
JOURNAL OF OBJECT TECHNOLOGY 
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003 

 
Vol. 2, No. 4, July-August 2003 

 
 
 
 

Cite this article as follows: Conrad Bock: “UML 2 Activity and Action Models”, in Journal of Object 
Technology, vol. 2, no. 4, July-August 2003, pp. 43-53. 
http://www.jot.fm/issues/issue_2003_07/column3  

UML 2 Activity and Action Models 
Conrad Bock, National Institute of Standards and Technology 

 
 
This is the first in a series introducing the activity model in the Unified Modeling 
Language, version 2 (UML 2), and how it integrates with the action model [1]. The series 
is a companion to the standard, providing additional background, rationale, examples, and 
introducing concepts in a logical order. This article covers motivation and architecture for 
the new models, basic aspects of UML 2 activities and actions, and introduces the general 
notion of behavior in UML 2. 

1 BACKGROUND 

A focus of recent developments in UML has been on procedures and processes. UML 1.5 
introduced a model for parameterized procedures defined by control and data flow to 
complement the existing state and interaction models [2]. For the first time UML 
supports first-class procedures that can be used as methods on objects or independently of 
objects, as occurs when modeling, for example, function libraries with popular 
programming languages. It also facilitates application of UML by modelers who do not 
use object-orientation (OO) routinely, such as system engineers and enterprise modelers, 
and provides them a path to incrementally adopt OO as needed [3]. The flexibility to 
combine OO with functional approaches considerably widens and integrates the potential 
applications of UML. 

 
Figure 1: UML Timeline 

 
UML 1.5 also inherited from earlier versions a form of state machine that was 
notationally modified to appear as a flow diagram, called the activity diagram. 
Unfortunately, the underlying state machine semantics restricts expressiveness and is 

UML 1.1

1997

UML 1.1

1997

UML 1.3

1999

UML 1.3

1999

UML 1.5

2001

UML 1.5

2001

UML 2.0

2003

UML 2.0

2003

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/column3


 
UML 2 ACTIVITY AND ACTION MODELS 

 
 
 
 

44 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

confusing to users. Especially those not using an OO approach perceive UML 1.x activity 
models as not working for them. There is also concern that UML 1.5 has multiple models 
for control and data flow. 

In light of this experience, UML 2.0 redefined the activity model to give it a basis in 
flow modeling intuition, and to integrate it with the UML 1.5 action model. The new 
activity model supports the control and data flow of UML 1.5 procedures, as well as more 
general features, such as cycles and queuing. Consequently, UML 2 activities support 
flow modeling across a wide variety of domains, from computational to physical. This 
makes it ideal for specifying systems independently of whether the implementation is 
software or hardware, as in system engineering, and independently of where the 
system/environment boundary is drawn. Finally, the combination of activities and actions 
retains the UML 1.x capability of reacting to events, so can be applied to areas requiring 
that, such as embedded and agent-based systems. 

2 MULTIPLE DOMAINS 

Although the UML 2 activity and action models are defined independently of application, 
some features are more appropriate to some domain styles than others. For example, 
actions for throwing exceptions will probably be used more often by programmers, 
whereas enterprise modelers are more likely to apply other techniques for atypical flows, 
such as exception parameters and interrupting regions. This redundancy is unavoidable 
when creating an abstraction over user groups that do not overlap. However, it is more 
than made up for by the efficiency in communication based on a common model between 
domains that are integrated in delivered systems. 

To support vendors focusing on particular users, the activity model is packaged in a 
more fine-grained way than other behavior models, and has more complex dependencies 
between packages, as shown in Figure 2. 

 
Figure 2: Activity Package Dependencies 

BasicActivities

ExtraStructuredActivities

IntermediateActivitiesStructuredActivities

CompleteStructuredActivities CompleteActivities

BasicActivities

ExtraStructuredActivities

IntermediateActivitiesStructuredActivities

CompleteStructuredActivities CompleteActivities



 
 
 
 
 
 

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 45 

The features in common between the applications, such as the abstract action concept, 
control/data flow, and input/output, are at the root (basic activities). From there, 
dependencies branches in two directions, one mainly for software modeling (structured 
activities), and the other for general process modeling (intermediate and complete 
activities). Structured activities introduce well-nested constructs, for modeling 
conditionals, variables, try/catch, and so on. Intermediate and complete activities 
introduce explicit parallelism, partitions, flow-based forms of exception handling, and a 
number of constructs for finer-grained control of flows. These are orthogonal branches, 
so they may be combined. For example, structured activities may be folded in with 
intermediate activities, to support explicit parallelism and structured conditionals at the 
same time.1 This series will cover the functionality of the various packages. 

