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Abstract 
Manufacturing systems can be very complex and are often 
costly to develop and operate. Simulation technology has 
been shown to be an effective tool for optimizing 
manufacturing system design, operations, and maintenance 
procedures. However, each manufacturing simulation is 
usually developed to address a specific set of industrial 
issues, and may only apply to a small portion of a complex 
manufacturing system.  To enable manufacturers to more 
easily use simulation technology to solve complex 
manufacturing issues, this paper defines a reference 
architecture for component-based simulation (RACS).  With 
the architecture, complex manufacturing systems are 
functionally partitioned into smaller interacting subsystems, 
and simulations of those subsystems are combined to form a 
federated simulation of the overall manufacturing system.  
This enables the simultaneous analysis of different aspects 
of each of the simulated subsystems and the overall 
manufacturing system.    

1 INTRODUCTION 

To confront the challenges of today’s global, ultra-
competitive marketplace, many manufacturers have 
embraced the concepts of agile manufacturing [1].  Agile 
manufacturing is a philosophy or approach where 
companies seek to organize and carry out their operations in 
a manner in which they are able to cope with and possibly 
benefit from today’s complex, every changing, global 
manufacturing environment.  Much has been written about 
agile manufacturing, and although there is no consensus on 
what technologies are necessary to implement an agile 
manufacturing program, tools that support rapid prototyping 
and integrated product/process development have repeatedly 
been mentioned [2-3]. 

Simulation technologies have been employed to solve 
problems in manufacturing and to enable manufacturers to 

be more agile.  Many simulation technologies enable the 
creation of virtual representations of factory facilities, 
machines, material handling systems, support applications, 
robots, and production processes.   Once created, virtual 
factory representations can be used to analyze different 
aspects of current factory operations, and to plan for and 
analyze prospective changes to the factory environment.    
This virtual product and process prototyping capability 
enables the analysis of product and production system 
changes without the need for expensive full-up product 
mockups or physical changes to the production facilities.  

A problem impeding the ability of manufacturers to use 
simulation technologies is that simulation applications 
exhibit a low level of interoperability, both between 
simulation applications and with other manufacturing 
applications.  Manufacturing simulation applications are 
usually monolithic and provide few avenues for integrating 
with other applications.   Often when outward facing 
interfaces for integration are provided, they are 
undocumented and/or proprietary.  In addition, the 
underlying technologies used to create simulation 
applications are often different.  Simulation applications 
might be based on the discrete-event simulation approach, 
be made up of a collection of interacting software agents,  
operate based on the effect of the physical properties of the 
simulated parts and machines with the simulated 
environment, or be constructed based on a heterogeneous 
collection of these and other approaches.  Even though 
manufacturing enterprises can save time and money by 
analyzing simulated representations of the production 
facilities and processes, interoperability issues make 
creating and using simulations costly and time consuming.  
This one issue is a serious obstacle that manufacturers must 
overcome in their quest to become more agile. 

To enable manufacturers to more easily use simulation 
technology to solve complex manufacturing issues and to be 
more agile, in this paper a reference architecture for 
component-based simulation (RACS) is proposed.   The 
architecture is based on prior research at the National 
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Institute of Standards and Technology (NIST) in simulation 
integration [4].  In this component-based architecture, the 
aspects of a manufacturing system that are to be analyzed 
are functionally partitioned into subsystems. The 
subsystems together define the operation of the complete 
system by exchanging messages that are a part of a shared 
message protocol.   Software components that are 
simulations of each of the subsystems can then be created 
for each of the subsystems.  By using an integrating 
infrastructure to enable message exchange and time 
coordination, the individual components can be made to 
function together as a combined “federated simulation” that 
simulates the operation of the complete manufacturing 
system.        

The rest of the paper is as follows. Section 2 provides an 
overview of the architecture.  In section 3, a case study in 
which a federated simulation will be created is presented.  
Descriptions of the manufacturing system that is to be 
simulated, how it is partitioned into subsystems, the 
function of each subsystem, alternatives for the components 
that will simulate each subsystem, and the requirements for 
the integration infrastructure are also presented.  The paper 
concludes with section 4, where a summary and description 
of future work is presented.   

