router buffer sizing[9],[22],[11]. It has
long been known, however, that these models fail to ade-
quately capture the complex statistical structure of TCP traffic
[20],[13],[16] and produce significantly inaccurate results [12].
We discuss the reason for this failure below. Attempts have
been made to modify these models, for example, by adding
flow synchronization effects, in order to improve their fidelity
but with limited success [2],[4].

The stateful queuing models have been especially popular
in stochastic TCP modeling literature [3],[5],[6] but also
have appeared in fluid approximation models of TCP with
router implementing Random Early Drop[14],[26],[24]. These
models explicitly include queue length as a variable governed
by a coupled (stochastic) differential equation. Packet loss is
then modeled as a probability function or a random, usually
Poisson, process dependent on the current queue length. While
few of the resulting models have been experimentally veri-
fied, partially due to their mathematical complexity, they are
unlikely to produce accurate results because they are based
on overly optimistic assumptions about the uniformity of TCP
transmission rate, similar to the M/M/1/B models.

An interesting exception to this rough classification is the
model of Dumas, Guillemin and Robert in which the packet
loss is assumed to be a Bernoulli process on the RTT2 (round
trip time) time scale but has state given by the order of
transmission on the sub-RTT scale [8]. Their results, however,
give asymptotic formulas for the congestion window size
distribution in the limit of zero packet loss for a fixed packet

2We use round trip propagation delay and round trip time interchangeably
because processing and buffering delays are largely insignificant in the setting
we consider.
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loss probability function, i.e. it is an open loop model, which
ignores the problem of relating TCP and network variables to
packet loss.

We must also, separately, mention the work of Wischik on
router buffer sizing, which attempts to account for the effects
of packet burstiness on queue length with a model based on
an M/M/1/B queue[28]. While burstiness is indeed the crux of
the issue, the results of the study have not been experimentally
tested, to the best of our knowledge, and the degree of their
qualitative and quantitative accuracy remains unclear.

In summary, both the stateless and the stateful queu-
ing models are based on fundamentally flawed assumptions
about the uniformity of the TCP packet emission process.
This observation has been made by a number of authors
[15],[13],[12]. Most explicitly the issue has been described by
Baccelli and Hong in [4]. There the authors describe a large
scale fluid approximation TCP/IP network simulator based on
the M/M/1/B queuing model with a modification accounting
for increased packet loss due to flow synchronization. The
simulator performed well when the access link speed was not
too high, however, when it became larger than a certain thresh-
old the simulator significantly overestimated the throughput
because “with high speed local links, packets are very likely
to be concentrated at the beginning of RTTs. Such a packet
concentration creates losses even if the input rate averaged
over one RTT is much smaller than the capacity of the shared
resource.”[4]

The origin of the burstiness observed by Baccelli and Hong,
and others is easily traced to the operation of the sliding
window algorithm used by TCP. This algorithm releases
packets for transmission only in response to acknowledgments
received for previously sent packets. The result of this behavior
is that packets flow back and forth in formation, creating
bursts followed by silences, during which the algorithm awaits
the acknowledgments of the transmitted packets. Instead of
sliding smoothly along the queue of packets ready to be
transmitted, the sliding window instead moves in fits and starts.
We note, that the sliding window algorithm is implemented
in all current TCP variants. Therefore, we can be sure that
this transmission burstiness affects not only the long standard
TCP-Reno but every implementation of TCP in existence. The
only modification that could change this would be transmission
pacing, but it may have issues of its own[28],[?].

The present paper is meant to fill a certain gap in the
program we envision as leading to high-fidelity TCP net-
working models. It has long been assumed that mean value
models, such as fluid approximation, can give an accurate
estimate of the steady state, and even dynamics of, TCP
performance. Recent research, however, indicates that statistics
of the TCP congestion window size and of the transmission
process contribute significantly even when the number of flows
is very large, and that more sophisticated models are necessary
if quantitatively, as well as qualitatively, accurate results are
desired. The ingredients necessary to achieve this goal, inour
view, are

i) an accurate model for the congestion window size dis-
tribution as a function of the network parameters and
packet loss;

ii) an accurate queuing model that can be used to deduce
the packet loss probability in terms of the congestion
window size distribution and parameters of the network.

