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Abstract—Understanding queuing dynamics of TCP is impor- assumption has been experimentally tested for cross-WAN an
tant for correct router buffer sizing as well as for optimizing -Internet TCP flows but it appears to be wrong for LAN flows
the performance of the TCP protocol itself. However, modehig 1) - o the other hand, the stateful approach assumes that
of buffer content dynamics under TCP has received relativef | th has | ¢ lati d th
little attention given its importance. Commonly used queung queue leng as long range autocorreiauon and so the queue
models are based on overly simplistic assumptions about the State needs to be a part of the whole TCP model. Packet loss
packet arrival process. As a consequence, there are no quant probability is then expressed as a function or a random geoce
tatively accurate closed loop TCP models capable of preditty  (depending on the specific model) which depends on the length
performance even for a single link shared by multiple flows. @r of the queue.
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validated by extensive packet level simulations. cally assumed to be one of the standard queuing theory models
— M/M/1, M/M/1/B or M/D/1/B. The advantage of these mod-
els is the ready availability of explicit analytical expsems

I. INTRODUCTION for most quantities interest, including the blocking priotigy.

Queuing dynamics of TCP packet traffic has long been a Mdodels based on M/M/1/B queues have been extensively used
search topic of great interest. Understanding queuingmjcs in publications on fluid approximation, which are numerous,
of TCP is important for correct router buffer sizing as wedl a€-9- [10].127],[25][21],[28][18], as well as in some pEap
for optimizing the performance of the TCP protocol itselfon the problem of router buffer sizing[9L.[22].[11]. It has
However, modeling of buffer content dynamics under TC{®ng been known, however, that these models fail to ade-
has received relatively little attention given its imperta. duately capture the complex statistical structure of T@Hitr
Commonly used queuing models, on which packet loss mod&81.[13],[1€] and produce significantly inaccurate resi2].
of closed loop TCP models are based, are often ad hoc Vg discuss the reason for this failure below. Attempts have
are based on overly simplistic assumptions, such as Pois&§¢n made to modify these models, for example, by adding
arrivals of buffer overflow moments and Poisson packet dfow synchronization effects, in order to improve their fidel
rivals. As a consequence, there are no quantitatively aceurPut with limited success [2].[4]. _
closed loop models (i.e. mathematical models parametrizedl Ne statéful queuing models have been especially popular
solely by the a priori known network parameters, such # stochastic TCP modeling literature] [3],[5],[6] but also
router capacity, propagation delay and buffer size) capatii@ve appeared in fluid approximation models of TCP with
of predicting performance even for a single link shared Hputer implementing Random Early Drop[14].[26].[24]. 'Bee
multiple flows. This is the gap that our present paper ainfdedels explicitly include queue length as a variable gosérn
to fill by proposing a simple TCP queuing model, which i@y a coupled (stochastic) Q|fferent|a! equation. Packss lis
based on experimental observations and validated by éxeenghen modeled as a probability function or a random, usually
packet level simulations. Poisson, process dependent on the current queue lengtle Whi

Before describing the proposed model we give a brief survE§W Of the resulting models have been experimentally veri-
of the queuing and packet loss models that have appearedi§q partially due to their mathematical complexity, theg a
TCP literature. Mathematical models of TCP require some wilikely to produce accurate results because they are based
of modeling packet loss in order to close the control loop &N OVerly optimistic assumptions about the uniformity of F'C
the TCP congestion avoidance mechanism. Since packeslodsgnsmission rate, similar to the M/M/1/B models.
occur most often at buffer overfl@lit is natural to take packet An interesting exception to this rough_class_lflcatlon is the
loss probability as the blocking probability in a singleser modgl of Dumas, Guillemin and _Robert in which the packet
queue. Thus there is a close connection between packet 19SS is @ssumed to be a Bernoulli process on thefRrdund
models and queuing models. trip t|m_e).t|me scale but has state given by the order of