2 A REFERENCE ARCHITECTURE FOR 
COMPONENT-BASED SIMULATION  

2.1 Overview 

The reference architecture for component-based simulation 
(RACS) provides a blueprint for creating software 
applications that enable the simultaneous analysis of 
multiple aspects of a complex manufacturing system.    The 
applications created based on the architecture are made up 
of several individual simulation components that each 
individually simulates some aspect of the manufacturing 
system.  The simulation components coordinate their 
advancement through time and exchange information as 
messages so that their aggregate behavior simulates the 
behavior of the complete manufacturing system being 
studied.  With this approach, each simulation can be 
constructed to perform a more detailed analysis of some 
aspect of the manufacturing system while simultaneously 
contributing to and supporting the simulation and analysis 
of the behavior of the complex manufacturing system as a 
whole.  Applications constructed as conglomerations of 
interacting simulation components are frequently referred to 
as federated simulations.  Figure 1 depicts the architecture 
and many kinds of simulation components that might be 
constructed to run on it.   

Applying the architecture to create a federated simulation 
application that is able to analyze a complex manufacturing 
problem involves several steps:    

1. Manufacturing System Definition and Analysis 

In this step, the overall function of the manufacturing 
system to be studied is defined.  The form and level of 
detail of the definition need only be specific enough to 
support the definition of the simulation components that 
will be used to create the federated simulation.  Also 
during this step, any data that must be produced by an 
individual simulation component because it is required 
to support an analysis of the manufacturing system as a 
whole should be specified. 

2. Manufacturing Subsystem Definition 

This step involves functionally partitioning the 
manufacturing system into subsystems. The data and 
behavior associated with each subsystem should be 
identified.   Information that needs to be shared 
between the subsystems should be minimized.  Each 
subsystem should be able to operate semi-
independently, with as few information and functional 
dependencies on the other subsystems as possible.   
Also, when considering how best to partition the system 
into subsystems, the kinds of analysis that a simulation 
component might perform for each subsystem should 
be taken into account.      

3. Message Protocol Definition 

In this step, the information that needs to be exchanged 
between subsystems so that they can replicate the 
required behavior of the overall system is defined.   
This is accomplished by defining messages that can be 
sent from each subsystem to the other subsystems, the 
content of those messages, and the conditions that 
stimulate each message to be sent.   The message 
protocol and subsystem definitions from step 2, when 
taken together, form a detailed definition of the overall 
system behavior described in step 1. 

4. Simulation Integration Infrastructure Design and 
Implementation 

At this point, the infrastructure that will support the 
federated simulation of the manufacturing system must 
be defined.   The infrastructure must be able to allow 
the simulation components to exchange messages and 
to coordinate their advancement through time during 
simulation execution.  There are a multitude of 
approaches that can be taken in designing the 
infrastructure, including: designing and creating the 
infrastructure from scratch using basic computer 
language tools;  modifying general purpose distributed 
computing middleware products; and, using 



middleware specifically designed for creating federated 
simulations.  A detailed discussion of some of these 
options is provided in section 3.3.   

An optional component of the simulation integration 
infrastructure is the Federated Simulation Management 
component.  Depending on how the infrastructure is 
defined, there may be a need for some common low-
level support tasks to be performed that are outside of 
the responsibilities of the simulation components that 
will represent the manufacturing subsystems in the 
federated simulation.  The tasks most commonly 
implemented are simulation execution start/pause/stop 
and data logging.     Sometimes, one of the simulation 
components can be implemented to cover the required 
services.   

5. Simulation Component Design and Implementation 

For each subsystem, create a new or adapt an existing 
simulation that: (1) implements the functional 
responsibilities defined for that subsystem; and, (2) 
performs an analysis of some aspect of the subsystem.  
The functional responsibilities involve mainly 
implementing the message protocol and coordinating 
time advance with the other simulation components 
through the simulation integration infrastructure.   

After all of the components  and the infrastructure have 
been designed and implemented, they can be run together to 
create a federated simulation that enables analysis of the 
complex manufacturing system that was described in step 1 
of the development process.    

There are several advantages for constructing applications in 
this way.  

Divide and conquer 

Analysis of a complex manufacturing system can be 
accomplished by partitioning the problem into 
implementable components.    