Supporting a wide range of applications also requires multiple notations. For 
example, programmers tend to favor textual notations, while subject matter experts prefer 
graphical notations. UML addresses this by defining a repository for storing 
specifications that can be populated from multiple notations. Programmers can use a 
textual syntax to build and read activity models in the repository, and enterprise modelers 
can use a graphical notation. The UML repository is a communication medium between 
multiple notations, and a source for highly directable compilers targeting multiple 
platforms [4]. 

3 FLOW MODELS AND SEMANTICS 

Behavior models in general determine when other behaviors should start and what their 
inputs are [3]. In particular, the UML 2 activity models follow traditional control and data 
flow approaches by initiating subbehaviors according to when others finish and when 
inputs are available. It is typical for users of control and data flow to visualize runtime 
effect by following lines in a diagram from earlier to later end points, and to imagine 
control and data moving along the lines. Consequently a token flow semantics inspired by 
Petri nets is most intuitive for these users, where "token" is just a general term for control 
and data values. 

UML 2 takes the same approach to behavioral semantics as UML 1.x, namely to 
define intuitive virtual machines. This enables users and vendors to predict the runtime 
effect of their models. UML 2 activities define a virtual machine based on routing of 
control and data through a graph of nodes connected by edges. Each node and edge 
defines when control and data values move through it. These token movement rules can 
be combined to predict the behavior of the entire graph.2 The rules for control and data 
movement are only intended to predict runtime effect, that is, when behaviors will start 
                                                           
1 The action model should be finely packaged to correspond with activities, but is currently divided into 
INTERMEDIATEACTIONS and COMPLETEACTIONS only. These contain the predefined actions, such as object 
creation, setting attributes, and so on. The abstract notion of action is defined in the BASICACTIVITIES 
package because it is integral to the flow model. See later sections of this article. 
2 It is hoped that the rules are precise enough to be translated to a formal semantics, especially to support 
proving properties about modeled processes. This is left for future work. 



 
UML 2 ACTIVITY AND ACTION MODELS 

 
 
 
 

46 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

and with what inputs. They do not constrain implementation further than that. In 
particular, the rules do not imply that activity models must be implemented as a virtual 
machine corresponding to the token analogy, messaging passing, or any other scheme. It 
is only necessary that the runtime effects predicted by the virtual machine actually occur 
in the implementation. 

The activity model is defined with few semantic variations, which is the UML term 
for allowing implementations to choose alternative runtime behavior without recording 
those choices in the model. Semantic variations cause a model in one implementation to 
execute differently than the same model in another implementation, with no standard way 
to tell what the differences are. Variations in activity execution are mostly modeled as 
attribute values in the user’s model. This means they are under user control and are 
transmitted to other users without requiring implicit alignment of implementations. 

4 ACTIVITY NODES AND EDGES 

UML 2 activities contain nodes connected by edges to form a complete flow graph. 
Control and data values flow along the edges and are operated on by the nodes, routed to 
other nodes, or stored temporarily. More specifically, there are three kinds of node in 
activity models: 

1. Action nodes operate on control and data values that they receive, and provide 
control and data to other actions. 

2. Control nodes route control and data tokens through the graph. These include 
constructs for choosing between alternative flows (decision points), for 
proceeding along multiple flows in parallel (forks), and so on. 

3. Object nodes hold data tokens temporarily as they wait to move through the 
graph. 

Figure 3 shows the notation for some of the activity nodes to be discussed. Contrary to 
the names, control nodes coordinate both data flow and control flow in the graph, and 
object nodes can hold both objects and data.3 

Activity nodes are connected by two kinds of directed edges: 
1. Control flow edges connect actions to indicate that the action at the target end of 

the edge (the arrowhead) cannot start until the source action finishes. Only control 
tokens can pass along control flow edges. 

