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ABSTRACT 
In this paper we find division polynomials for Jacobi quar­
tics. These curves are an alternate model for elliptic curves 
to the more common Weierstrass equation. Division poly­
nomials for Weierstrass curves are well known, and the divi­
sion polynomials we find are analogues for Jacobi quartics. 
Using the division polynomials, we show recursive formu­
las for the n-th multiple of a point on the quartic curve. 
As an application, we prove a type of mean-value theorem 
for Jacobi quartics. These results can be extended to other 
models of elliptic curves, namely, Jacobi intersections and 
Huff curves. 

Categories and Subject Descriptors 
I.1.2 [Symbolic and Algebraic Manipulation]: Algo­
rithms—Algebraic Algorithms 

General Terms 
Algorithms, Theory 

Keywords 
Algorithms, Elliptic Curves, Division Polynomials 

1. INTRODUCTION 
Elliptic curves have been an object of study in mathe­

matics for well over a century. Recently elliptic curves have 
proven useful in applications such as factoring [16] and cryp­
tography [15],[19]. The traditional way of writing the equa­
tion of an elliptic curve is to use its Weierstrass form: 

2 3 2 y + a1xy + a3y = x + a2x + a4x + a6. 

In the past several years, other models of elliptic curves have 
been introduced. Such models include Edwards curves [2], 
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[6], Jacobi intersections and Jacobi quartics [3], [4],[17], Hes­
sian curves [13], and Huff curves [8], [14], among others. 
These models sometimes allow for more efficient computa­
tion on elliptic curves or provide other features of interest to 
cryptographers. In particular, Jacobi quartics provide resis­
tance to side channel attacks, and they also have the most 
efficient unified point addition formulae [3], [10]. 

In this paper we find division polynomials for Jacobi quar­
tics, although the ideas can be extended to Jacobi intersec­
tions and Huff curves. Division polynomials for Weierstrass 
curves are well known, and play a key role in the theory 
of elliptic curves. They can be used to find a formula for 
the n-th multiple of the point (x, y) in terms of x and y, as 
well as determining when a point is an n-torsion point on 
a Weierstrass curve. Division polynomials are also a crucial 
ingredient in Schoof ’s algorithm to count points on an ellip­
tic curve over a finite field [22]. In addition, they have been 
used to perform efficient computations on elliptic curves, see 
for example [5], [9]. 

Hitt, McGuire, and Moloney recently have found formu­
las for division polynomials of twisted Edwards curves [11], 
[18]. The division polynomials we find are the analogues for 
Jacobi quartic curves. We illustrate a recursive formula for 
the n-th multiple of a point using these division polynomials. 
We are also able to prove some properties of these division 
polynomials. As an illustration, we show how they can be 
used to find the mean value of a certain collection of points 
related to the discrete logarithm problem. 

This paper is organized as follows. In section 2 we review 
Jacobi quartics, and in section 3 we examine their division 
polynomials. As an application, in section 4 we look at a 
certain mean value theorem. We conclude in section 5 with 
some remarks and open questions. 

2. THE JACOBI QUARTIC 
One model for elliptic curves is known as Jacobi quartics. 

For a background on these curves, see [3], [4], [17]. We recall 
only the basic facts. For the remainder of this paper, let K 
be a field whose characteristic is not 2 or 3. Any elliptic 
curve with a point of order 2 can be put into Jacobi quartic 
form, with equation 

2 4 2Jd,e : y = ex − 2dx + 1, 

where we require e(d2 − e)  The identity = 0, with d, e ∈ K. 
element is (0, 1), and the point (0, −1) has order 2. The 
inverse of a point (x, y) is (−x, y). There are two points 
at infinity, whose coordinates can be written in pro jective 
coordinates (with z = 0). The addition formula on Jd,e is 

http://eprint.iacr.org/2010/630
mailto:dbmoody25@gmail.com


 

given by  x1y2 + y1x2
(x1,y1) + (x2, y2) = ,

1 − e(x1x2)2  (1 + e(x1x2)2)(y1y2 − 2dx1x2) + 2ex1x2(x1 
2 + x2 

2) 
. 

(1 − e(x1x2)2)2

This addition formula can be efficiently implemented, which 
is one of the primary advantages of writing an elliptic curve 
in this form [10]. Another is that this addition formula pro­
tects against side-channel attacks [3], [17]. There is a bira­
tional transformation from a Jacobi quartic curve to a curve 
in Weierstrass form with a point of order 2. The map   

3(y + 1) − dx2 (y + 1) − dx2 

(r, s) = 2 
2 

, 4 
3

,
3x x

sends the points of the curve Jd,e with x = 0 to the Weier­
strass curve 

4 162 3 2 2 s = r − (d + 3e)r − d(d − 9e). 
3 27 

Under this transformation, the identity point (0, 1) corre­
sponds to ∞, and the point of order two (0, −1) goes to 
the point (4d/3, 0). The inverse from the Weierstrass curve 
s 2 = r 3 + ar + b, with point of order 2 (p, 0) is given by   

2(r − p) (2r + p)(r − p)2 − s 2 

(x, y) = , 
2

, 
s s

with the image being the Jacobi quartic Jd,e with d = 3p/4, 
and e = −(3p 2 + 4a)/16. The points ∞, (p, 0) are excep­
tional, and get sent to (0, 1) and (0, −1) respectively. 