Scaling 

Since some infrastructures support the distribution of the 
simulation components over different computers, the 
analysis of larger problems can be done.  

Conceptual analysis of the manufacturing system 

The initial analysis of the manufacturing system and its 
functional partitioning into subsystems often provides 
insight into the behavior of the system before any 
simulation components are created. 

Simultaneous analysis 

Since each simulation component is created to support the 

Figure 1 - The Reference Architecture for Component-Based Simulation (RACS) 



overall system analysis and the component can be created to 
perform some analysis on the subsystem it represents, 
multiple analyses of the manufacturing system can be done 
simultaneously.  

Simulation component reuse  

While in aggregate the simulation components implement 
the overall behavior of the main manufacturing system, the 
internal design and behavior of the components can be very 
different.  This allows multiple components to be designed 
that adhere to the same message protocol, but do different 
kinds of analyses for the subsystem being simulated.    

2.2 Elements of the architecture  

While the architecture facilitates the definition on many 
different federated simulation applications, it has only three 
architectural elements: simulation components, the 
simulation integration infrastructure, and the federated 
simulation manager. 

Simulation Components 

A simulation component is a software application that 
simulates the behavior of some subset of a manufacturing 
system or subsystem.  It may be constructed from a number 
of technologies, including general computer languages (e.g., 
C#, C++, and Java), commercial discrete-event simulation 
creation packages, software agent systems, and scientific 
computing tools (e.g., MatLab and Modelica based tools).     

The kinds of analysis that a component may do is limited 
only by the skill of the implementers.   The only 
requirement for a simulation component to be a part of a 
federated simulation is that it implements the messages 
defined in the message protocol and it coordinates with the 
other simulation components using the simulation 
integration infrastructure.   

Simulation Integration Infrastructure 

The simulation integration infrastructure is a software 
application that enables simulation components to  exchange 
information as messages and to coordinate the advancement 
of time.  The infrastructure may be created from a number 
of technologies, some providing only minimal 
communication services and others providing a rich set of 
implementation possibilities.  Often this architectural 
element is created based on existing distributed computing 
middleware (e.g., Sun Jini [5] or the Common Object 
Request Broker Architecture  (CORBA) [6]) or middleware 
designed to support federated simulation development (e.g., 
High Level Architecture (HLA) [7] or the Synchronous 
Parallel Environment for Emulation and Discrete-Event 
Simulation (SPEEDES) [8]).   

Federated Simulation Manager 

The Federated Simulation Manager is an optional 
component that can be used for basic support services 
during federated simulation execution.   These services 
usually involve initial simulation synchronization, 
simulation starting and stopping, error collection, and data 
logging.   Depending on the simulation integration 
infrastructure chosen, some of these services may already be 
provided or may be implemented as a part of one of the 
simulation components. 

3 APPLYING THE REFERENCE 
ARCHITECTURE 

In this section, an example describing how to apply the first 
steps of the reference architecture is presented.  A complex 
manufacturing system is described, a functional partitioning 
of the system into three subsystems is presented, and a 
message protocol is described.  For each subsystem, 
descriptions for one or more simulation components that 
could represent that subcomponent’s functionality in a 
federated simulation of the manufacturing system are 
presented.  In the descriptions of the simulation 
components, alternatives for how they might be constructed 
and what kinds of analyses they could perform on the 
simulated manufacturing subsystem are presented.  
Alternatives for how the simulation integration 
infrastructure might be designed and implemented are also 
presented.  The actual implementation of the components 
and infrastructure is not presented, but is expected to be the 
object of future work. 

3.1 Manufacturing System Conceptual Overview 

The manufacturing system that is to be modeled is a discrete 
parts production environment.  The system should be 
modeled in such a way that studies can be undertaken that 
examine the effect on system performance of changes to 
product mix, automated guided vehicle (AGV) delivery 
schedules, and consumable part palletizing.   

To avoid the problems that would be caused by attempting 
to model this system as one complex monolithic entity, the 
functionality of the system will be partitioned into three 
functional subsystems.  The Production subsystem will 
model the workstations that perform the manufacturing 
operations that transform workpieces from one state to 
another until they are finished products.  Material handling 
to transport workpieces will also be modeled by the 
Production subsystem.  The Inventory Management 
subsystem will model the process by which requests for 
consumable parts by workstations in the Production 
subsystem get turned into organized pallets of parts ready 
for delivery to the requesting workstations.  The AGV 
Management subsystem will model AGVs, their dispatching 



to pick up and deliver parts, and their movement through the 
production environment.   

