Division Polynomials for Jacobi Quartic Curves

Dustin Moody
National Institute of Standards and Technology (NIST)
100 Bureau Drive
Gaithersburg, MD, 20899-8930, USA
dbmoody25@gmail.com

ABSTRACT
In this paper we find division polynomials for Jacobi quartics. These curves are an alternate model for elliptic curves to the more common Weierstrass equation. Division polynomials for Weierstrass curves are well known, and the division polynomials we find are analogues for Jacobi quartics. Using the division polynomials, we show recursive formulas for the n-th multiple of a point on the quartic curve. As an application, we prove a type of mean-value theorem for Jacobi quartics. These results can be extended to other models of elliptic curves, namely, Jacobi intersections and Huff curves.

Categories and Subject Descriptors
1.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Algorithms, Elliptic Curves, Division Polynomials

1. INTRODUCTION
Elliptic curves have been an object of study in mathematics for well over a century. Recently elliptic curves have proven useful in applications such as factoring [16] and cryptography [15], [19]. The traditional way of writing the equation of an elliptic curve is to use its Weierstrass form:

\[y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6. \]

In the past several years, other models of elliptic curves have been introduced. Such models include Edwards curves [2], [6], Jacobi intersections and Jacobi quartics [3], [4], [17], Hessian curves [13], and Huff curves [8], [14], among others. These models sometimes allow for more efficient computation on elliptic curves or provide other features of interest to cryptographers. In particular, Jacobi quartics provide resistance to side channel attacks, and they also have the most efficient unified point addition formulae [3], [10].

In this paper we find division polynomials for Jacobi quartics, although the ideas can be extended to Jacobi intersections and Huff curves. Division polynomials for Weierstrass curves are well known, and play a key role in the theory of elliptic curves. They can be used to find a formula for the n-th multiple of the point \((x, y)\) in terms of \(x\) and \(y\), as well as determining when a point is an n-torsion point on a Weierstrass curve. Division polynomials are also a crucial ingredient in Schoof’s algorithm to count points on an elliptic curve over a finite field [22]. In addition, they have been used to perform efficient computations on elliptic curves, see for example [5], [9].

Hitt, McGuire, and Moloney recently have found formulae for division polynomials of twisted Edwards curves [11], [18]. The division polynomials we find are the analogues for Jacobi quartic curves. We illustrate a recursive formula for the n-th multiple of a point using these division polynomials. We are also able to prove some properties of these division polynomials. As an illustration, we show how they can be used to find the mean value of a certain collection of points related to the discrete logarithm problem.

This paper is organized as follows. In section 2 we review Jacobi quartics, and in section 3 we examine their division polynomials. As an application, in section 4 we look at a certain mean value theorem. We conclude in section 5 with some remarks and open questions.

2. THE JACOBI QUARTIC
One model for elliptic curves is known as Jacobi quartics. For a background on these curves, see [3], [4], [17]. We recall only the basic facts. For the remainder of this paper, let \(K \) be a field whose characteristic is not 2 or 3. Any elliptic curve with a point of order 2 can be put into Jacobi quartic form, with equation

\[J_{d,e} : y^2 = ex^4 - 2dx^2 + 1, \]

where we require \(c(d^2 - e) \neq 0 \), with \(d, e \in K \). The identity element is \((0, 1)\), and the point \((0, -1)\) has order 2. The inverse of a point \((x, y)\) is \((-x, y)\). There are two points at infinity, whose coordinates can be written in projective coordinates (with \(z = 0 \)). The addition formula on \(J_{d,e} \) is

\[\begin{align*}
J_{d,e} : y^2 &= ex^4 - 2dx^2 + 1, \\
J_{d,e}(x_1, y_1) + J_{d,e}(x_2, y_2) &= J_{d,e}(x_3, y_3),
\end{align*} \]

where \(x_3 = \frac{d(ey_1x_2 - dx_1y_2) + e(dy_2x_1 - dx_2y_1)}{e^2 - d^2} \).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISSAC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0675-1/11/06 ...$10.00.
given by
\[(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + y_1 x_2}{1 - e(x_1 x_2)^3}, \frac{(1 + e(x_1 x_2)^2)(y_1 y_2 - 2dx_1 x_2) + 2ex_1 x_2(x_1^2 + x_2^2)}{(1 - e(x_1 x_2)^2)^2} \right). \]

This addition formula can be efficiently implemented, which is one of the primary advantages of writing an elliptic curve in this form [10]. Another is that this addition formula protects against side-channel attacks [3], [17]. There is a biaresional transformation from a Jacobian quartic curve to a curve in Weierstrass form with a point of order 2. The map
\[(r, s) = \left(2 \frac{3(y + 1) - dx^2}{3x^2}, 4 \frac{(y + 1) - dx^2}{x^3} \right), \]

sends the points of the curve \(J_{d,e} \) with \(x = 0 \) to the Weierstrass curve
\[s^2 = r^3 - \frac{4}{3}(d^2 + 3e)r - \frac{16}{27}d(d^2 - 9e). \]

Under this transformation, the identity point \((0, 1)\) corresponds to \(\infty\), and the point of order two \((0,-1)\) goes to the point \((3d/3, 0)\). The inverse from the Weierstrass curve \(s^2 = r^3 + ar + b \), with point of order 2 \((p, 0)\) is given by
\[(x, y) = \left(\frac{2(r - p)}{s^2}, \frac{(2r + p)(r - p)^2 - s^2}{s^2} \right), \]

with the image being the Jacobian quartic \(J_{d,e} \) with \(d = 3p/4 \) and \(e = -(3p^2 + 4a)/16 \). The points \(\infty, (p, 0)\) are exceptional, and get sent to \((0, 1)\) and \((0, -1)\) respectively.