3. DIVISION POLYNOMIALS 

3.1 Division polynomials for Weierstrass curves 
We begin by recalling the standard division polynomials 

for Weierstrass curves. We write [n](x, y) to denote the n-th 
multiple of a point (x, y). 

Theorem 1. Let E be given by y 2 = x 3 + ax + b, over a 
field whose characteristic is not 2. Then for any point (x, y) 
and n ≥ 2   

φn(x, y) ωn(x, y)
[n](x, y) = , . 

ψ2 ψ3 
n(x, y) n(x, y)

The functions φn, ωn, and ψn in Z[x, y] are defined recur­
sively by 

ψ0 = 0 

ψ1 = 1 

ψ2 = 2y 
4 2 2ψ3 = 3x + 6ax + 12bx − a 

6 4 3 2 2 2 3ψ4 = 4y(x + 5ax + 20bx − 5a x − 4abx − 8b − a ) 

n − ψn−1ψ
3 for n ≥ 2ψ2n+1 = ψn+2ψ

3 
n+1   ψn 2 2ψ2n = 

2y
ψn+2ψn−1 − ψn−2ψn+1 for n ≥ 3, 

and 
2φn = xψn − ψn+1ψn−1   1 2 2ωn = ψn+2ψn−1 − ψn−2ψn+1 . 

4y

Proof. These formulas are well-known. For example, see 
[23] or [24] for details. 

The polynomial ψn is called the n-th division polynomial 
of E. It is easy to see that a point P = (x, y) satisfies 
[n]P = ∞ if and only if ψn(x) = 0. Division polynomials 
are an important tool for finding multiples of points. In 
fact, they have been used to speed up computation of point 
multiplication in some cases (see for example [5], [9]). They 
also play a key role in Schoof ’s algorithm for counting the 
number of points on an elliptic curve over a finite field [22]. 

3.2 Division polynomials for Jacobi quartics 
We now perform a similar calculation for Jacobi quar­

tics. The division polynomials we find allow us to perform 
arithmetic on the Jacobi quartic with only the x-coordinate 
along with one multiplication by the y-coordinate. For con­
venience, let h(x) = ex 4 − 2dx2 + 1, so the curve equation 
for Jd,e is y 2 = h(x). 

Theorem 2. Let F1 = 1, G1 = 1, F2 = −2, and G2 = 
ex 4 − 1. Let P1 = 1, Q1 = 1, P2 = e 2 x 8 − 4dex6 + 6ex 4 − 
4dx2 + 1, and Q2 = (ex 4 − 1)2 . Write [n](x, y) = (xn, yn). 
Then there are polynomials Fn(x), Gn(x), Pn(x), and Qn(x) 
such that   

F2k (x) P2k(x)
(x2k, y2k) = xy , ,

G2k(x) Q2k (x)  
F2k+1(x) P2k+1(x)

(x2k+1, y2k+1) = x , y . 
G2k+1(x) Q2k+1(x)

The Fn, Gn, Pn, and Qn can all be calculated recursively: 

2 4 2F2k+1 = 2hF2kG2k−1G2k − F2k−1(G2k − ex hF2k), 
2 4 2G2k+1 = G2k−1(G2k − ex hF2k), 

2 4 2F2k+2 = 2F2k+1G2k G2k+1 − F2k(G2k+1 − ex F2k+1), 
2 4 2G2k+2 = G2k (G2k+1 − ex F2k+1), 

and 
2 2 4 2P2k+1 = 2G2kP2k Q2k−1(G2k + ex hF2k) 

− P2k−1Q2k(G
2 
2k − ex 4hF2

2 
k)

2 , 
2 4 2 2Q2n+1 = Q2k−1Q2k (G2k − ex hF2k ) , 

2 2 4 2P2k+2 = 2hG2k+1P2k+1Q2k(G2k+1 + ex F2k+1) 
2 4 2 2− P2kQ2k+1(G2k+1 − ex F2k+1) , 

2 4 2 2Q2k+2 = Q2kQ2k+1(G2k+1 − ex F2k+1) , 

for k ≥ 1. 

Proof. The proof is along the same lines as what was 
done for Edwards curves in [11],[18]. In turn, these authors 
credit Abel [1]. We use induction on n. For n = 1 the claim 
is trivially true,   

F1(x) P1(x)
(x1, y1) = x , y . 