There are two distinct approaches to modeling packet lo§@nsmission on the sub-RTT scale [8]. Their results, henev
stateless and stateful. The former assumes that in equitior 9V€ asymptotic formulas for the congestion window size
queue length sampled at the times of packet arrivals beha@iribution in the limit of zero packet loss for a fixed packe
as a sequence of i.i.d. random variables. Correctness ®f thizye yse round trip propagation delay and round trip time aftengeably

because processing and buffering delays are largely iifis@nt in the setting
1at least in wired networks, which today constitute the bulkhe Internet we consider.
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loss probability function, i.e. it is an open loop model, athi i) an accurate queuing model that can be used to deduce
ignores the problem of relating TCP and network variables to  the packet loss probability in terms of the congestion
packet loss. window size distribution and parameters of the network.

We must also, separately, mention the work of Wischik ofhese correspond to the two halves of the TCP congestion
router buffer sizing, which attempts to account for the @fe ayoidance feedback loop. Significant progress has been made
of packet burstiness on queue length with a model based |90 3 number of authors in tackling the first item. Closed,
an M/M/1/B queue[28]. While burstiness is indeed the crux @ ough, still rather mathematically complex, expressioage
the issue, the results of the study have not been experithenteen obtained for the stationary distribution of the cotigas
tested, to the best of our knowledge, and the degree of thgihdows sizes of TCP flows under the restriction of a constant
qualitative and quantitative accuracy remains unclear. RTT [3],[8],[6]. Our present work is aimed at providing a

In summary, both the stateless and the stateful queikrtial answer to the second problem.
ing models are based on fundamentally flawed assumptionshe on-off fluid source model we propose here is not
about the uniformity of the TCP packet emission processew, although some adaptation to the specifics of TCP was
This observation has been made by a number of authgiscessary. We describe the model in detail in Sedfion 11, but
[15],[13],[12]. Most explicitly the issue has been desedby e highlight here the observations about the equilibriunPTC
Baccelli and Hong in[[4]. There the authors describe a |ar%euing behavior that lead to it:

scale fluid apprOX|mat|on TCP/I.P networll<_3|mlulator baseq on 1) in equilibrium TCP sources can be treated as statisficall
the M/M/1/B queuing model with a modification accounting independeft

for increased packet loss due to flow synchronization. Thez) in equilibrium a TCP source can be treated as a station-
simulator performed well when the access link speed was not arv random fluid on-off source
too high, however, when it became larger than a certainthres : y o ) . )
old the simulator significantly overestimated the throughp € first observation is perhaps not very surprising givea th
because “with high speed local links, packets are veryyikein€ flows are coupled only by packet loss at the queue, which at
to be concentrated at the beginning of RTTs. Such a pack@uiliorium typically behaves like a stationary randomqerss.
concentration creates losses even if the input rate averagiPServation (2), however, is somewhat less obvious, ayst sa
over one RTT is much smaller than the capacity of the shar t the exact congestion window trajectories of individua
resource. 4] flows do not matter to the router queue length distribution.
The origin of the burstiness observed by Baccelli and Honghat is, from the point of view of the buffer, a collection of
and others is easily traced to the operation of the slidifgjdinary TCP sources and ones whose congestion windows
window algorithm used by TCP. This algorithm released'ange randomly, but follow the same distribution as the
packets for transmission only in response to acknowledgsnefprmer, are equwa!e[ﬁt _ _ _
received for previously sent packets. The result of thisighh ~ 11€Se observations permit construction of a simple yet
is that packets flow back and forth in formation, creatin?ccurate TCP queuing model. The pasw. structure of the_ model
bursts followed by silences, during which the algorithm isva follows that of Kosten[[17] and Anik, Mitra a”‘j Sf’”dh'“m;
the acknowledgments of the transmitted packets. Instead '6t€ Main difference with the former is that the “on” and “off
sliding smoothly along the queue of packets ready to tgglo_ds are not exp_onennally distributed, yvh!ch _makesptexa
transmitted, the sliding window instead moves in fits andsta Selution for the stationary queue length distribution leelly.
We note, that the sliding window algorithm is implemente@!till: there is hope that some analytical headway can be
in all current TCP variants. Therefore, we can be sure th&@de with more general distributions based on the work of
this transmission burstiness affects not only the longdstedh Palmowski and Rolski[19]. The proposed model also has the
TCP-Reno but every implementation of TCP in existence. Tiiévantage of providing a unified framework for treating éarg
only modification that could change this would be transroissi @ Well as small buffer regimes, which so far have usually
pacing, but it may have issues of its oWr[28].[ been treated as distinct asymptotic regimes requiringragpa
The present paper is meant to fill a certain gap in tH@'CUlat'Q”S- o .
program we envision as leading to high-fidelity TCP net- e validate the Kosten-Anik-Mitra-Sondhi (KAMS) model
working models. It has long been assumed that mean vaRecomparing the stationary queue length distribution inlet
models, such as fluid approximation, can give an accurdfa@m ns2 simulations with that obtained from numerical simu-
estimate of the steady state, and even dynamics of, Tigtions of the model for a large number of network parameter
performance. Recent research, however, indicates thistiss combinations. Since we measure the distance between whole
of the TCP congestion window size and of the transmissiét/€ue length probability distributions, which are signesuof
process contribute significantly even when the number oflof’® underlying queuing processes, the near perfect oliserve
is very large, and that more sophisticated models are mm;esénatCh be_tween distributions is an indication of the idgrit
if quantitatively, as well as qualitatively, accurate fesware the queuing processes that produced them.
desired. The ingredients necessary to achieve this goalyin ~ This work is a refinement of our previous paper|[12],
view, are where we first applied KAMS to TCP queuing and provided
I) an aqcurate model _fOr the congestion window size CIIS-3Synchr0nization between flows does occur for certain nétyparameter
tribution as a function of the network parameters angmuinations in our study but is atypical (see Figire 3).
packet loss; 4provided the number of sources is sufficiently large