3. DIVISION POLYNOMIALS

3.1 Division polynomials for Weierstrass curves

We begin by recalling the standard division polynomials for Weierstrass curves. We write \([n](x, y)\) to denote the \(n\)-th multiple of a point \((x, y)\).

Theorem 1. Let \(E \) be given by \(y^2 = x^3 + ax + b \), over a field whose characteristic is not 2. Then for any point \((x, y)\) and \(n \geq 2 \)
\[[n](x, y) = \left(\frac{\phi_n(x, y)}{\psi_n(x, y)}, \frac{\omega_n(x, y)}{\psi_n(x, y)} \right), \]
The functions \(\phi_n, \psi_n, \) and \(\psi_n \) in \(\mathbb{Z}[x, y] \) are defined recursively by
\[\begin{align*}
\psi_0 &= 0 \\
\psi_1 &= 1 \\
\psi_2 &= 2y \\
\psi_3 &= 3x^4 + 6ax^2 + 12bx - a^2 \\
\psi_4 &= 4(x^6 + 5ax^4 + 20bx^3 - 5ax^2 - 4ax - 8b^2 - a^3) \\
\psi_{n+1} &= \psi_n + 2\psi_n \psi_{n-1} \psi_{n+1} \quad \text{for} \quad n \geq 2 \\
\psi_{2n} &= \frac{\psi_n}{2y} \left(\psi_n + 2\psi_n \psi_{n-1} \psi_{n+1} \right) \quad \text{for} \quad n \geq 3,
\end{align*} \]
and
\[\begin{align*}
\phi_n &= x\psi_n^2 - \psi_{n+1} \psi_{n-1} \\
\omega_n &= \frac{1}{4y} (\psi_n + 2\psi_n \psi_{n-1} - \psi_n \psi_{n+1}).
\end{align*} \]

Proof. These formulas are well-known. For example, see [23] or [24] for details. \(\square \)

The polynomial \(\psi_n \) is called the \(n \)-th division polynomial of \(E \). It is easy to see that a point \((x, y)\) satisfies \([n]P = P \) if and only if \(\psi_n(x) = 0 \). Division polynomials are an important tool for finding multiples of points. In fact, they have been used to speed up computation of point multiplication in some cases (see for example [5], [9]). They also play a key role in Schoof’s algorithm for counting the number of points on an elliptic curve over a finite field [22].

3.2 Division polynomials for Jacobi quartics

We now perform a similar calculation for Jacobi quartics. The division polynomials we find allow us to perform arithmetic on the Jacobi quartic with only the \(x \)-coordinate along with one multiplication by the \(y \)-coordinate. For convenience, let \(h(x) = ex^3 - 2dx^2 + 1 \), so the curve equation for \(J_{d,e} \) is \(y^2 = h(x) \).

Theorem 2. Let \(F_1 = 1, G_1 = 1, F_2 = -2, \) and \(G_2 = ex^3 - 1 \). Let \(P_1 = 1, Q_1 = 1, P_2 = e^n x^3 - 4d x^2 + 6ex^3 - 4dx^2 + 1, \) and \(Q_2 = (ex^3 - 1)^2 \). Write \([n](x, y) = (x_n, y_n)\). Then there are polynomials \(F_n(x), G_n(x), P_n(x), \) and \(Q_n(x) \) such that
\[(x_{2k}, y_{2k}) = \left(\frac{F_{2k}(x)}{G_{2k}(x)}, \frac{P_{2k}(x)}{Q_{2k}(x)} \right), \]
\[(x_{2k+1}, y_{2k+1}) = \left(\frac{F_{2k+1}(x)}{G_{2k+1}(x)}, \frac{P_{2k+1}(x)}{Q_{2k+1}(x)} \right). \]
The \(F_n, G_n, P_n, \) and \(Q_n \) can all be calculated recursively:
\[F_{2k} = 2h F_{2k} G_{2k-1} G_{2k} - F_{2k-1} (G_{2k}^2 - ex^3 F_{2k}), \]
\[G_{2k+1} = G_{2k}^2 G_{2k-1} - ex^4 F_{2k} \]
\[F_{2k+2} = 2 F_{2k+1} G_{2k} G_{2k+1} - F_{2k} (G_{2k+1}^2 - ex^4 F_{2k+1}), \]
\[G_{2k+2} = G_{2k} (G_{2k+1}^2 - ex^4 F_{2k+1}), \]
and
\[P_{2k+1} = 2 G_{2k}^2 P_{2k} Q_{2k-1} (G_{2k}^2 + ex^3 F_{2k}) \]
\[- P_{2k-1} Q_{2k} (G_{2k}^2 - ex^3 F_{2k})^2, \]
\[Q_{2k+1} = Q_{2k-1} Q_{2k} (G_{2k}^2 - ex^4 F_{2k}^2)^2, \]
\[P_{2k+2} = 2 h G_{2k+1} P_{2k+1} Q_{2k+1} (G_{2k+1}^2 + ex^4 F_{2k+1}) \]
\[- P_{2k} Q_{2k+1} (G_{2k+1}^2 - ex^4 F_{2k+1})^2, \]
\[Q_{2k+2} = Q_{2k} Q_{2k+1} (G_{2k+1}^2 - ex^4 F_{2k+1})^2, \]
for \(k \geq 1 \).

Proof. The proof is along the same lines as what was done for Edwards curves in [11],[18]. In turn, these authors credit Abel [1]. We use induction on \(n \). For \(n = 1 \) the claim is trivially true,
\[(x_1, y_1) = \left(\frac{F_1(x)}{G_1(x)}, \frac{P_1(x)}{Q_1(x)} \right). \]
For \(n = 2 \), the addition formula yields
\[(x_2, y_2) = \left(\frac{-2xy}{ex^4 - 1}, \frac{(1 + ex^3)(y^2 - 2dx^2) + 4ex^4}{(ex^4 - 1)^2} \right). \]
By the defining curve equation, we have that \(y^2 = ex^4 - 2dx^2 + 1 \), so \(y_2 \) can be rewritten as
\[
y_2 = \frac{2x^8 - 4dex^6 + 6ex^4 - 4dx^2 + 1}{(ex^4 - 1)^2}.
\]

Thus \((x_2, y_2) = (xyF_2/G_2, P_2/Q_2) \). We now assume the result holds true for all \(n \).