G1(x) Q1(x)

For n = 2, the addition formula yields   
2xy (1 + ex 4)(y 2 − 2dx2) + 4ex 4 

(x2, y2) = − , . 
ex4 − 1 (ex4 − 1)2



  

 
 

  

  

  
  

  

By the defining curve equation, we have that y 2 = ex 4 − 
2dx2 + 1, so y2 can be rewritten as 

e 2 x 8 − 4dex6 + 6ex 4 − 4dx2 + 1 
y2 = . 

(ex4 − 1)2 

Thus (x2, y2) = (xyF2/G2, P2/Q2). We now assume the 
result holds true for all n. 

Given two points (r1, s1) and (r2, s2) on Jd,e, let (r+, s+) = 
(r1, s1) + (r2, s2) and (r−, s−) = (r1, s1) − (r2, s2). Then by 
the addition formula, we have 

2r1s2 
r+ + r− = 

1 − e(r1r2)2 

and 

2s1s2(1 + e(r1r2)2) 
s+ + s− = . 

(1 − e(r1r2)2)2 

If we substitute in (r1, s1) = (xn, yn), and (r2, s2) = (x, y) 
we obtain 

2xny 
xn+1 = − xn−1,

1 − e(xxn)2 

and 

2yny(1 + e(xxn)2) 
yn+1 = − yn−1. 

(1 − e(xxn)2)2 

Assume first that n = 2k is even, so then 

2xh F2k 
G2k F2k−1 

x2k+1 = − x 
F 2 
2k1 − ex4h 

G2 
G2k−1 

2k 

2hF2kG2k−1G2k − F2k−1(G
2 
2k − ex 4hF2

2 
k) = x ,

G2k−1(G2 − ex4hF 2 )2k 2k 

and 

F 2P2k 4h 2k2y (1 + ex )
G2Q2k P2k−12k y2k+1 = 

F 2 − y 
2k Q2k−1(1 − ex4h 

G2 )2 

2k 

42G2 
2kP2kQ2k−1(G

2 
2k + ex hF2

2 
k) = y 

Q2k−1Q2k(G2 − ex4hF 2 )2 
2k 2k 

4P2k−1Q2k(G
2 
2k − ex hF2

2 
k)

2 

− . 
Q2k−1Q2k(G2 − ex4hF 2 )2 

2k 2k 

When n = 2k + 1 is odd 
F2k+12xy 
G2k+1 F2k 

x2k+2 = 
F 2 − xy 
2k+1 G2k1 − ex4 

G2 
2k+1 

4F 22F2k+1G2k G2k+1 − F2k(G
2 
2k+1 − ex 2k+1) = xy ,

G2k(G2 − ex4F 2 )2k+1 2k+1 

and 

4 F 2 
2 P2k+1 2k+12y (1 + ex )

G2Q2k+1 2k+1 P2k
 
y2k+2 = 

F 2 −
 
2k+1 Q2k
(1 − ex4 

G2 )2 

2k+1 

4F 22hG2 
2k+1P2k+1Q2k (G2

2 
k+1 + ex 2k+1) = 

Q2k+1Q2k(G2 − ex4F 2 )2 
2k+1 2k+1 

4F 2 

− 
P2k Q2k+1(G

2 
2k+1 − ex 2k+1)

2 

. 
Q2k+1Q2k (G2 − ex4F 2 )2 

2k+1 2k+1 

This proves the recurrence relations given in the statement 
of the theorem hold. 

Alternatively, if we let αn = Fn/Gn and βn = Pn/Qn, 
then the above can be rewritten as follows: for n odd, 

2αn 
xn+1 = xy − αn−1 ,

4α21 − ex n 

2hβn(1 + ex 4α2 )
 
yn+1 = n − βn−1.
 

(1 − ex4αn 
2 )2 

When n is even, 

2hαn 
xn+1 = x − αn−1 ,

1 − ex4hα2 
n 

and 

2βn(1 + ex 4hα2 ) 
yn+1 = y n − βn−1 . 

(1 − ex4hα2 )2 
n 

There are some common factors that can be cancelled in 
the numerators and denominators of Fn/Gn and Pn/Qn. 
Also, the degrees of the Fn, Gn, Pn, and Qn grow exponen­
tially. By removing these common factors our new division 
polynomials will have degrees that only grow quadratically. 
The next proposition shows what these are. 