2. Object flow edges connect objects nodes to provide inputs to actions. Only objects 
and data tokens can pass along object flow edges. 

                                                           
3 UML abstracts from objects and data to classifiers in general. 



 
 
 
 
 
 

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 47 

 

 
Figure 3: Activity Nodes 

 
Figure 4 shows the notation for edges. Control and object flow edges are distinguished by 
usage. Control edges connect actions directly, whereas object flow edges connect the 
inputs and outputs of actions (see next section). 

 
Figure 4: Activity Edges 

 
This rest of this article introduces actions and edges with a small example. Later articles 
will cover the other kinds of nodes, and more features of actions and edges. 

5 ACTIONS 

Activity models coordinate actions, some of which may invoke user-defined behaviors, 
including other activities. All actions are predefined. For example, UML 2 has actions to 
create objects, set attributes values, link objects together, and to invoke user-defined 
behaviors. Actions can have inputs and outputs, which are called pins, that are connected 

Control Flow Edge

Object Flow Edge

Control Flow Edge

Object Flow Edge

Action Node:

Control Nodes:

Object Nodes:

label

Decision
and

Merge

Fork
and
Join

label

Final
nodes

label
(used in several ways) 

Initial
node



 
UML 2 ACTIVITY AND ACTION MODELS 

 
 
 
 

48 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

by object flow edges to show how values flow through the activity, provided by some 
actions and received by others. In the simple cases, all inputs to an action are required to 
be available for it to begin executing. 

Figure 5 shows an example of an action creating a new instance of an ORDER class, 
then another action invoking a user-defined behavior to fill it. The object creation action 
creates a blank order that FILLORDER completes. Action nodes are notated with round 
cornered rectangles.4, 5 At the top of Figure 5, the small rectangles attached to the actions 
are input and output pins. The type of object accepted as input or provided as output is 
shown as an adornment. The notation at the bottom of Figure 5 can be used when the 
types of input and output are the same. Pins are a kind of object node, so they also hold 
data values temporarily in the flow. 
 

 
Figure 5: Example Actions and Object Flow Edges 

 
As mentioned before, it is not necessary to use the notation of Figure 5. Programmers will 
mostly likely prefer a textual notation [4], such as: 
 

Order o; 
o = new Order; 
FillOrder(o); 

 
The repository model defined by UML 2 is the same for the above notations, as shown in 
Figure 6, assuming the variables of the textual language are modeled as dataflow.6 Each 
element of the repository is an instance of a metaclass defined in the UML specification, 
which is the name to the right of the colon. The name of the repository instance itself is to 
the left of the colon, blank if it is anonymous. The model shows a CREATEOBJECTACTION 
with an output pin passing its value to the input pin of a CALLBEHAVIORACTION.. The 

                                                           
4 The wording inside the action nodes is not normative, because a standard textual notation for actions is 
not adopted yet. Also action nodes can be given labels that are more descriptive than the predefined action 
name. 
5 The round cornered notation is also used by state machines to notate states, unfortunately. This is not a 
desirable situation. However, it is beneficial to those users and vendors who have been trying to apply state 
machines to flow modeling applications, for lack of a flow modeling standard until now. 
6 UML 1.5 and UML 2 also support variables if needed. 

Fill
Order

Create
Order Order Order

Fill
Order

Create
Order Order

Fill
Order

Create
Order Order Order

Fill
Order

Create
Order Order



 
 
 
 
 
 

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 49 

CREATEOBJECTACTION is linked to the user class it instantiates (ORDER), and the 
CALLBEHAVIORACTION is linked to the user-defined behavior it invokes (FILLORDER). 
 