Given two points \((r_1, s_1) \) and \((r_2, s_2) \) on \(J_{\alpha, \epsilon} \), let \((r_+, s_+) = (r_1, s_1) + (r_2, s_2) \) and \((r_-, s-) = (r_1, s_1) - (r_2, s_2) \). Then by the addition formula, we have
\[
r_+ + r_- = \frac{2r_1 s_2}{1 - e(r_1 r_2)^2}
\]
and
\[
s_+ + s_- = \frac{2s_1 s_2(1 + e(r_1 r_2)^2)}{(1 - e(r_1 r_2)^2)^2}.
\]
If we substitute in \((r_1, s_1) = (x_n, y_n) \) and \((r_2, s_2) = (x, y) \) we obtain
\[
x_{n+1} = \frac{2x_n y}{1 - e(x_n)^2} - x_{n-1},
\]
and
\[
y_{n+1} = \frac{2y_n y(1 + e(x_n)^2)}{(1 - e(x_n)^2)^2} - y_{n-1}.
\]
Assume first that \(n = 2k \) is even, then
\[
x_{2k+1} = \frac{2x h_{2k} h_{2k+1}}{G_{2k} G_{2k+1}} - x_{2k} - \frac{P_{2k-1}}{G_{2k-1}},
\]
and
\[
y_{2k+1} = \frac{2y h_{2k} h_{2k+1}}{(1 + e x_n)^2} - y_{2k} - \frac{P_{2k-1}}{Q_{2k-1}}.
\]
When \(n = 2k + 1 \) is odd
\[
x_{2k+2} = \frac{2x y}{G_{2k+2}} - \frac{F_{2k}}{G_{2k}} - x y_{2k+1},
\]
and
\[
y_{2k+2} = \frac{2y}{G_{2k+2}} - \frac{F_{2k+1}}{G_{2k+1}} - y_{2k+1}.
\]
This proves the recurrence relations given in the statement of the theorem hold.

Alternatively, if we let \(\alpha_n = F_n/G_n \) and \(\beta_n = P_n/Q_n \), then the above can be rewritten as follows: for \(n \) odd,
\[
x_{n+1} = xy \frac{2\alpha_n}{1 - e\alpha_n^2} - \alpha_{n-1},
\]
and
\[
y_{n+1} = \frac{2\beta_n(1 + e\alpha_n^2)}{(1 - e\alpha_n^2)^2} - \beta_{n-1}.
\]
When \(n \) is even,
\[
x_{n+1} = x \frac{2\alpha_n}{1 - e\alpha_n^2} - \alpha_{n-1},
\]
and
\[
y_{n+1} = y \frac{2\beta_n(1 + e\alpha_n^2)}{(1 - e\alpha_n^2)^2} - \beta_{n-1}.
\]

There are some common factors that can be cancelled in the numerators and denominators of \(F_n/G_n \) and \(P_n/Q_n \). Also, the degrees of the \(F_n, G_n, P_n \), and \(Q_n \) grow exponentially. By removing these common factors our new division polynomials will have degrees that only grow quadratically.

The next proposition shows what these are.

Theorem 3. Let \(f_1 = 1, g_1 = 1, f_2 = -2, \) and \(g_2 = ex^3 - 1 \). Let \(p_1 = 1, q_1 = 1, p_2 = e^2 x^3 - 4dex^6 + 6ex^4 - 4dx^2 + 1, \) and \(q_2 = (ex^3 - 1)^2 \). For \(n > 2 \), define \(f_n, g_n, p_n, \) and \(q_n \) by
\[
f_{2k} = \frac{2f_{2k-1}g_{2k-2}g_{2k-1} - f_{2k-1}^2 (g_{2k-1}^2 - ex^4 f_{2k-1}^2)}{g_{2k}^2},
\]
\[
f_{2k+1} = \frac{2f_{2k}g_{2k}g_{2k+1} - f_{2k+1}^2 (g_{2k+1}^2 - ex^4 f_{2k+1}^2)}{g_{2k+1}^2},
\]
\[
g_{2k} = \frac{g_{2k-1}^2 - ex^4 f_{2k-1}^2}{g_{2k-1}},
\]
\[
g_{2k+1} = \frac{g_{2k+1}^2 - ex^4 f_{2k+1}^2}{g_{2k+1}},
\]
and
\[
p_{2k} = \frac{2h_{2k-1}g_{2k+2}g_{2k-1}g_{2k+1} - ex^4 f_{2k+1}^2 g_{2k+1}^2}{q_{2k+2}},
\]
\[
p_{2k+1} = \frac{2h_{2k+1}g_{2k+1}^2 + ex^4 h_{2k+1}^2}{q_{2k+1}}.
\]

Then the \(f_n, g_n, p_n \) and \(q_n \) are even polynomials in \(x \) and satisfy
\[
(x_{2k}, y_{2k}) = xy \frac{f_{2k}(x)}{g_{2k}(x)^2}, \frac{p_{2k}(x)}{q_{2k}(x)}.
\]
\[(x_{2k+1}, y_{2k+1}) = \frac{f_{2k+1}(x)}{g_{2k+1}(x)} \cdot \frac{p_{2k+1}(x)}{q_{2k+1}(x)} \].