4 −Theorem 3. Let f1 = 1, g1 = 1, f2 = −2, and g2 = ex 
1. Let p1 = 1, q1 = 1, p2 = e 2 x 8 − 4dex6 + 6ex 4 − 4dx2 + 1, 
and q2 = (ex 4 − 1)2 . For n > 2, define fn, gn, pn, and qn by 

2 4f 22f2k−1g2k−2g2k−1 − f2k−2(g2k−1 − ex 2k−1) = ,f2k 2g2k−2 

2hf2k g2k−1g2k − f2k−1(g2
2 
k − ex 4hf2

2 
k)
f2k+1 = 

2 ,
 
g2k−1 

2 4f2 g2k−1 − ex 2k−1 g2k = , 
g2k−2 

g2
2 
k − ex 4hf2

2 
k g2k+1 = , 

g2k−1 

and 
2 42hg2

2 
k−1p2k−1q2k−2(g2k−1 + ex f2

2 
k−1) p2k = 

2q2k−2q2k−1 

2 4f2 p2k−2q2k−1(g2k−1 − ex 2k−1)
2 

− 
2 , 
q q2k−12k−2 

2g2
2 
kp2kq2k−1(g2

2 
k + ex 4hf2

2 
k)
 p2k+1 = 

2
q2k−1q2k 

p2k−1q2k(g2
2 
k − ex 4hf2

2 
k)

2 

− 
2 , 
q q2k2k−1 

2 4f2(g2k−1 − ex 2k−1)
2 

q2k = , 
q2k−2 

(g2
2 
k − ex 4hf2

2 
k)

2 

q2k+1 = . 
q2k−1 

Then the fn, gn, pn and qn are even polynomials in x and 
satisfy 

f2k(x) p2k(x)
(x2k , y2k) = xy , , 

g2k(x) q2k(x) 



  

 
 

  

 
 

  

f2k+1(x) p2k+1(x)
(x2k+1, y2k+1) = x , y . 

g2k+1(x) q2k+1(x) 

Before we give the proof, we prove a lemma. It will be 
needed in the proof of Theorem 3 as well as for some of the 
identities of the Jacobi division polynomials. Most impor­
tantly, it gives a simpler recurrence for the fn (and pn). 

Lemma 1. For n ≥ 1, the functions fn, gn, pn, and qn 

from Theorem 3 satisfy 

2 2 g2k − hf2k = −f2k−1f2k+1, (1) 

and as a result 

hf2 2 
2k − g2kf2k+1 = ,
f2k−1 

and for n > 1 

2 2f2k−1 − g2k−1 = hf2k−2f2k, (2) 

so therefore 

f 2 2 
2k−1 − g2k−1f2k = . 
hf2k−2 

Also qn = g 2 and n 

2 4 2f22hp2k−1(g2k−1 + ex 2k−1) − p2k−2g2k p2k = , 
q2k−2 

2 4 22p2k(g2k + ex hf2
2 
k ) − p2k−1g2k+1 p2k+1 = . 

qkn−1 

Proof. First note that by definition, we have 

2hf2kg2k−1g2k − f2k−1(g2
2 
k − ex 4hf2

2 
k)
f2k+1g2k−1 = ,
 

g2k−1
 

2hf2kg2k−1g2k − f2k−1g2k−1g2k+1 (3) 
= , 

g2k−1 

= 2hf2kg2k − f2k−1g2k+1. 

We now use induction. For k = 1, a direct computation 
2 8 4checks that both sides of (1) are equal to e x − 6ex + 

8dx2 − 3. The expression g2
2 
k − hf2

2 
k + f2k−1f2k+1 can be 

rewritten as 
2 g2k 2 2 4 2 

2 2 − f2k−1(g2k−2 − ex hf2k−2) 
g g2k−2 2k−1
 

2 2 2
 + g2k−1(g2k−2 − hf2k−2) 

+ 2hf2k−2f2k−1g2k−2g2k−1 . 

By the induction hypothesis, g2
2 
k−2 −hf22 

k−2 = −f2k−3f2k−1, 
and we also have g2

2 
k−2 − ex 4hf2

2 
k−2 = g2k−3g2k−1 so this 

last expression becomes 

2
f2k−1g2k
 2hf2k−2g2k−2 − f2k−1g2k−3 − g2k−1f2k−3 .2g2k−2g2k−1 

By (3) (with k − 1 in place of k), we see that this is equal 
to 0. This shows g2

2 
k − hf2

2 
k + f2k−1f2k+1 = 0, which was to 

be proved. 
To prove (2) we also use induction. For k = 2 both sides 

are equal to 8(ex 4 − 2dx2 + 1)(ex 4 − 1)(−e 2 x 8 + 4dex6 − 
6ex 4 + 4dx2 − 1). We can rewrite f2

2 
k−1 − g2

2 
k−1 − hf2k−2f2k 

as 
2 g2k−1 2 2 2 g2k−2(f2k−3 − g2k−3)2 2g2k−3g2k−2 

(4) − 2hf2k−3f2k−2g2k−3g2k−2 

2 2 4 2 + hf2k−2(g2k−3 − ex f2k−3) . 

Using the induction hypothesis and the identity g2
2 
k−3 − 

ex 4f2 = g2k−4g2k−2 then equation (4) becomes 2k−3 

hf2k−2g 2 
2k−1 f2k−4g2k−2 −2f2k−3g2k−3 +f2k−2g2k−4 . (5) 2g2k−3g2k−2 

But 
2 4f22f2k−3g2k−4g2k−3 − f2k−4(g2k−3 − ex 2k−3)f2k−2g2k−4 = 

g2k−4 

= 2f2k−3g2k−3 − f2k−4g2k−2, 

so (5) is equal to 0, showing f2
2 
k−1 − g2

2 
k−1 − hf2k−2f2k = 0. 