 
 

Figure 6: Repository model for Figure 5 
 

The primitive actions for creating objects, invoking user-defined behaviors, and so on, are 
not technically behaviors themselves, but this is more an artifact of metamodeling than a 
conceptual distinction. The fundamental distinction is between a specification of dynamic 
effect and its usage, to support multiple usages of the same specification. For example, 
the same FILLORDER behavior may be invoked in many activity diagrams, or many times 
in the same activity diagram, but each invocation will be represented by a separate 
instance of CALLBEHAVIORACTION in the repository, all referring to the same FILLORDER 
behavior. This is because each usage of FILLORDER will be in a different flow, or at 
different points in the same flow, and each usage may have different actions before and 
after it. For example, Figure 6 has a CREATEOBJECTACTION before FILLORDER, whereas 
another flow might not.7 

Actions are also reusable, but this happens to be modeled in a different way than user-
defined behaviors. Each action in a flow is a new instance of a single class from the UML 
metamodel. For example, if an activity contains two object creation action nodes, then the 
user’s repository has two instances of the CREATEOBJECTACTION class from the UML 
metamodel, and separate sets of pins for each. Reusability is achieved by using multiple 

                                                           
7 Programming languages make the same distinction between a procedure declaration or definition, which 
has the signature, and statements that call the procedure, providing actual parameters at runtime. In UML 2 
terms, a procedure definition is a behavior, and a statement is an action. 

Order : Class: CreateObjectAction +classifier

: OutputPin

+result

OF1 : ObjectFlow

+source

I1 : InputPin+target

FillOrder : BehaviorCB1 : CallBehaviorAction

+argument

+behavior

Order : Class: CreateObjectAction +classifier

: OutputPin

+result

OF1 : ObjectFlow

+source

I1 : InputPin+target

FillOrder : BehaviorCB1 : CallBehaviorAction

+argument

+behavior



 
UML 2 ACTIVITY AND ACTION MODELS 

 
 
 
 

50 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

instances of the same UML metaclass as action usages8. Later articles will cover the 
various kinds of actions. 

6 ACTIVITIES 

Activities are user-defined behaviors, and like all behaviors in UML 2 can be initiated by 
invocation actions, and support parameters to receive and provide data to the invoker. 
Parameters are part of the reusable definition of an activity. Parameters are not pins, 
because pins are used to connect actions in a flow, whereas activities are behaviors 
invoked by actions (see previous section). However, to access parameter values from 
actions in the activity, activity parameters are modeled as a special kind of object node 
used to temporarily hold actual parameter values as they flow into and out of the activity. 
Figure 7 shows a parameterized activity with a parameter object node connected to pins 
on actions. Parameter object nodes are shown on the border, with object flow edges 
connecting them to pins. The type of object held in an object node is usually shown in the 
label. In this example, the information used to fill the order is provided as an input 
parameter and passed along to the invocation of the FILLORDER behavior. 

 
Figure 7: Example Activity 

 
The control nodes at the beginning and end of the flow in Figure 6 are initial and final 
nodes respectively. When the ORDERACTIVITY is invoked, a control token is placed at the 
initial node, and a data token with ordering information is placed at the input parameter 
object node. The control token flows from the initial node to the CREATEORDER action, 
which begins executing. The data token flows from the parameter to the invocation action 

                                                           
8 It is possible that actions could be modeled in the same way as user-defined behaviors and be standardized 
as a reusable model library. Then only one predefined action would be needed to invoke all behaviors, 
whether predefined or user-defined. However, the static requirements of predefined actions, such as 
CREATEOBJECTACTION requiring a class to instantiate, would need to be recorded in constraints rather than 
associations in the metamodel. Constraints are generally not as easy to read in the UML specification as 
metamodel associations. 

Fill
Order

Create
Order

OrderActivity

Order
Information

Order Order

Order
Information

Fill
Order

Create
Order

OrderActivity

Order
Information

Order Order

Order
Information



 
 
 
 
 
 

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 51 

for FILLORDER, which must wait for CREATEORDER to provide its other input before 
starting. When FILLORDER is done, a control token is passed to the final node and the 
activity terminates, returning control to execution that started it. A partial repository 
model for Figure 7 is in Figure 8 below. It connects to the repository model of Figure 6 
through the CB1 CALLBEHAVIORACTION. The CREATEORDER action and its flows are 
omitted for brevity. 
 