These correspond to the two halves of the TCP congestion
avoidance feedback loop. Significant progress has been made
by a number of authors in tackling the first item. Closed,
though, still rather mathematically complex, expressionshave
been obtained for the stationary distribution of the congestion
windows sizes of TCP flows under the restriction of a constant
RTT [3],[8],[6]. Our present work is aimed at providing a
partial answer to the second problem.

The on-off fluid source model we propose here is not
new, although some adaptation to the specifics of TCP was
necessary. We describe the model in detail in Section II, but
we highlight here the observations about the equilibrium TCP
queuing behavior that lead to it:

1) in equilibrium TCP sources can be treated as statistically
independent3,

2) in equilibrium a TCP source can be treated as a station-
ary random fluid on-off source.

The first observation is perhaps not very surprising given that
the flows are coupled only by packet loss at the queue, which at
equilibrium typically behaves like a stationary random process.
Observation (2), however, is somewhat less obvious, as it says
that the exact congestion window trajectories of individual
flows do not matter to the router queue length distribution.
That is, from the point of view of the buffer, a collection of
ordinary TCP sources and ones whose congestion windows
change randomly, but follow the same distribution as the
former, are equivalent4.

These observations permit construction of a simple yet
accurate TCP queuing model. The basic structure of the model
follows that of Kosten [17] and Anik, Mitra and Sondhi [7].
The main difference with the former is that the “on” and “off”
periods are not exponentially distributed, which makes exact
solution for the stationary queue length distribution unlikely.
Still, there is hope that some analytical headway can be
made with more general distributions based on the work of
Palmowski and Rolski[19]. The proposed model also has the
advantage of providing a unified framework for treating large
as well as small buffer regimes, which so far have usually
been treated as distinct asymptotic regimes requiring separate
calculations.

We validate the Kosten-Anik-Mitra-Sondhi (KAMS) model
by comparing the stationary queue length distribution obtained
from ns2 simulations with that obtained from numerical simu-
lations of the model for a large number of network parameter
combinations. Since we measure the distance between whole
queue length probability distributions, which are signatures of
the underlying queuing processes, the near perfect observed
match between distributions is an indication of the identity of
the queuing processes that produced them.

This work is a refinement of our previous paper [12],
where we first applied KAMS to TCP queuing and provided

3Synchronization between flows does occur for certain network parameter
combinations in our study but is atypical (see Figure 3).

4provided the number of sources is sufficiently large
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experimental evidence in its support. Although our work
is independent, we have recently learned that several other
authors have also arrived at related models, in our view,
strengthening the case for its correctness and utility [15],[13].

The rest of the paper is arranged as follows. In Section II
we layout the details of the KAMS model and its adaptation to
TCP. Section III describes details of the validation approach.
Results of validation are presented in Section IV. Section V
summarizes our findings and discusses directions for future
work.

II. KAMS TCP QUEUING MODEL

The model we propose for TCP queuing is derived from
the multi-input buffer queuing model originally studied by
Kosten [17] and later by Anik, Mitra and Sondhi [7] (and
many others since). The main advantage of KAMS is that it is
able to incorporate TCP burstiness, essential to accurate queue
modeling, with a minimum of mathematical complexity.

The basic, in the topological sense, KAMS model is a
network with a single server and a fixed number of inputs.
This admittedly simple setup is a fundamental building block
in and stepping stone to the study of more complicated
TCP networks. Even this topologically simple model can
be practically useful for modeling bottleneck routers in the
broadband edge network.

The queue input process in KAMS is modeled as a su-
perposition of some number,N , of statistically independent
random on-off fluid sources. Each source has two states —
”on”, when it is transmitting, and ”off”, when it is not. In the
on state, every source emits data with some constant rateν.

This two level fluid source model is a natural fit for
approximating bursty TCP transmission behavior. The on
periods correspond to packet-burst transmissions, when the
TCP source transmits the packets one after the other in quick
succession, and the off periods to silences as the source awaits
acknowledgment of the transmitted packets.

Data streams from all sources merge in the server queue
so that whenk sources are active the total data inflow rate is
kν. The server processes incoming data at a constant rateC.
Whenkν > C the arrived but unprocessed data is stored in a
buffer of sizeB. Any data arriving after the buffer becomes
full is discarded.