Before we give the proof, we prove a lemma. It will be needed in the proof of Theorem 3 as well as for some of the identities of the Jacobi division polynomials. Most importantly, it gives a simpler recurrence for the \(f_n\) and \(p_n\).

Lemma 1. For \(n \geq 1\), the functions \(f_n, g_n, p_n,\) and \(q_n\) from Theorem 3 satisfy
\[g_{2k}^2 - hf_{2k}^2 = -f_{2k-1}f_{2k+1},\]
and as a result
\[f_{2k+1} = \frac{h f_{2k} - g_{2k}}{f_{2k-1}},\]
and for \(n > 1\)
\[f_{2k-1}^2 - g_{2k-1}^2 = hf_{2k-2}f_{2k},\]
so therefore
\[f_{2k} = \frac{f_{2k-1}^2 - g_{2k-1}^2}{h f_{2k-2}}.\]

Also \(q_n = g_n^2\) and
\[p_{2k} = 2h f_{2k-1}(g_{2k-1}^2 + ex^4 f_{2k-1}^2) - p_{2k-2}g_{2k}^2,\]
and
\[p_{2k+1} = 2p_{2k}(g_{2k}^2 + ex^4 f_{2k}^2) - p_{2k-1}g_{2k+1}^2.\]

Proof. First note that by definition, we have
\[f_{2k+1}g_{2k-1} = 2hf_{2k}g_{2k-2} - f_{2k-1}(g_{2k}^2 - ex^4 f_{2k}^2),\]
\[g_{2k-1} = 2hf_{2k}g_{2k-2} - f_{2k-1}g_{2k-1}g_{2k+1}^2,\]
\[= 2hf_{2k-1}g_{2k} - f_{2k-1}g_{2k+1},\]

We now use induction. For \(k = 1\), a direct computation checks that both sides of (1) are equal to \(c^2x^8 - 6ex^4 + 5dx^2 - 3\). The expression \(g_{2k}^2 - hf_{2k}^2 + f_{2k-1}f_{2k+1}\) can be rewritten as
\[\frac{g_{2k}^2 - hf_{2k}^2}{g_{2k-2}g_{2k-1}} - \frac{f_{2k-1}^2}{g_{2k-2}g_{2k-1}} - ex^4 f_{2k-1} - 2g_{2k-1}f_{2k-2},\]
\[= \frac{g_{2k}^2 - 2f_{2k-1}^2}{g_{2k-2}g_{2k-1}} - 2h f_{2k-2}f_{2k-1} + 2g_{2k-1}f_{2k-2} - f_{2k-3}f_{2k-1} - f_{2k-2}f_{2k-1} + 2h f_{2k-2}f_{2k-1} + 2g_{2k-1}f_{2k-2} - f_{2k-3}f_{2k-1} - f_{2k-2}f_{2k-1}\]

By the induction hypothesis, \(g_{2k-2}^2 - hf_{2k-2}^2 = -f_{2k-3}f_{2k-1}\), and we also have \(g_{2k-2}^2 - ex^4 f_{2k-2} = g_{2k-2}f_{2k-2} - g_{2k-2}^2\) so this last expression becomes
\[\frac{g_{2k}^2 - 2f_{2k-1}^2}{g_{2k-2}g_{2k-1}} - 2h f_{2k-2}f_{2k-1} - f_{2k-1}g_{2k-3} - g_{2k-1}f_{2k-3}.\]

By (3) (with \(k = 1\) in place of \(k\)), we see that this is equal to 0. This shows \(g_{2k}^2 - hf_{2k}^2 + f_{2k-1}f_{2k+1} = 0\), which was to be proved.

To prove (2) we also use induction. For \(k = 2\) both sides are equal to \(8(ex^4 - 2dx^2 + 1)(ex^4 - 1)(-e^2 x^8 + 4d x^6 - 6e^2 x^4 + 4d x^2 - 1)\). We can rewrite \(f_{2k-1}^2 - g_{2k-1}^2 - hf_{2k-2}f_{2k}\)

\[\frac{g_{2k+1}^2}{g_{2k-1}g_{2k+1}^2} = \frac{g_{2k}^2 - (f_{2k-1} - g_{2k-3})^2}{f_{2k-1} - g_{2k-3}}
\]

\[= -2hf_{2k-1}f_{2k-2} + g_{2k}^2 - 2g_{2k-1}g_{2k-3} + g_{2k-1}f_{2k-3} + f_{2k-2}g_{2k-3} \quad (4)\]

Using the induction hypothesis and the identity \(g_{2k-1}^2 = g_{2k-1}g_{2k-2} + 2f_{2k-1}g_{2k-3} + f_{2k-2}g_{2k-3}\)

\[= -2hf_{2k-1}f_{2k-2} + g_{2k}^2 - 2g_{2k-1}g_{2k-3} + g_{2k-1}f_{2k-3} + f_{2k-2}g_{2k-3} \quad (5)\]

But
\[f_{2k+1}^2 = 2f_{2k+1}g_{2k+1} - f_{2k-1}g_{2k-3} + f_{2k-2}g_{2k-3} + f_{2k-3}g_{2k-3} + f_{2k-4}g_{2k-3} \quad (6)\]

so (5) is equal to 0, showing \(f_{2k-1} - g_{2k-1} + hf_{2k-2}f_{2k} = 0\).

Finally, we verify that \(q_n = g_n^2\). For \(n = 1 \) and 2, this is clearly true. Now assume that \(q_n = g_n^2\). Then by definition \(q_{n+1} = g_{n+1}^2 - 2q_n / g_n\). By the induction hypothesis, \(g_{n+2}^2 = q_{n+2}\), which proves \(q_{n+1} = g_{n+1}^2\). Using this, combined with the definition of the \(q_n\), the formulas for the \(p_n\) are straightforward and we omit the details.