In Figure 2 a Unified Modeling Language (UML) 
interaction diagram is presented that shows each subsystem 
of the manufacturing system being studied and the 
interactions between those subsystems.  In the sections 
below, a description of the behavior of each subsystem and 
its interactions with other subsystems is presented. 

3.1.1 Production subsystem 

The Production subsystem is a representation of a discrete 
parts production facility that allows the exploration of 
manufacturing issues related to inventory management and 
workstation material replenishment.  This system is made 

up of a number of workstations connected by fixed material 
handling systems.  The material handling systems are used 
to transfer workpieces from workstation to workstation.  
Workpieces are partially finished parts and subcomponents 
that will eventually be transformed into the finished 
products.   

The facility can produce a small number of different 
finished products, and many of the products share common 
subcomponents.  Each of the products that can be produced 
by the facility has a process plan that defines the sequence 
of steps necessary to produce that product.   Each step in a 
process plan defines: 

• The type and amount of each workpiece involved  
• The consumable materials/subcomponents introduced 

into the manufacturing process  

Figure 2 - Message exchange between subsystems for part pickup and delivery 

Subsystem A

Production

Subsystem B

AGV Management

Subsystem C

Inventory Management

Order for parts to be delivered to a workstation

Pickup pallet P at location S0 and deliver to location S1

AGV X has arrived to pickup pallet P at location S0

Pallet P at location S0 has been loaded on AGV X

AGV X has arrived at location S1 to unload pallet P

 AGV X has been unloaded

Pickup pallet P at location S1 and deliver to
location S2

AGV Y has arrived to pickup pallet P at location S1

Pallet P at location S1 has been loaded on AGV Y

AGV Y has arrived at location S2 to unload pallet P

 Pallet P has been unloaded from AGV Y



• The type and amount of workpieces produced as output  
• The production operation that will be executed  
• The workstation on which this step will be executed 

Each workstation is configured with the process plan 
information for each operation that can be performed at that 
workstation.  This information allows each workstation to 
automatically choose and execute the appropriate processing 
step when presented with workpieces by the material 
handling system.  This approach allows each step in the 
product’s process plan to be executed in sequence to 
produce the final product without requiring direction from a 
central controller.  

While workpiece movement is handled by the material 
handling system, the management of consumable parts at 
each workstation is not.  At each workstation, storage bins 
are provided for each consumable part that can be involved 
in a production operation at that workstation.   A reorder 
level amount is set for each consumable.  When during the 
course of production the amount of a consumable goes 
below the reorder level for that consumable, a request for 
replenishment of that consumable is sent to the Inventory 
Management subsystem.  The Production subsystem will 
continue performing its production activities as long as it 
has enough consumables available. 

At some point after the request for replenishment, an AGV 
will arrive with the consumables requested by the 
workstation.  The Production subsystem will coordinate 
with the AGV to unload the consumables, store them in the 
appropriate bins, update the amount on hand for each 
consumable, and indicate to the AGV when it is finished 
unloading.   

3.1.2 AGV Management 

The AGV Management subsystem represents both the 
automated guided vehicles (AGVs) that pick up parts from 
inventory and deliver them to production workstations, and 
the management application that monitors and directs the 
AGVs.    The management application: 

• Accepts requests from the Inventory Management 
subsystem to pick up parts that are loaded onto 
pallets for delivery to production workstations 

• Dispatches AGVs to pick up pallets and deliver 
them to specific production workstation locations 

• Monitors the performance of each AGV on its 
assigned task 

• Coordinates with the Inventory Management 
subsystem and the Production subsystem to 
accomplish AGV loading and unloading 

The AGV Management subsystem may employ different 
AGV dispatching strategies depending on the number of 

AGVs under its control, whether the AGVs follow fixed or 
ad-hoc delivery routes, the overall production goals, and 
other factors. 