experimental evidence in its support. Although our workouter capacityB is the router buffer size andy the number
is independent, we have recently learned that several otbél CP sources. The three remaining parameters,-and the
authors have also arrived at related models, in our vievgndom processes determining the on and off period dusation
strengthening the case for its correctness and utility,J18]. require specific tuning to match KAMS behavior to the model

The rest of the paper is arranged as follows. In Sediibn TICP network.
we layout the details of the KAMS model and its adaptation to In the original KAMS model is a free parameter, permitted
TCP. Sectiori 1ll describes details of the validation apploa to vary from source to source. For a TCP flow the rate of
Results of validation are presented in Secfioh IV. Sedfibn tvansmission is determined by the parameters of the nefwork
summarizes our findings and discusses directions for futyrevided a source’s rate is not itself the limiting factoheT
work. timing of packet emissions is determined by the TCP sliding

window algorithm. Since a new packet is sent only when
Il. KAMS TCP QUEUING MODEL an acknowledgment for the previous packet is received, the

The model we propose for TCP queuing is derived frospeed of the access link, which is usually the slowest segmen
the multi-input buffer queuing model originally studied byof the network, determines the interval between conseeutiv
Kosten [17] and later by Anik, Mitra and Sondhil [7] (andbackets emissions. We will assume that the maximum speed
many others since). The main advantage of KAMS is that it &f a TCP source is not less than the speed of its access link.
able to incorporate TCP burstiness, essential to accureigeg Thus v is equal to the speed of the access link. In practice,
modeling, with a minimum of mathematical complexity. this assumption is vacuous, since the speed of the accéss lin

The basic, in the topological sense, KAMS model is @an be assumed to be equal to the speed of the source if the
network with a single server and a fixed number of inputsource is slower.