Finally, we verify that qn = g 2 For n = 1 and 2, this n. 
is clearly true. Now assume that qn = g 2 Then by defi­n. 

2 2nition qn+1 = gn+1gn−2/qn−2. By the induction hypothesis, 
g 2 = which proves qn+1 = g 2 Using this, com­n−2 qn−2 n+1. 
bined with the definition of the gn, the formulas for the pn 

are straightforward and we omit the details. 

We now give the proof of Theorem 3. 

Proof. Note the similarities in the definitions of Fn and 
fn, Gn and gn, Pn and pn, and finally between Qn and 
qn. Since the fn and gn are just the Fn and Gn with their 
common factors canceled then Fn/Gn = fn/gn. Likewise 
Pn/Qn = pn/qn. It is clear that fn, gn, pn, and qn are all 
even using the recursion formulas combined with the fact 
that f1, f2, g1, g2, p1, p2, q1, and q2 are all even. 

We first show that the gn are polynomials. Let γ be a 
root of g2k−2, and δ ∈ K such that (γ , δ) is a point on Jd,e. 
It follows that [2k − 2](γ, δ) is a point at infinity R. Using 
the addition law for projective coordinates (given in [3]), √ √ 
(x, y) + R = (±1/ ex, ±y/ e). As a result, we see 

2 1 2 f2
2 
k−1(γ) x2k−1(γ) = = γ . 

eγ2 g2
2 
k−1(γ) 

4f2This is equivalent to γ being a root of g 2 − ex2k−1 2k−1. 
As γ was arbitrary, then this shows g2k−2|g22 

k−1 − ex 4f2
2 
k−1. 

Similarly, if g2k−1(γ) = 0 then by the same reasoning we 
have 

f2 

x2k (γ) = = γ h(γ) . 2 1 2 2k(γ) 
eγ2 g2

2 
k(γ) 

Thus γ is a root of g2
2 
k − ex 4hf2

2 
k as desired. We conclude 

that the gn are polynomials in x. 
We now show that the fn are polynomials in x. By Lemma 

1, f2k+1 = (hf2
2 
k − g2

2 
k)/f2k−1. Let γ be a root of f2k−1. 

Then by the addition law, we have x2k(γ) = ±γ. Squaring 
this relation yields 

f2 
2 2 2k(γ)γ = γ h(γ) , 

g2
2 
k(γ) 

which shows γ is a root of g2
2 
k − hf2

2 
k, and hence f2k+1 is a 

polynomial. 



 

 

  

f 2 2 
2k−1 −g2k−1Similarly, by Lemma 1 we have that f2k = .

hf2k−2 

Now if f2k−2(γ) = 0 for some γ = 0, then x2k−1(γ) = ±γ. 
Squaring this yields 

2 f2
2 
k−1(γ)γ2 = γ

2 , 
g2k−1(γ) 

and we see that γ is a root of f2
2 
k−1 − g2

2 
k−1, so f2k−2 divides 

f2 2 
2k−1 − g2k−1. 
If γ is a root of h = ex 4 − 2dx2 + 1, then (γ , 0) is a point 

on the curve Jd,e, and it is easy to check that [2](γ , 0) = 
(0, −1), [3](γ , 0) = (−γ, 0), and [4](γ, 0) = (0, 1). So then 

2 = γ2 f2
2 
k−1(γ) x2k−1(γ) = γ2 , 

g2
2 
k−1(γ) 

so γ is a root of f2
2 
k−1 − g2

2 
k−1, and hence h divides f2

2 
k−1 − 

g2
2 
k−1. This shows that f2k is a polynomial in x. 
To see qn is a polynomial in x, we appeal to Lemma 1. 

As gn is a polynomial, and qn = gn 
2 , then qn is a polynomial 

as well. The proof that pn is a polynomial is much more 
cumbersome to write down, although the technique is the 
same. Consequently, we omit it. 

We list the division polynomials for n = 3 and 4: 
2 8 4 2f3 = −e x + 6ex − 8dx + 3, 

2 8 6 4 g3 = −3e x + 8dex − 6ex + 1, 

4 16 3 14 3 12 2 10 p3 = e x − 8de x + 28e x − 56de x 
2 8 6 4 2 + 2e(32d + 3e)x − 56dex + 28ex − 8dx + 1, 

2 8 6 4 2 q3 = (−3e x + 8dex − 6ex + 1) , 

4 2 8 6 4 2f4 = −4(ex − 1)(−e x + 4dex − 6ex + 4dx − 1), 

4 16 3 12 2 10 2 2 8 g4 = −e x + 20e x − 64de x + (64d + 26e )ex 

− 64dex6 + 20ex 4 − 1, 

8 32 7 30 6 26 2 p4 = e x − 16 de x − 560 de x + · · · − 16 dx + 1, 

2 q4 = g4 . 