We now give the proof of Theorem 3.

Proof. Note the similarities in the definitions of \(F_n\) and \(f_n\), \(G_n\), and \(g_n\), \(P_n\), and \(p_n\), and finally between \(Q_n\) and \(q_n\). Since the \(f_n\) and \(g_n\) are just the \(F_n\) and \(G_n\) with their common factors canceled then \(F_n/\gamma G_n = f_n/g_n\). Likewise \(P_n/Q_n = p_n/q_n\). It is clear that \(f_n, g_n, p_n,\) and \(q_n\) are all even using the recursion formulas combined with the fact that \(f_1, f_2, g_1, g_2, p_1, p_2, q_1,\) and \(q_2\) are all even.

We first show that the \(q_n\) are polynomials. Let \(\gamma\) be a root of \(g_{2k-2}\), and \(\delta \in \mathbb{K}\) such that \((\gamma, \delta)\) is a point on \(J_4, e\). It follows that \([2k - 2]/(\gamma, \delta)\) is a point at infinity \(R\). Using the addition law for projective coordinates (given in [3]), \((x, y) + (\pm 1/\sqrt{e}, \pm y/\sqrt{e})\). As a result, we see
\[x_{2k-1}^2(\gamma) = \frac{1}{e^2} = \gamma^2 f_{2k-1}^2(\gamma) g_{2k-1}^2(\gamma)\).

This is equivalent to \(\gamma\) being a root of \(g_{2k-1}^2 - ex^4 f_{2k-1}^2\). As \(\gamma\) was arbitrary, then this shows \(g_{2k-2}g_{2k-1}^2 - ex^4 f_{2k-1}^2\).

Similarly, if \(g_{2k-1}(\gamma) = 0\) then by the same reasoning we have
\[x_{2k}^2(\gamma) = \frac{1}{e^2} = \gamma^2 h(\gamma) \frac{f_{2k-1}^2(\gamma)}{g_{2k-1}^2(\gamma)},\]

Thus \(\gamma\) is a root of \(g_{2k}^2 - ex^4 h_{2k-2}\) as desired. We conclude that the \(q_n\) are polynomials in \(x\).

We now show that the \(f_n\) are polynomials in \(x\). By Lemma 1, \(f_{2k+1} = (h f_{2k} + g_{2k}) / f_{2k-1}\). Let \(\gamma\) be a root of \(f_{2k-1}\). Then by the addition law, we have \(x_{2k}(\gamma) = \pm \gamma\). Squaring this relation yields
\[\gamma^2 = \gamma^2 h(\gamma) \frac{f_{2k}^2(\gamma)}{g_{2k}^2(\gamma)},\]

which shows \(\gamma\) is a root of \(g_{2k}^2 - h_{2k}^2\), and hence \(f_{2k+1}\) is a polynomial.
Similarly, by Lemma 1 we have that \(f_{2k} = \frac{f_{2k-1} - g_{2k-1}}{hf_{2k-2}} \). Now if \(f_{2k-2}(\gamma) = 0 \) for some \(\gamma = 0 \), then \(x_{2k-1}(\gamma) = \pm \gamma \). Squaring this yields

\[
\gamma^2 = \gamma^2 \frac{f_{2k-1}(\gamma)}{g_{2k-1}(\gamma)},
\]

and we see that \(\gamma \) a root of \(f_{2k-1}^2 - g_{2k-1}^2 \), so \(f_{2k-2} \) divides \(f_{2k-1}^2 - g_{2k-1}^2 \).

If \(\gamma \) is a root of \(h = ex^4 - 2dx^2 + 1 \), then \((\gamma, 0) \) is a point on the curve \(J_{d,e} \), and it is easy to check that \(\{ 2 \} (\gamma, 0) = (0, -1) \), \(\{ 3 \} (\gamma, 0) = (-\gamma, 0) \), and \(\{ 4 \} (\gamma, 0) = (0, 1) \). Then so

\[
x_{2k-1}(\gamma) = \gamma^2 \frac{f_{2k-1}(\gamma)}{g_{2k-1}(\gamma)},
\]

so \(\gamma \) is a root of \(f_{2k-1}^2 - g_{2k-1}^2 \), and hence \(h \) divides \(f_{2k-1}^2 - g_{2k-1}^2 \). This shows that \(f_{2k} \) is a polynomial in \(x \).

To see \(q_n \) is a polynomial in \(x \), we appeal to Lemma 1. As \(g_n \) is a polynomial, and \(q_n = g_n^2 \), then \(q_n \) is a polynomial as well. The proof that \(p_n \) is a polynomial is much more cumbersome to write down, although the technique is the same. Consequently, we omit it.

We list the division polynomials for \(n = 3 \) and \(4 \):

\[
\begin{align*}
f_3 &= -e^2x^8 + 6ex^4 - 8dx^2 + 3, \\
g_3 &= -3e^2x^8 + 86dx^6 + 6e^4 + 1, \\
p_3 &= e^4x^{16} - 8de^3x^{14} + 28e^3x^{12} - 56de^2x^{10} \\
 & \quad + 2e(32d^2 + 3e)x^8 - 56deb^6x^6 + 28e^4 - 8dx^2 + 1, \\
q_3 &= (-3e^2x^8 + 86dx^6 + 6e^4 + 1)^2, \\
f_4 &= -4(4^4 - 1)(-e^2x^8 + 4dx^6 - 6ex^4 + 4dx^2 - 1), \\
g_4 &= e^4x^{16} + 20e^3x^{12} - 64de^2x^{10} + (64d^2 + 26e^2)x^8 \\
 & \quad - 64deb^6x^6 + 20ex^4 - 1, \\
p_4 &= e^8x^{32} - 16de^7x^{30} - 56de^6x^{26} + \cdots - 16dx^2 + 1, \\
q_4 &= g_4^2.
\end{align*}
\]

We call the \(f_n \) the Jacobi quartic division polynomials, as they satisfy the following corollary.