This admittedly simple setup is a fundamental building kloc Duration of a given on period is determined by the size of
in and stepping stone to the study of more complicatede packet burst. Further, the number of packets in a buust, d
TCP networks. Even this topologically simple model cato idiosyncrasies of the sliding window algorithm, is eqtal
be practically useful for modeling bottleneck routers ir ththe size of the sliding window, which we will assume is equal
broadband edge network. to the congestion window. Indeed, analysi®si packet traces

The queue input process in KAMS is modeled as a suenfirms that most packets are transmitted in bursts equal in
perposition of some numbely, of statistically independent size to the congestion window [12]. Moreover, packets in a
random on-off fluid sources. Each source has two states buist are transmitted back to back at the speed of the slowest
"on”, when it is transmitting, and "off”, when it is not. In & router in the path, i.ev. Thus a duration of a given on period is
on state, every source emits data with some constantrate simply the congestion window size at the time of its initati

This two level fluid source model is a natural fit fordivided byv.
approximating bursty TCP transmission behavior. The onlt turns out that due to the multiplexing at the router it
periods correspond to packet-burst transmissions, when i not necessary to have the on periods of a given source
TCP source transmits the packets one after the other in qufodow the additive increase multiplicative decrease(AIVof
succession, and the off periods to silences as the sourcesawhe TCP congestion avoidance algorithm. Provided the ssurc
acknowledgment of the transmitted packets. activate independently of each other, the on periods of engiv

Data streams from all sources merge in the server quetgrce can be modeled as a sequence of i.i.d. random variable
so that whenk sources are active the total data inflow rate iwith the same distribution as a deterministic AIMD source.
kv. The server processes incoming data at a constantCtateFrom the point of view of the router these two input processes
Whenkv > C the arrived but unprocessed data is stored ingppear to be indistinguishable. The problem of determining
buffer of size B. Any data arriving after the buffer becomeshe on period duration thus shifts to identifying the stagiy
full is discarded. congestion window size distribution.

The equivalent computer network looks like a double fan Several papers have been published describing the stationa
(Fig. D). The TCP sources on the left transmit data to theibngestion window size distribution for a single source a#f w
respective receivers on the right over the bottleneck limk as for a large number of sources sharing a bottleneck link.
the middle. To make this basic architecture as simple @e resulting mathematical expressions are, unfortupatel
possible we will also assume that round trip propagatioaydel highly complex, making it difficult to check their identity
between the source-receiver pairs are roughly equal. Bhisot difference. Their complexity also makes it very difficult
the archetypal bottleneck network. to implement realizations of the corresponding random-vari
ables. In practice, a good approximation is often sufficient
for obtaining very accurate results. One characteristit il
theoretically computed distributions share is the Gaussia.

We, therefore, postulate that the congestion window sige di

tribution is approximated by a truncated normal distribnfi

Fig. 1. Basic network topology. restricted to the rang®, oo). Lacking a ready formula relating
the parameters of this distribution to the network paramete

Most of the KAMS parameters match up naturally wittof the model, we estimated them instead from experimental
this model bottle network’s parameters,&as the bottleneck data. Details of the estimation procedure are explained in




Sectior 1ll. We emphasize that this is not a shortcoming ef timost likely values. The variance was then estimated by per-
proposed model, since it is only meant to model the steaftyming a least squares fit of the truncated normal distidiout
state queuing statistics amdt the TCP congestion avoidancewith the predetermined mean. The fit was performed on the
algorithm. logarithm of the data, which gives a greater weight to the
Finally, the off period is the silence between consecutigecurate fitting of the tail of the distribution. In this wayet
bursts of packets. Since at most a congestion window’s worttean and variance of the congestion window size distributio
of packets can be sent in a single round trip and since thiswere computed for each of the 36 pairs of propagation delay
exactly the burst size observed it follows that the durabbn and buffer size to be used for running the KAMS model
an off period is equal to RTT minus the duration of the lasimulation with corresponding parameters.
burst. However, because we will be concerned with high speedlro summarize, the KAMS model was tested with= 1000
routers the burst duration will be negligibly small comghreflows, C = 1Gbps,» = 100Mbps, router buffer size ranging
to the RTT. Since the same applies to the buffering delaypm 50 pkts to 300 pkts in steps of 50 pkts and RTT ranging
the off periods can be assumed to be equal to the round tfipm 50 ms to 300 ms in steps of 50ms, giving 36 test points.
propagation delay, identical and constant for all sources. Validation was performed by running simulations 2
and KAMS for each of the 36 test points for 600 simulated
I1l. M ETHODOLOGY seconds. Ims2 simulations queue length was sampled once

per round trip. The KAMS simulation sampled queue length

To validate the constructed model we compared the queleihe moments when sources changed state. The cumulative
length distributions obtained from numerical simulatiaofs queue length distributions were computed by binning the

the KAMS model with the same distributions computed fror§ e e |ength data into consecutive integer bins. Only data
ns2 packet level simulations for a range of network parametghm the final 80% of the simulated time interval was used
combinations. Below we describe the parameter values U$gGrase the effects of the transient phase.