3.1.3 Inventory Management 

The Inventory Management subsystem provides two main 
functions for the manufacturing facility.  It monitors and 
maintains appropriate levels of inventory items that are the 
consumable parts needed for production.  In addition, when 
requested it retrieves from storage the inventory items 
needed to keep production operations running and packages 
them for efficient delivery to the production workstations 
that need the items.  Items for delivery are packaged on 
equally sized pallets, and the Inventory Management 
subsystem coordinates with the AGV Management 
subsystem for pickup and delivery of the pallets and for 
return of empty pallets. 

Of particular importance to Inventory Management 
subsystem performance is how inventory items are 
packaged for delivery, referred to as the palletizing process.  
An effective palletizing process can greatly affect overall 
production performance by minimizing production delays 
due to late delivery of parts.  Also, wear and tear on 
transportation equipment can be minimized by not creating 
loaded pallets with too much weight and by avoiding 
unnecessary delivery trips caused by poor packing of items. 

3.2 Simulation Component Design Alternatives 

In the previous sections, high-level descriptions of three key 
subsystems of a complex manufacturing system, and the 
interactions and interrelationships of those subsystems, were 
presented.  By partitioning the functionality of the 
manufacturing system in this way, simulation components 
dedicated to the examination of the detailed behavior of 
each subsystem can be more easily constructed.  
Furthermore, with the addition of an integrating 
infrastructure, the individual simulation components can be 
made to operate together as a federated simulation.    

To enable the component simulations to be able to operate 
as a federated simulation, each simulation must implement 
and adhere to a specific message protocol.  The message 
protocol defines the content of and conditions under which 
messages are sent between components.   The requirements 
for the message protocol that will be used in this study were 
described in Section 3.1 and its subsections.  Later, in 
section 3.3, design alternatives for implementing an 
infrastructure to support the message protocol are presented.   

In sections 3.2.1 to 3.2.4, descriptions of designs for the 
components that will simulate the functionality of each of 
the manufacturing subsystems are presented.   For the AGV 
Management subsystem, multiple descriptions for 



simulation components that might implement the 
subsystem’s functionality are given.   

A key feature of the component-based simulation approach 
is that as long as a simulation component adheres to the 
agreed upon interaction protocol, how that component is 
implemented internally should not fundamentally change 
the overall functional behavior of a federated simulation 
involving that component.  Items such as  how long it takes 
to run and what hardware and support software are needed 
may be affected, but any data produced by or the types of 
analysis that can be performed by the federated simulation 
should not change.  This feature of the component based 
simulation approach facilitates the development of 
simulation components that are created using vastly 
different simulation technologies and methodologies [9].  
When multiple implementations of simulation components 
of a manufacturing subsystem are available, they can be 
used and reused to create different federated simulations 
focused on analyzing different aspects of the manufacturing 
system being simulated. 

3.2.1 Production – Discrete Event Simulation 
Component 

The production simulation component is a visual model of 
resources, coordination, and control of the activities that 
take place on the manufacturing floor. The purpose of such 
a model is to enable the analyst to investigate and optimize 
shop floor operations, and send and receive messages to the 
other simulation components in the federation for smooth 
operation of the simulated shop. The simulation application 
to be used should model the Production subsystem 
elements, i.e., automated machine tools, inspection 
equipment, material handling systems, storage buffers, and 
transfer robots. It should represent entities, i.e., the parts that 
get assembled to produce the product, control elements as 
well as tools such as, cutters, hand tools, jigs and fixtures. In 
addition, the model should be able to maintain a list of AGV 
calls, show status of resources, and have integration 
mechanisms with other simulations, processes, and 
databases. There are a number commercial off-the-shelf 
(COTS) discrete-event simulation applications for 
manufacturing systems from which a suitable candidate 
could be selected. 

3.2.2 AGV Management – Physics-based 
Component 

A physics-based AGV Management component will 
combine a high-level multi-vehicle control system with a 
physics-based vehicle simulator [10]. The high-level 
controller will not be simulated. It will be a real-time 
commercial or research grade multi-vehicle controller that 
will receive requests for goods and services (e.g., delivery 

of pallets or removal of empties and defects) and will 
determine vehicle loading, routes and schedules for its fleet 
of vehicles. It must be able to handle various priorities of 
requests, traffic management, and a dynamic factory floor 
that has a constantly changing topology. This controller will 
send commands and receive status from a fleet of AGVs 
that are physics-based simulated entities over the same 
channels and with the same format as it would use for real 
vehicles. 