Corollary 1. For \(n > 2 \), the point \((x, y) \), with \(xy = 0 \), satisfies \([n](x, y) = (0, \pm 1)\) if and only if we have \(f_n(x) = 0 \).

Proof. This is immediate from Theorems 2 and 3. Note that \([n](x, y) = (0, 1)\) if and only if \([n](x, -y) = (0, -1)\).

An advantage of our division polynomials is that the \(n \)-th one can be computed from the previous two rounds, i.e., \(f_n \) and \(g_n \) only depend on \(f_{n-1}, g_{n-1}, f_{n-2}, \) and \(g_{n-2} \). The division polynomials for Weierstrass curves given in Theorem 1 require the previous \(n/2 \) rounds of computation. We now show some of the properties of these latter Jacobi division polynomials, beginning with their degrees.

Proposition 1. For odd \(n \),

\[
\frac{f_n(x)}{g_n(x)} = \frac{e^{(n^2-1)/4}x^{n^2-1} + \cdots}{ne^{(n^2-1)/4}x^{n^2-1} + \cdots}.
\]

Proof. The leading terms of the quotient \(f_n/g_n \) is a straightforward exercise in induction. We only give the proof for \(f_n/g_n \), and skip the proof for \(p_n/q_n \). We first establish that for odd \(n \),

\[
\begin{align*}
f_n &= -(n+1/2)e^{(n^2-1)/4}x^{n^2-1} + \cdots, \\
g_n &= -(n+1/2)e^{(n^2-1)/4}x^{n^2-1} + \cdots,
\end{align*}
\]

while for even \(n \),

\[
\begin{align*}
f_n &= -(n+1/2)e^{(n^2-1)/4}x^{n^2-1} + \cdots, \\
g_n &= -(n+1/2)e^{(n^2-1)/4}x^{n^2-1} + \cdots.
\end{align*}
\]

Note that for \(n = 1 \) and \(2 \) this is clearly true. For even \(n \), if we include only the leading terms we have

\[
\begin{align*}
f_{n+1} &= (e^{(n+1/2)^2})(n+1)(e^{(n^2-1)/2}x^{(n^2-1)}) - \frac{e^{n^2/4}x^{n^2}}{(n+1/2)(e^{(n^2-1)/2}x^{(n^2-1)})} \\
 &= (-1)^{n+2}e^{(n^2+2n)/4}x^{n^2-1} + \cdots \\
 &= -(1)(n+2)(e^{((n+1)^2-1)/4}x^{(n+1)^2-1}) + \cdots.
\end{align*}
\]

Similarly, when \(n \) is odd we have

\[
\begin{align*}
f_{n+1} &= (e^{(n+1/2)^2})(n+1)(e^{(n^2-1)/2}x^{(n^2-1)}) \\
 &= (e^{(n+1/2)^2})(n+1)(e^{(n^2-2n+3)/4}x^{(n^2-2n+3)}) \\
 &= -(n+1)(e^{((n+1)^2-1)/4}x^{(n+1)^2-1}) + \cdots.
\end{align*}
\]

This shows the leading term of \(f_n \) is as desired for \(n \) even or odd. Now for \(n = 2k \), we have

\[
\begin{align*}
g_{n+1} &= \frac{2k^2x^{8k^2} - e^{4x^4}(4k^4)(2k^2-2x^{8k^2})}{(n+1/2)(2k-1)e^{x^{8k^2}} - 2x^{8k^2}} \\
 &= -(1)^k(2k+1)e^{2k^2x^{8k^2} + \cdots} \\
 &= -(1)^{(n+1)/2}e^{((n+1)^2-1)/4}x^{(n+1)^2-1} + \cdots.
\end{align*}
\]

Also for \(n = 2k+1 \),

\[
\begin{align*}
g_{n+1} &= \frac{2k^2x^{8k^2} + e^{4x^4}(4k^4)(2k^2+2x^{8k^2})}{(n+1/2)(2k+1)e^{x^{8k^2}} - 2x^{8k^2}} \\
 &= -(1)^k(2k^2+2k+1)e^{2k^2x^{8k^2} + \cdots} \\
 &= -(1)^{(n+1)/2}e^{((n+1)^2-1)/4}x^{(n+1)^2-1} + \cdots,
\end{align*}
\]

which shows the leading term of \(g_n \) is as claimed.

We include some functional equations for the Jacobi division polynomials.

Proposition 2. For odd \(n \),

\[
\frac{f_n(x)}{g_n(x)} = \frac{e^{(n^2-1)/4}x^{n^2-1} + \cdots}{ne^{(n^2-1)/4}x^{n^2-1} + \cdots}.
\]
while for even \(n \),
\[
 f_n(x) = (-1)^{(n+2)/2} e^{(n^2 - 4)/4} x^{n^2 - 4} f_n \frac{1}{\sqrt{ex}} ,
\]
\[
 g_n(x) = (-1)^{n/2} e^{n^2/4} x^{n^2} g_n \frac{1}{\sqrt{ex}} .
\]

We also have
\[
p_n(x) = e^{(n^2 - 1)/2} x^{n^2 - 1} p_n \frac{1}{\sqrt{ex}} ,
\]
for odd \(n \), and
\[
p_n(x) = e^{n^2/2} x^{n^2} p_n \frac{1}{\sqrt{ex}} ,
\]
for even \(n \).