in the validation study and the rational behind the specific
choices.
The number of flowsN in the validation study was set IV. RESULTS
to 1000. Firstly, this is a large number of flows that might
realistically be observed at a router at the periphery ofithe  Results of the comparison between KAMS am&® simu-
ternet, where most bottlenecks lie. SecondlyNat 1000 the lations are summarized in Figuré 2. The figure contains the
model is close enough to the asymptotic limit that incregsircontour plot of normalized root mean square error (NRMSE)
the number of flows further does not significantly affect then KAMS cumulative queue length distribution relativeris2
gueue length distribution. Router capacity was fixedat 1  over queue lengths greater than 5 packets. We chose to drop
Gbps. Access link speed was set at 100 Mbps, which givike distribution values for the queue lengths between 0 and 5
v = 100 Mbps. because they are of little practical importance but contab
The remaining scalar parameters — router buffer size adigproportionately to the error. Including the discardetlies
round trip propagation delay — were varied to determine ho#pes increase NRMSE by about 5%. The reason for the
accurately the KAMS model tracks packet level simulationgdisproportionately high contribution is that near the buff
These parameters are also known to have the strongest inflaundaries, i.e. near 0 an#, the accuracy of the fluid
ence on TCP behavior and so we were most interested in &qgproximation breaks down. This is because KAMS stationary
fidelity of the KAMS model with respect to them. probability distribution becomes singular at the buffeubd-
Router buffer size was varied in steps of 50 pkts from 5&ies, giving rise to jump discontinuities in the cumulativ
pkts to 300 pkts. Preliminary experiments wit2 suggested distribution. On the other hand, thes2 cumulative queue
that increasing buffer size beyond 300 pkts does not signi¢ngth distribution, while rising sharply near the bounesr
icantly affect packet loss and so 300 pkts was chosen asra&mains continuous. The result is a very large relativererro
upper limit on the buffer size. Conversely, for buffer size# the boundary regions. This becomes a problem especially
below 50 pkts packet loss increases dramatically, whichamakvhen attempting to estimate the buffer overflow probability
it a reasonable lower bound. As can be seen from Figuké 2 the KAMS model exhibits a
The round trip propagation delay was varied between 50 rresmarkably high accuracy — better than 5% NRMSE — for all
and 300 ms in increments of 50 ms. This range of propagatibut two parameter combinations with round trip propagation
delays corresponds approximately to wired networks varyidelay >100 ms. (Experiments witv = C produce similar
in diameter from a LAN to the global Internet. results which we do not present here for the sake of brevity.)
Finally, to fix the on period duration distribution it was An interesting observation emerges from the analysis of
necessary to determine the parameters of the truncatedahorfailure of KAMS in the region RTk 100 ms. Ns2 packet
distribution, which we postulated approximates the cotiges loss time series data indicate that for RTT=50 ms there is
window size distribution. Analyzings2 experimental data we significant packet loss synchronization between flows. feigu
found that the congestion window size distribution is, iedle attempts to capture the degree of synchronization of agigeg
very well approximated by a truncated normal distributiorpacket loss with one number. The function, whose contours
The mean of the distribution was take to be the mode of tlappear in the figure, is a simple measure of “spikiness” of the
empirical distribution, computed as the average of the fo&ourier transform of the aggregate packet loss time sefes.
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Fig. 2.  Contour plot of NRMSE in KAMS cumulative queue lengthFig. 3. Contour plot of the degree of synchronization of aggte packet

distribution. loss. Higher values correspond to more synchronization.