We call the fn the Jacobi quartic division polynomials, as 
they satisfy the following corollary. 

Corollary 1. For n > 2, the point (x, y), with xy = 0, 
satisfies [n](x, y) = (0, ±1) if and only if we have fn(x) = 0. 

Proof. This is immediate from Theorems 2 and 3. Note 
that [n](x, y) = (0, 1) if and only if [n](x, −y) = (0, −1). 

An advantage of our division polynomials is that the n-th 
one can be computed from the previous two rounds, i.e., fn 

and gn only depend on fn−1, gn−1, fn−2, and gn−2. The di­
vision polynomials for Weierstrass curves given in Theorem 
1 require the previous n/2 rounds of computation. We now 
show some of the properties of these latter Jacobi division 
polynomials, beginning with their degrees. 

Proposition 1. For odd n, 

(n 2−1)/4 n 2−1fn(x) e x + · · · 
2−1)/4xn2−1 + ·gn(x) 

= 
ne(n · · 

, 

(n 2 −1)/2 2(n 2−1)+··· pn(x) e x

qn(x) 
= 

(ne(n2−1)/4xn2−1 + · · · )2 
, 

where + · · · indicates lower powers of x. For even n, we 
have 

(n 2−4)/4 n 2−4fn(x) e x + · · · 
= −n 2 ,2/4xngn(x) en + · · · 

2 n 2/2 2n pn(x) e x + · · · 
= 2/4 

. 
qn(x) (en xn2 + · · · )2 

Proof. The proof of the leading terms of the quotient 
fn/gn and pn/qn is a straightforward exercise in induction. 
We only give the proof for fn/gn, and skip the proof for 
pn/qn. We first establish that for odd n, 

(n−1)/2 (n 2−1)/4 n 2−1fn = (−1) e x + · · · , 

(n−1)/2 (n 2−1)/4 n 2−1 gn = (−1) ne x + · · · , 

while for even n 
n/2 (n 2−4)/4 n 2−4fn = (−1) ne x + · · · , 

2n/2 n 2/4 n gn = −(−1) e x + · · · . 

Note that for n = 1 and 2 this is clearly true. For even n, if 
we include only the leading terms we have 

24 2 (n 2−4)/2 2(n 2−4) n 2/2 2n(ex )(n e x ) − (e x )
fn+1 = 2−2n(−1)(n−2)/2e(n2 −2n)/4xn

= −(−1)n/2 (n 2+2n)/4 n 2+2n e x + · · · 
(n+1−1)/2 ((n+1)2 −1)/4 (n+1)2 −1= (−1) e x + · · · . 

Similarly, when n is odd we have 

(n 2−1)/2 2(n 2 −1) 2 (n 2−1)/2 2(n 2 −1)(e x ) − (n e x )
fn+1 = 2−2n−3)/4xn2−2n−3)(ex4)((−1)(n−1)/2(n − 1)e(n

(n+1)/2 ((n+1)2−4)/4 (n+1)2−4= (n + 1)(−1) e x + · · · . 

This shows the leading term of fn is as desired for n even 
or odd. Now for n = 2k, we have 

2k2 8k2 4 4 2k2−2 8k2−8 e x − ex (ex )(4k2)e x 
=gn+1 

(−1)k−1(2k − 1)ek2−kx4k2−4k 

k k2+k 4k2+4k= (−1) (2k + 1)e x + · · · 
(n+1−1)/2 ((n+1)2−1)/4 (n+1)2−1= (−1) (n + 1)e x + · · · . 

Also for n = 2k + 1, 

2k2+2k 8k2 +8k − ex 4 2k2+2k 8k2+8k(2k + 1)2 e x e x
 
gn+1 =
 

(−1)k+1ek2 x4k2 

k k2 +2k+1 4k2+8k+4= (−1) e x + · · · 
2 

= −(−1)(n+1)/2 n 2/4 n e x + · · · , 

which shows the leading term of gn is as claimed. 

We include some functional equations for the Jacobi divi­
sion polynomials. 

Proposition 2. For odd n, 

(n−1)/2 (n 2−1)/4 n 2−1 1 
gn(x) = (−1) e x fn √ , 

ex 



  
  
  

  

  
  

  
  

  
  

 

 

 

while for even n,	 which was to be proved. Note these functional equations 

(n+2)/2 (n 2−4)/4 n 2−4 1 
fn(x) = (−1) e x fn √ , 

ex 

2n/2 n 2/4 n 1 
gn(x) = (−1) e x gn √ . 

ex 

We also have 

(n 2−1)/2 2(n 2 −1) 1 
pn(x) = e x pn √ , 

ex 

for odd n, and 

2 n 2/2 2n 1 
pn(x) = e x pn √ , 

ex 

for even n. 
1 

yQ. 