Proof. Recall that \(f_n, g_n, \) and \(p_n \) are even, so the square roots in the formulas make sense. We use induction to prove Proposition 2. The results are all easily verified for \(n = 1, 2 \). We first verify the functional equation for \(g_n \) when \(n = 2k \) is even:
\[
 (-1)^k e^{k^2} x^{4k} g_{2k} \frac{1}{\sqrt{ex}}
\]
\[
 = (-1)^k e^{k^2} x^{4k} g_{2k-1} - e^{x^4} f_{2k-1} \frac{1}{g_{2k-2}}
\]
\[
 = (-1)^k e^{k^2} x^{4k} \frac{f_{2k-1}}{g_{2k-2}} - \frac{g_{2k-1}}{f_{2k-2}}
\]
\[
 = \frac{g_{2k-1} - e^{x^4} f_{2k-1}}{g_{2k-2}},
\]
which is \(g_{2k}(x) \) as desired.

Also for \(n = 2k \),
\[
 (-1)^{k+1} e^{k^2 - 1} x^{4k^2 - 4} f_{2k} \frac{1}{\sqrt{ex}}
\]
\[
 = (-1)^{k+1} e^{k^2 - 1} x^{4k^2 - 4} f_{2k-1} - g_{2k-1} \frac{1}{h_{f_{2k-2}}}
\]
\[
 = (-1)^{k+1} e^{k^2 - 1} x^{4k^2 - 4} \frac{f_{2k-1}}{h_{f_{2k-2}}} - \frac{g_{2k-1}}{h_{f_{2k-2}}}
\]
\[
 = g_{2k-1} - f_{2k-1} \frac{1}{h_{f_{2k-2}}},
\]
\[
 = f_{2k}.
\]

Finally, we show the functional equation relating \(f_n \) and \(g_n \) for odd \(n = 2k + 1 \). We leave the proof of the functional equation for \(p_n \) to the reader. We have
\[
 (-1)^k e^{k^2 + k} x^{4k^2 + 4k} f_{2k+1} \frac{1}{\sqrt{ex}}
\]
\[
 = (-1)^k e^{k^2 + k} x^{4k^2 + 4k} \frac{h f_{2k} - g_{2k}}{f_{2k-1}} \frac{1}{\sqrt{ex}} ,
\]
\[
 = (-1)^k e^{k^2 + k} x^{4k^2 + 4k} \frac{h f_{2k} - g_{2k}}{f_{2k-1}} \frac{1}{\sqrt{ex}} ,
\]
\[
 = (-1)^k e^{k^2 + k} x^{4k^2 + 4k} \frac{h f_{2k} - g_{2k}}{f_{2k-1}} \frac{1}{\sqrt{ex}} ,
\]
\[
 = g_{2k} h f_{2k} - \frac{g_{2k}}{h_{f_{2k-2}}},
\]
\[
 = g_{2k+1}.
\]

which was to be proved. Note these functional equations impose certain symmetries on the coefficients of the Jacobi division polynomials.

4. MEAN VALUE THEOREMS

4.1 Weierstrass and Edwards mean value theorems

Let \(K \) be an algebraically closed field of characteristic not equal to 2 or 3. Let \(E : y^2 = x^3 + Ax + B \) be an elliptic curve defined over \(K \), and \(Q = (x_Q, y_Q) = \infty \) a point on \(E \). Let \(P_i = (x_i, y_i) \) be the \(n \) points such that \(n[P_i] = Q \), where \(n \in \mathbb{Z} \). (char \(K), n)=1. The \(P_i \) are known as the \(n \)-division points of \(Q \). In [7], Feng and Wu showed that
\[
 \frac{1}{n^2} \sum_{i=1}^{n^2} x_i = x_Q, \quad \frac{1}{n^2} \sum_{i=1}^{n^2} y_i = n y_Q.
\]

This shows the mean value of the \(x \)-coordinates of the \(n \)-division points of \(Q \) is equal to \(x_Q \), and \(n y_Q \) for the \(y \)-coordinates.

In [21] a similar formula was established for elliptic curves in twisted Edwards form. Let \(Q \) be a point on a twisted Edwards curve. Let \(P_i = (x_i, y_i) \) be the \(n \) points such that \(n[P_i] = Q \). If \(n \) is odd, then
\[
 \frac{1}{n^2} \sum_{i=1}^{n^2} x_i = 1 \frac{1}{n} x_Q, \quad \frac{1}{n^2} \sum_{i=1}^{n^2} y_i = (1)^{(n-1)/2} \frac{1}{n} y_Q.
\]

If \(n \) is even, then
\[
 \frac{1}{n^2} \sum_{i=1}^{n^2} x_i = 0 = \frac{1}{n^2} \sum_{i=1}^{n^2} y_i.
\]

4.2 Jacobi quartic mean value theorem

We now give a mean value theorem for the \(x \)-coordinates of Jacobi quartics.

Theorem 4. Let \(Q = (0, \pm 1) \) be a point on \(J_{4, e} \). Let \(P_i = (x_i, y_i) \) be the \(n \) points such that \(n[P_i] = Q \). Then
\[
 \frac{1}{n^2} \sum_{i=1}^{n^2} x_i = 1 \frac{1}{n} x_Q,
\]
if \(n \) is odd and
\[
 \frac{1}{n^2} \sum_{i=1}^{n^2} x_i = 0,
\]
if \(n \) is even.

We first need a result showing how we can combine mean value results for \(n \)-division points and \(m \)-division points to obtain one for the \(mn \)-division points.

Proposition 3. Fix \(m \) and \(n \). Suppose we have that \(\sum_{i=1}^{n^2} x_{P_i} = c_n x_Q \) and \(\sum_{i=1}^{n^2} y_{P_i} = d_n y_Q \) for some constants \(c_n, d_n \) which depend only on \(m \), whenever the \(P_i \), \(i = 1, 2, \ldots, m^n \) are points such that \(mn[P_i] = Q \), for some \(Q = (0,0) \). Similarly, suppose we have that \(\sum_{i=1}^{n^2} x_{R_i} = e_n x_S \) and \(\sum_{i=1}^{n^2} y_{R_i} = f_n y_S \) for some constants \(e_n, f_n \) which
depend only on n, where the R_i, $i = 1, 2, \ldots, n^2$ are points such that $[n]R_i = S$, for some $S = (0, 0)$.