The equivalent computer network looks like a double fan
(Fig. 1). The TCP sources on the left transmit data to their
respective receivers on the right over the bottleneck link in
the middle. To make this basic architecture as simple as
possible we will also assume that round trip propagation delays
between the source-receiver pairs are roughly equal. This is
the archetypal bottleneck network.

SinkRouter

Sink
Sink

Sink

Sink
Sink

Sink

Source

Router

Source
Source

Source

Source

Source

Fig. 1. Basic network topology.

Most of the KAMS parameters match up naturally with
this model bottle network’s parameters, soC is the bottleneck

router capacity,B is the router buffer size andN the number
of TCP sources. The three remaining parameters —ν, and the
random processes determining the on and off period durations
require specific tuning to match KAMS behavior to the model
TCP network.

In the original KAMS modelν is a free parameter, permitted
to vary from source to source. For a TCP flow the rate of
transmission is determined by the parameters of the network,
provided a source’s rate is not itself the limiting factor. The
timing of packet emissions is determined by the TCP sliding
window algorithm. Since a new packet is sent only when
an acknowledgment for the previous packet is received, the
speed of the access link, which is usually the slowest segment
of the network, determines the interval between consecutive
packets emissions. We will assume that the maximum speed
of a TCP source is not less than the speed of its access link.
Thus ν is equal to the speed of the access link. In practice,
this assumption is vacuous, since the speed of the access link
can be assumed to be equal to the speed of the source if the
source is slower.

Duration of a given on period is determined by the size of
the packet burst. Further, the number of packets in a burst, due
to idiosyncrasies of the sliding window algorithm, is equalto
the size of the sliding window, which we will assume is equal
to the congestion window. Indeed, analysis ofns2 packet traces
confirms that most packets are transmitted in bursts equal in
size to the congestion window [12]. Moreover, packets in a
burst are transmitted back to back at the speed of the slowest
router in the path, i.e.ν. Thus a duration of a given on period is
simply the congestion window size at the time of its initiation
divided byν.

It turns out that due to the multiplexing at the router it
is not necessary to have the on periods of a given source
follow the additive increase multiplicative decrease(AIMD) of
the TCP congestion avoidance algorithm. Provided the sources
activate independently of each other, the on periods of a given
source can be modeled as a sequence of i.i.d. random variables
with the same distribution as a deterministic AIMD source.
From the point of view of the router these two input processes
appear to be indistinguishable. The problem of determining
the on period duration thus shifts to identifying the stationary
congestion window size distribution.

Several papers have been published describing the stationary
congestion window size distribution for a single source as well
as for a large number of sources sharing a bottleneck link.
The resulting mathematical expressions are, unfortunately,
highly complex, making it difficult to check their identity
or difference. Their complexity also makes it very difficult
to implement realizations of the corresponding random vari-
ables. In practice, a good approximation is often sufficient
for obtaining very accurate results. One characteristic that all
theoretically computed distributions share is the Gaussian tail.
We, therefore, postulate that the congestion window size dis-
tribution is approximated by a truncated normal distribution,
restricted to the range[0,∞). Lacking a ready formula relating
the parameters of this distribution to the network parameters
of the model, we estimated them instead from experimental
data. Details of the estimation procedure are explained in
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Section III. We emphasize that this is not a shortcoming of the
proposed model, since it is only meant to model the steady
state queuing statistics andnot the TCP congestion avoidance
algorithm.

Finally, the off period is the silence between consecutive
bursts of packets. Since at most a congestion window’s worth
of packets can be sent in a single round trip and since this is
exactly the burst size observed it follows that the durationof
an off period is equal to RTT minus the duration of the last
burst. However, because we will be concerned with high speed
routers the burst duration will be negligibly small compared
to the RTT. Since the same applies to the buffering delay,
the off periods can be assumed to be equal to the round trip
propagation delay, identical and constant for all sources.

III. M ETHODOLOGY

To validate the constructed model we compared the queue
length distributions obtained from numerical simulationsof
the KAMS model with the same distributions computed from
ns2 packet level simulations for a range of network parameter
combinations. Below we describe the parameter values used
in the validation study and the rational behind the specific
choices.