1 
xi = xQ, yi = nyQ.Proof. Recall that fn, gn, and pn are even, so the square n2 n2 

roots in the formulae make sense. We use induction to prove 
Proposition 2. The results are all easily verified for n = 1, 2. 
We first verify the functional equation for gn when n = 2k 
is even: 

k k2 4k2 1 
(−1) e x g2k √ 

ex 
2 4f2 
2k−1 − exk k2 4k2 g 2k−1 1 

= (−1) e x	 √ , 
g2k−2 ex 

f2 2 
2k−1 2k−1g− 

k2 4k2 2k2−2k 8k2−8ke x 2k2−2k+1 8k2−8k+4k e x= (−1)

impose certain symmetries on the coefficients of the Jacobi 
division polynomials. 

4. MEAN VALUE THEOREMS 

4.1	 Weierstrass and Edwards mean value the­
orems 

Let K be an algebraically closed field of characteristic not 

2 2 

equal to 2 or 3. Let E : y 2 = x 3 +Ax+B be an elliptic curve 
defined over K, and Q = (xQ, yQ) = ∞ a point on E. Let 
Pi = (xi, yi) be the n 2 points such that [n]Pi = Q, where 
n ∈ Z, (char (K),n)=1. The Pi are known as the n-division 
points of Q. In [7], Feng and Wu showed that 

n	 n 
i=1 i=1 

This shows the mean value of the x-coordinates of the n-
division points of Q is equal to xQ, and nyQ for the y-
coordinates. 

In [21] a similar formula was established for elliptic curves 
in twisted Edwards form. Let Q be a point on a twisted 
Edwards curve. Let Pi = (xi, yi) be the n 2 points such that 
[n]Pi = Q. If n is odd, then 

1 1 1 (−1)(n−1)/2 
2 2  n	 n 

e x	 , xi = xQ, yi = 
(−1)k−1 g2k−2	 2 2n n n n 

 
(k−1)2	 4(k−1)2 i=1 i=1 

e	 x

g2
2 
k−1 − ex 4f2

2 
k−1	 If n is even, then 

=	 , 
2n

g2k−2  2n 

i=1 i=1 

1 1 
xi = 0 = which is g2k(x) as desired. yi. 2 2n n

Also for n = 2k, 

 

1k+1 k2−1 4k2−4 4.2	 Jacobi quartic mean value theorem (−1) e x f2k √ 
ex We now give a mean value theorem for the x-coordinates 

k+1 k2 −1 4k2−4 f2
2 
k−1 − g2

2 
k−1 1 of Jacobi quartics. 

= (−1) e x	 √ ,
hf2k−2 ex 

2 f2 Theorem 4. Let Q = (0, ±1) be a point on Jd,e. Let 
2k−1 2k−1	 2g − Pi = (xi, yi) be the n points such that [n]Pi = Q. Then 

k+1 k2−1 4k2−4 e2k2−2k x8k2−8k e2k
2−2k x8k2−8k 

= (−1) e x	 ,
h f2k−2	 2n 

xi =	 xQ, 
g2
2 
k−1 − f2	 n n2 

2k−1 i=1= ,
hf2k−2 

if n is odd and 
= f2k. 

4 k2−2k x4k2−8k(−1)k e	 1 1ex

 2n 

xi = 0,
2 

Finally, we show the functional equation relating fn and	 1 
gn for odd n = 2k + 1. We leave the proof of the functional	 n

i=1 
equation for pn to the reader. We have 

if n is even. 
k k2+k 4k2+4k 1 

(−1) e x f2k+1 √ 
ex We first need a result showing how we can combine mean 

2 value results for n-division points and m-division points to 
k k2+k 4k2+4k hf2

2 
k − g2k 1 

= (−1) e x	 √ , obtain one for the mn-division points. 
f2k−1 ex 

h f2
2 
k g2

2 
k Proposition 3. Fix m− and n. Suppose we have that  4k2+k 4k2+4k ex e2k

2−2x8k2−8 2k2 8k2 2 2k e x m	 m= (−1) and yPi = dmyQ for some con­e x ,g2k−1 i=1 xPi = cmxQ i=1 

 
(−1)k−1ek

2−k x4k2−4k stants cm, dm which depend only on m, whenever the Pi, 
2 Q, for some i = 1, 2, are points such that [m]Pig2

2 
k − ex 4hf2

2 
k 

· · · , m = 
2= , 

g2k−1  Q = (0, 0). Similarly, suppose we have that n xRi = i=1 
2 n enxS and = fnyS for some constants en, fn which yRi = g2k+1, i=1 



 

 
  

  

  

  
 

  

  
  

 

 
 

  

 

 

 

depend only on n, where the Ri, i = 1, 2, · · · , n 2 are points 
such that [n]Ri = S, for some S = (0, 0). 