Then given $(mn)^2$ points $T_1, T_2, \ldots, T_{(mn)^2}$ on $J_{d,e}$ such that $[mn]T_i = U$ for some $U = (0,0)$, we have that $\sum_{i=1}^{(mn)^2} x_{T_i} = c_m c_n c_n U$ and $\sum_{i=1}^{(mn)^2} y_{T_i} = d_m d_n d_n U$.

Proof. Consider the set of points $\{[m]T_1, [m]T_2, \ldots, [m]T_{(mn)^2}\}$. Each element $[m]T_i$ satisfies $[n][m]T_i = U$. So this set must be equal to the same set of n^2 points V that satisfy $[n]V = U$. Call this set $\{V_1, V_2, \ldots, V_{n^2}\}$. For each V_i, there are at most m^2 elements of the T_i which satisfy $[m]T_i = V_i$. As each T_i must satisfy $[m]T_i = V_j$ for some j, this partitions our original set of the $(mn)^2$ points T_i into n^2 subsets of m^2 points. Then by assumption, we have

\[
\sum_{i=1}^{(mn)^2} x_{T_i} = c_m c_n c_n U,
\]

and
\[
\sum_{i=1}^{(mn)^2} y_{T_i} = d_m d_n d_n U.
\]

For example, fix an elliptic curve and suppose we know the mean value of the x-coordinates of the 3-division points, or $\sum_{i=1}^{25} x_i = 3xQ$. Similarly if know the same for the 5-division points, $\sum_{i=1}^{25} x_i = 5xQ$, then by Proposition 3 we know the mean value for the 15-division points. It will be $\sum_{i=1}^{75} x_i = 15xQ$.

Now we give the proof of Theorem 4.

Proof. We first examine the case when n is odd. By definition, the solutions of $x f_n(x) / y_n(x), y f_n(x) / y_n(x) = (xQ, yQ)$ are exactly the (x_i, y_i). By Proposition 1, we can rewrite this x-coordinate relation as

\[
x e^{(n^2-1)/4} x^{n^2-1} + 0x^{n^2-2} + \cdots = xQ (n e^{(n^2-1)/4} x^{n^2-1} + \cdots)
\]

or
\[
e^{(n^2-1)/4} x^{n^2} - nxQ x^{n^2-1} + \cdots = 0.
\]

This must be equal to the polynomial $e^{(n^2-1)/4} \prod_{i=1}^{n^2} (x-x_i)$, so we can conclude that
\[
x_i = nxQ.
\]

This proves the mean value of the x-coordinate is as claimed when n is odd.

We now look at the case when $n = 2$. By the addition formula it is clear that if $[2](x, y) = Q$, then $[2](-x, -y) = Q$ as well. So the four points P_{i} with $[2]P_i = Q$ can be written as $(x_1, y_1), (x_2, y_2), (-x_1, -y_1)$, and $(-x_2, -y_2)$. The result for $n = 2$ is immediate. Now by Proposition 3, and the result for odd n, Theorem 4 is true for even n as well.

We remark that Theorem 4 was proved for points $Q = (0, \pm 1)$. For $Q = (0, \pm 1)$, recall that $(x_i, y_i) = (0, \pm 1)$ is an n-division point of Q if and only if $f_n(x_i) = 0$. Recall that for odd n, f_n is an even function of x and so

\[
f_n(x) = \prod_{i=1}^{n^2-1} (x-x_i) = x^{n^2-1} + 0x^{n^2-2} + \cdots,
\]

and hence $\sum_{i=1}^{n^2-1} x_i = 0$. When we consider Q as the last n-division point of Q, then we have $\sum_{i=1}^{n^2} x_i = 0$.

We are unable to prove, but conjecture the following mean-value theorem for the y-coordinates of the n-division points on a Jacobian quartic:

\[
n \sum_{i=1}^{n^2} y_i = yQ,
\]

for n odd, and
\[
n \sum_{i=1}^{n^2} y_i = 0,
\]

for n even. The proof techniques in [7], [21] do not work for Jacobian quartic curves. The Weierstrass result uses properties of the Weierstrass $\wp(z)$ function, which we do not have a Jacobian quartic analogue for. In the Edwards case, the result is obtained by the obvious symmetry of x and y in the defining curve equation.

Note that in our proof above, we showed the conjecture is true for $n = 2$. Hence, by Proposition 3, the even result follows immediately once it is true for odd n. Also note that the y-coordinate mean value theorem is equivalent to showing

\[
n \sum_{i=1}^{n^2} f_n(x_i) = n^2,
\]

for odd n because $y f_n(x_i) + y f_n(x_i) = yQ$.

5. CONCLUSION

In this paper we looked at division polynomials for Jacobi quartics. Using them we were able to find a formula for the n-th multiple of a point. We also proved some of the properties of these division polynomials, and a type of mean-value theorem. In the extended version of this paper ([20]) we show how to extend these results to other models of elliptic curves, namely, Huff curves and Jacobian intersections. This includes results for the division polynomials and related mean-value theorems.

Some directions for future study would be to find division polynomials for the remaining models of elliptic curves, such as Hessian curves. It would also be interesting to see if the formulas derived in this paper could be used to perform efficient scalar multiplication, as has been done in some cases with Weierstrass curves. This is the most important computation in elliptic curve cryptography and the subject of much research. We leave this for a future project.

6. ACKNOWLEDGMENTS

The author would like to thank Hongfeng Wu for his thoughtful discussions which helped improve this paper.

7. REFERENCES