The number of flowsN in the validation study was set
to 1000. Firstly, this is a large number of flows that might
realistically be observed at a router at the periphery of theIn-
ternet, where most bottlenecks lie. Secondly, atN = 1000 the
model is close enough to the asymptotic limit that increasing
the number of flows further does not significantly affect the
queue length distribution. Router capacity was fixed atC = 1
Gbps. Access link speed was set at 100 Mbps, which gives
ν = 100 Mbps.

The remaining scalar parameters — router buffer size and
round trip propagation delay — were varied to determine how
accurately the KAMS model tracks packet level simulations.
These parameters are also known to have the strongest influ-
ence on TCP behavior and so we were most interested in the
fidelity of the KAMS model with respect to them.

Router buffer size was varied in steps of 50 pkts from 50
pkts to 300 pkts. Preliminary experiments withns2 suggested
that increasing buffer size beyond 300 pkts does not signif-
icantly affect packet loss and so 300 pkts was chosen as an
upper limit on the buffer size. Conversely, for buffer sizes
below 50 pkts packet loss increases dramatically, which makes
it a reasonable lower bound.

The round trip propagation delay was varied between 50 ms
and 300 ms in increments of 50 ms. This range of propagation
delays corresponds approximately to wired networks varying
in diameter from a LAN to the global Internet.

Finally, to fix the on period duration distribution it was
necessary to determine the parameters of the truncated normal
distribution, which we postulated approximates the congestion
window size distribution. Analyzingns2 experimental data we
found that the congestion window size distribution is, indeed,
very well approximated by a truncated normal distribution.
The mean of the distribution was take to be the mode of the
empirical distribution, computed as the average of the four

most likely values. The variance was then estimated by per-
forming a least squares fit of the truncated normal distribution
with the predetermined mean. The fit was performed on the
logarithm of the data, which gives a greater weight to the
accurate fitting of the tail of the distribution. In this way the
mean and variance of the congestion window size distribution
were computed for each of the 36 pairs of propagation delay
and buffer size to be used for running the KAMS model
simulation with corresponding parameters.

To summarize, the KAMS model was tested withN = 1000
flows, C = 1Gbps,ν = 100Mbps, router buffer size ranging
from 50 pkts to 300 pkts in steps of 50 pkts and RTT ranging
from 50 ms to 300 ms in steps of 50ms, giving 36 test points.

Validation was performed by running simulations ofns2
and KAMS for each of the 36 test points for 600 simulated
seconds. Inns2 simulations queue length was sampled once
per round trip. The KAMS simulation sampled queue length
at the moments when sources changed state. The cumulative
queue length distributions were computed by binning the
queue length data into consecutive integer bins. Only data
from the final 80% of the simulated time interval was used
to erase the effects of the transient phase.

IV. RESULTS

Results of the comparison between KAMS andns2 simu-
lations are summarized in Figure 2. The figure contains the
contour plot of normalized root mean square error (NRMSE)
in KAMS cumulative queue length distribution relative tons2
over queue lengths greater than 5 packets. We chose to drop
the distribution values for the queue lengths between 0 and 5
because they are of little practical importance but contribute
disproportionately to the error. Including the discarded values
does increase NRMSE by about 5%. The reason for the
disproportionately high contribution is that near the buffer
boundaries, i.e. near 0 andB, the accuracy of the fluid
approximation breaks down. This is because KAMS stationary
probability distribution becomes singular at the buffer bound-
aries, giving rise to jump discontinuities in the cumulative
distribution. On the other hand, thens2 cumulative queue
length distribution, while rising sharply near the boundaries,
remains continuous. The result is a very large relative error
in the boundary regions. This becomes a problem especially
when attempting to estimate the buffer overflow probability.

As can be seen from Figure 2 the KAMS model exhibits a
remarkably high accuracy — better than 5% NRMSE — for all
but two parameter combinations with round trip propagation
delay ≥100 ms. (Experiments withν = C produce similar
results which we do not present here for the sake of brevity.)