Then given (mn)2 points T1, T2, · · · , T(mn)2 on Jd,e such 
(mn)2 

that [mn]Ti = U for some U = (0, 0), we have that i=1 xTi = 
(mn)2 

cmenxU and i=1 yTi = dmfnyU . on a Jacobian quartic: 

Proof. Consider the set of points {[m]T1, [m]T2, · · · , [m]T(mn)2 }. 1 
Each element [m]Ti satisfies [n]([m]Ti) = U . So this set 
must be equal to the same set of n 2 points V that satisfy 
[n]V = U . Call this set {V1, V2, · · · , V 2 }. For each Vj , there n

are at most m 2 elements of the Ti which satisfy [m]Ti = Vj . 
As each Ti must satisfy [m]Ti = Vj for some j, this parti­
tions our original set of the (mn)2 points Ti into n 2 subsets 
of m 2 points. Then by assumption, we have 

2(mn)2 
n 

xTi = cmxVi = cmenxU , 
i=1 i=1 

and 
2(mn)2 

n 

yTi = dmyVi = dmfnyU . 
i=1 i=1 

For example, fix an elliptic curve and suppose we know 
the mean value of the x-coordinates of the 3-division points, 
or 9 

i=1 xi = 3xQ. Similarly if know the same for the 5­
division points, 25 xi = 5xQ, then by Proposition 3 we i=1 
know the mean value for the 15-division points. It will be 

225 
i=1 xi = 15xQ. 
Now we give the proof of Theorem 4. 

Proof. We first examine the case when n is odd. By 
fn(x) pn(x)definition, the solutions of x , y = (xQ, yQ) are 
gn(x) qn(x) 

exactly the (xi, yi). By proposition 1, we can rewrite this 
x-coordinate relation as 

n 2−1(n 2−1)/4 n 2−1 n 2−2 (n 2 −1)/4x x e x + 0x + · · · = xQ(ne +· · 

or 
2(n 2−1)/4 n n 2−1 e x − nxQx + · · · = 0.  2(n 2−1)/4This must be equal to the polynomial e n 

i=1(x−xi), 
so we can conclude that 

2 n 

xi = nxQ. 
i=1 

This proves the mean value of the x-coordinate is as claimed 
when n is odd. 

We now look at the case when n = 2. By the addition 
formula it is clear that if [2](x, y) = Q, then [2](−x, −y) = Q 
as well. So the four points Pi with [2]Pi = Q can be written 
as (x1, y1), (x2, y2), (−x1, −y1), and (−x2, −y2). The result 
for n = 2 is immediate. Now by Proposition 3, and the 
result for odd n, Theorem 4 is true for even n as well. 

We remark that Theorem 4 was proved for points Q = 
(0, ±1). For Q = (0, ±1), recall that (xi, yi) = (0, ±1) is an 
n-division point of Q if and only if fn(xi) = 0. Recall that 
for odd n, fn is an even function of x and so 

n 2 −1 
n 2−1 n 2−2fn(x) = (x − xi) = x + 0x + · · · , 

i=1 

and hence n 2−1 
i=1 xi = 0. When we consider Q as the last 

n 2 
n-division point of Q, then we have i=1 xi = 0. 

We are unable to prove, but conjecture the following mean-
value theorem for the y-coordinates of the n-division points 

n2 

for n odd, and 

2 n 

yi = yQ, 
i=1 

2 n 
1 
2 

yi = 0, 
n

i=1 

for n even. The proof techniques in [7], [21] do not work for 
Jacobi quartic curves. The Weierstrass result uses proper­
ties of the Weierstrass ℘(z) function, which we do not have 
a Jacobi quartic analogue for. In the Edwards case, the re­
sult is obtained by the obvious symmetry of x and y in the 
defining curve equation. 

Note that in our proof above, we showed the conjecture 
is true for n = 2. Hence, by Proposition 3, the even result 
follows immediately once it is true for odd n. Also note 
that the y-coordinate mean value theorem is equivalent to 
showing 

2 n 
gn(xi) 2 = n ,
fn(xi)

i=1 

fn(xi)for odd n because yi = yQ. gn(xi) 

5. CONCLUSION 
In this paper we looked at division polynomials for Ja­

cobi quartics. Using them we were able to find a formula 
for the n-th multiple of a point. We also proved some of 
the properties of these division polynomials, and a type of 

· ) mean-value theorem. In the extended version of this paper 
([20]) we show how to extend these results to other models 
of elliptic curves, namely, Huff curves and Jacobi intersec­
tions. This includes results for the division polynomials and 
related mean-value theorems. 

Some directions for future study would be to find division 
polynomials for the remaining models of elliptic curves, such 
as Hessian curves. It would also be interesting to see if the 
formulas derived in this paper could be used to perform ef­
ficient scalar multiplication, as has been done in some cases 
with Weierstrass curves. This is the most important com­
putation in elliptic curve cryptography and the subject of 
much research. We leave this for a future project. 
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