defined it as below 20%. Since in the TCP throughput formula packet
TaXDO | Re(wi)l (1) loss probability appears under the square root, the error in
27 2iso | Re(wi)] estimated throughput would be smaller still, on the order of

wherew; is theith Fourier coefficient of the aggregate packéO%-
loss time series and/ is the length of the data series. .,y
The largest values, occurring for RTT=50 ms, correspond to
spectral densities with pronounced peaks arising frormgtro
periodicity in the packet loss time series. This agrees with
observations made ir?[, where authors conclude that for long
RTTs packet losses are well approximated by an i.i.d. random
process, whereas for short RTTs there is a significant long-
range time correlation between packet losses. - 200
Counterintuitively, KAMS errs on the side of higher queuee
lengths and higher packet losses, which is the opposite '@f
what we expected to see when buffer overflow events becometsq
synchronized. Synchronization is still a poorly understoo
phenomenon and why it occurs for short RTTs, when the lag
in the congestion avoidance control loop is small, rathanth |
for long RTTs is a topic for future research.
Ultimately, the point of TCP queuing models is to provide
a formula approximating the buffer overflow probability and
hopefully, observed packet loss probability. Hence, we-con Qo - 100 150 200 250 30
sider next the accuracy of KAMS full buffer probability. As B (pkis)
pointed out above, KAMS performs poorly near the buffer
boundaries. The relative error in the full buffer probakili Fig. 4. Multiplicative error in corrected full buffer probiity of KAMS.
is between 600 and 1400%. However, the error is nearly
constant across most of the test parameter range, allowingVe note that thens2 observed full buffer probability does
us to introduce a scaling correction factor. Figlite 4 shomot equal the observed mean packet loss rate, althoughein th
the contour plot of the multiplicative error in KAMS full absence of synchronization, they are roughly proportiwiitl
buffer probability data after rescaling by the correctiantbr. a coefficient of about 0.6. Understanding of the relatignshi
The correction factor was chosen equal to the average baftween full buffer probability and packet loss requiraster
the multiplicative error for RTE 100 ms, to avoid skewing research.
the mean by the abnormally high values from the parametetWe also note that the KAMS model is highly sensitive
combinations exhibiting synchronization. As can be seemfr to the shapes of the on and and off period distributions.
the plot, for most test points the multiplicative error dsoplinitially, we tried using exponential distributions for thsince




a closed formula already exists for the stationary queugtiien [9]
distribution in this setting. The results were consideyabl
worse with NRMSE running as high as 20% for many tegto]
points. Even using a half-normal distribution (i.e. a tratec
normal distribution with mean 0) produced results that weféll
substantially worse, even though the means of the truncafgg
normals used above were usually in the low teens. Switching
an exponential to constant off period distribution had & les
dramatic but still noticeable. [13]

V. CONCLUSION [14]

Overall, when the assumptions of the model are satisfied,
KAMS can be said to approximate the stationary queue lengih)
distribution exceptionally well. This, in our opinion, isseong
indication that KAMS correctly represents the TCP queuing
process. For well understood reasons, in absolute terms 8Alg)
is less accurate at the upper and lower buffer limits. Howeve
the KAMS full buffer probability is roughly proportional to 17
the observed one with a universal (across network parag)eter
constant coefficient. (18]

The ultimate goal of this work is to facilitate the creatidn o
numerically accurate closed form mathematical models d? TG, g
networks. In light of the presented work, two more problems
need to be resolved to achieve this final goal: first, a clos&q!
form mathematical expression approximating buffer overflop2y;
probability in the KAMS model, and, second, a closed form
approximation expressing the relationship between medn af!
variance of the truncated normal distribution, represgnthe
stationary congestion window size distribution, and packis]
loss probability. Headway, has already been made in b
of these directions by Palmowski and Rolski in establishing
results on the statistics of the stationary KAMS distribatior  [25]
general on-off period distributions[19], and by Bacellybas, [26]
Chaintreau and others in establishing the relationshiywéent
the packet loss process and stationary congestion windmv 427]
distribution [3],[8],[€]. The final synthesis of these elents
into a highly accurate model of TCP networking is a topic for
future research.
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