The simulated AGVs will operate in real-time and will 
travel over the commanded routes provided by the high-
level controller.  The models will include sensor and 
mobility platform models so as to realistically simulate low-
level vehicle performance while traversing the commanded 
routes. The simulation environment will provide dynamics, 
which the vehicles must be capable of responding to (e.g., 
moving avatars or non-robotic vehicles). 

3.2.3 AGV Management – Process-oriented 
Component 

A process-oriented AGV Management component might be 
developed when the kinds of analyses to be done in the 
federated simulation do not depend on virtual 
representations of the physical characteristics of the AGVs.  
In this approach, a dispatching application uses a set of rules 
to determine which AGVs are assigned to pick up and 
deliver pallets of parts and stochastic variables are used to 
determine simulated AGV delivery times.  In such a 
scenario, the component could be designed to focus on 
issues such as determining the optimum number of AGVs 
required to handle the expected delivery workload, or how 
should the dispatching rules be changed if several AGVs 
need to be taken out of service for maintenance.  A 
component such as this would be unable to explore some 
issues, such as determining optimum AGV path finding and 
collision avoidance strategies. 

3.2.4 Inventory Management and Palletization – 
Physics-based Component 

A physics-based inventory management and palletizing 
component will be a combination of inventory control, 
pallet planning, and pallet building subsystems. The 
inventory control and pallet planning subsystems will utilize 
commercial or research grade systems that are capable of 
receiving and fulfilling orders. Orders will be received from 
individual machine stations in a standardized XML format. 
The inventory control system will determine the part's 
availability and create an XML formatted packing list that 
will be sent to the pallet planning subsystem. The pallet 
planning subsystem will then create plans for one or more 
mixed pallets of goods that include pallet build schematics 
and ordering information for parts to be placed on the 



conveyor systems. This information will be utilized by the 
physics-based robotic system to simulate the construction of 
the actual pallets for transport by the AGVs. By simulating 
the construction of the pallets, the stability of the pallets 
may be evaluated and the overall quality of the packaging 
solution may be evaluated. 

3.3 Infrastructure Design Alternatives 

Determining the best approach for designing and 
implementing the integrating infrastructure can be a 
complicated undertaking.  The basic requirements are rather 
straightforward: (1) providing a means for simulation 
components to exchange data, and; (2) providing a means 
for the simulation components to coordinate the 
advancement of time with each other.  These capabilities 
must be provided for the component simulations to be 
combined to form a federated simulation. 

To enable the system to better support the agile 
manufacturing paradigm, several additional requirements 
should be met, including: (3) allowing different collections 
of simulation components that support the same message 
protocol to be a part of a federated simulation; (4) enabling 
the implementation of simulations best-fitted to analyze 
different aspects of their associated subsystems or of the 
overall system, and; (5) allowing simulation components to 
be created with different technologies.  Although somewhat 
high level, this list of requirements defines an achievable 
target for infrastructure functionality.  

Given the list of desired functionality for an infrastructure, 
what technology or technologies can be used for 
infrastructure implementation?  One approach is to use 
middleware specifically designed for distributed simulation 
creation, such as the HLA Run-Time Infrastructure (RTI). 
Another approach is to design the infrastructure from the 
bottom up using general-purpose computer languages, and 
using sockets and pipes for communication.  Alternatively, 
implementing the infrastructure can be accomplished using  
general-purpose distributed computing technologies, such as 
the Neutral Message language (NML) [11] or CORBA. 

4 SUMMARY  

The component-based simulation framework described in 
this paper fosters agility by enabling the description and 
study of complex, dynamic manufacturing systems. A 
scenario was presented that showed how the RACS 
approach could be used to describe a discrete parts 
production environment and several of the subsystems that 
compose this environment.  Component simulations of these 
subsystems can be implemented using different commonly 
available technologies.  

DISCLAIMER 

Company names and products may have been identified in 
the context of this paper. This does not imply a 
recommendation or endorsement of the software products 
by the authors or NIST, nor does it imply that such software 
products are necessarily the best available for the purpose.  
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