An interesting observation emerges from the analysis of
failure of KAMS in the region RTT< 100 ms. Ns2 packet
loss time series data indicate that for RTT=50 ms there is
significant packet loss synchronization between flows. Figure 3
attempts to capture the degree of synchronization of aggregate
packet loss with one number. The function, whose contours
appear in the figure, is a simple measure of “spikiness” of the
Fourier transform of the aggregate packet loss time series.We
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Fig. 2. Contour plot of NRMSE in KAMS cumulative queue length
distribution.

defined it as
maxi>0 |Re(ωi)|
1

M

∑
i>0

|Re(ωi)|
(1)

whereωi is theith Fourier coefficient of the aggregate packet
loss time series andM is the length of the data series.
The largest values, occurring for RTT=50 ms, correspond to
spectral densities with pronounced peaks arising from strong
periodicity in the packet loss time series. This agrees with
observations made in [?], where authors conclude that for long
RTTs packet losses are well approximated by an i.i.d. random
process, whereas for short RTTs there is a significant long-
range time correlation between packet losses.

Counterintuitively, KAMS errs on the side of higher queue
lengths and higher packet losses, which is the opposite of
what we expected to see when buffer overflow events become
synchronized. Synchronization is still a poorly understood
phenomenon and why it occurs for short RTTs, when the lag
in the congestion avoidance control loop is small, rather than
for long RTTs is a topic for future research.

Ultimately, the point of TCP queuing models is to provide
a formula approximating the buffer overflow probability and,
hopefully, observed packet loss probability. Hence, we con-
sider next the accuracy of KAMS full buffer probability. As
pointed out above, KAMS performs poorly near the buffer
boundaries. The relative error in the full buffer probability
is between 600 and 1400%. However, the error is nearly
constant across most of the test parameter range, allowing
us to introduce a scaling correction factor. Figure 4 show
the contour plot of the multiplicative error in KAMS full
buffer probability data after rescaling by the correction factor.
The correction factor was chosen equal to the average of
the multiplicative error for RTT≥ 100 ms, to avoid skewing
the mean by the abnormally high values from the parameter
combinations exhibiting synchronization. As can be seen from
the plot, for most test points the multiplicative error drops
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Fig. 3. Contour plot of the degree of synchronization of aggregate packet
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below 20%. Since in the TCP throughput formula packet
loss probability appears under the square root, the error in
estimated throughput would be smaller still, on the order of
10%.
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We note that thens2 observed full buffer probability does
not equal the observed mean packet loss rate, although, in the
absence of synchronization, they are roughly proportionalwith
a coefficient of about 0.6. Understanding of the relationship
between full buffer probability and packet loss requires further
research.

We also note that the KAMS model is highly sensitive
to the shapes of the on and and off period distributions.
Initially, we tried using exponential distributions for both since
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a closed formula already exists for the stationary queue length
distribution in this setting. The results were considerably
worse with NRMSE running as high as 20% for many test
points. Even using a half-normal distribution (i.e. a truncated
normal distribution with mean 0) produced results that were
substantially worse, even though the means of the truncated
normals used above were usually in the low teens. Switching
an exponential to constant off period distribution had a less
dramatic but still noticeable.

V. CONCLUSION

Overall, when the assumptions of the model are satisfied,
KAMS can be said to approximate the stationary queue length
distribution exceptionally well. This, in our opinion, is astrong
indication that KAMS correctly represents the TCP queuing
process. For well understood reasons, in absolute terms KAMS
is less accurate at the upper and lower buffer limits. However,
the KAMS full buffer probability is roughly proportional to
the observed one with a universal (across network parameters)
constant coefficient.

The ultimate goal of this work is to facilitate the creation of
numerically accurate closed form mathematical models of TCP
networks. In light of the presented work, two more problems
need to be resolved to achieve this final goal: first, a closed
form mathematical expression approximating buffer overflow
probability in the KAMS model, and, second, a closed form
approximation expressing the relationship between mean and
variance of the truncated normal distribution, representing the
stationary congestion window size distribution, and packet
loss probability. Headway, has already been made in both
of these directions by Palmowski and Rolski in establishing
results on the statistics of the stationary KAMS distribution for
general on-off period distributions[19], and by Bacelli, Dumas,
Chaintreau and others in establishing the relationship between
the packet loss process and stationary congestion window size
distribution [3],[8],[6]. The final synthesis of these elements
into a highly accurate model of TCP networking is a topic for
future research.
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