OrderInformation : Class

: InitialNode

: Parameter +type

: ActivityParameterNode

+parameter

: FinalNode

FillOrder : Behavior: ControlFlow

+target

CB1 : CallBehaviorAction
+behavior+source

OF2 : ObjectFlow

+source

OrderActivity : Activity +parameter

+node +node

+node

+edge +node

+edge

I2 : InputPin
+target

+argument

+node

OrderInformation : Class

: InitialNode

: Parameter +type

: ActivityParameterNode

+parameter

: FinalNode

FillOrder : Behavior: ControlFlow

+target

CB1 : CallBehaviorAction
+behavior+source

OF2 : ObjectFlow

+source

OrderActivity : Activity +parameter

+node +node

+node

+edge +node

+edge

I2 : InputPin
+target

+argument

+node

 
 Figure 8: Partial repository model for Figure 7 

7 BEHAVIOR IN UML 2 

UML 2 supports the concept of parameterized behavior for all the kinds of behavior in 
UML, not just activities. This means state machines, interactions, and activities all can be 
parameterized, and be methods on objects or invoked directly, in a uniform way. The 
upper right of Figure 9 shows an activity model for a behavior called DELIVERMAIL (the 
curved arrows are not part of UML notation). DELIVERMAIL could be invoked as is with a 
CALLBEHAVIORACTION, or as a method on the POEMPLOYEE class with a 
CALLOPERATIONACTION. In either case, the behavior takes an instance of KEY as input. 
Because behaviors can be invoked directly or as operations, UML 2 provides a path to 
incrementally adopt object-orientation [3]. 
 



 
UML 2 ACTIVITY AND ACTION MODELS 

 
 
 
 

52 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

 
Figure 9: UML 2 Behavior 

 
UML 2 user-defined behaviors are also classes. Each time a behavior is executed at 
runtime, a new runtime instance of the user’s behavior class is created. The instance is 
destroyed when the behavior terminates. Behavior classes, like all classes, can support 
attributes, associations, operations, and even other behaviors, such as state machines. 
This reflects common practice in systems that manage processes, for example, workflow 
and operating systems. The bottom of Figure 8 shows the behavior class for the DELIVER 
MAIL activity with an attribute for how long each execution of DELIVER MAIL has been 
running, an operation to abort the execution, and an association for the truck it is using. 
Applications can also put state machines on the behavior class to describe the status of 
each execution, such as NOT_STARTED, SUSPENDED, and so on [5] [6]. 

UML 2 behavior classes enable the definition of standard functionality for process 
management, even though UML 2 does not define standard features itself. Behavior class 
features can be defined by domain standards, vendors, or user groups as reusable model 
libraries containing abstract behavior classes with normative attributes and operations 
such as ABORT and so on. Then these classes can be used as supertypes of user-defined 
behaviors such as DELIVER MAIL in Figure 9. 

8 CONCLUSION 

This article begins a series on the UML 2 activity and action models. It reviews progress 
in UML flow modeling, package structure needed to serve the wide range of flow 

POEmployee

sortMail()

deliverMail(k : Key)

Put Mail
In Boxes

Deliver Mail

Key

Deliver Mail

HowLong : Time

Abort()

Truck
10..1

resource

Get
Truck

POEmployee

sortMail()

deliverMail(k : Key)

Put Mail
In Boxes

Deliver Mail

Key

Deliver Mail

HowLong : Time

Abort()

Truck
10..1

resource

Get
Truck



 
 
 
 
 
 

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 53 

modeling applications, UML's approach to semantics, then introduces some basic 
elements of activity modeling, and the UML 2 behavior model generally. 

ACKNOWLEDGEMENTS 

Thanks to Evan Wallace and James Odell for their input to this article. 

REFERENCES 

[1] U2 Partners, “Unified Modeling Language: Superstructure”, version 2.0, 3rd 
revised submission to OMG RFP ad/00-09-02, http://www.omg.org/cgi-
bin/doc?ad/2003-04-01, April 2003. 

[2] Object Management Group, “OMG Unified Modeling Language”, version 1.5, 
http://www.omg.org/cgi-bin/doc?formal/03-03-01, March 2003. 

[3] Bock, Conrad, "Three Kinds of Behavior Model," Journal of Object-Oriented 
Programming, 12:4, July/August 1999. 

[4] Bock, Conrad, “UML Without Pictures”, to appear in IEEE Computer Special Issue 
on Model-driven Development, September/October 2003. 

[5] Object Management Group, “Workflow Management Facility Specification”, 
version 1.2, http://www.omg.org/cgi-bin/doc?formal/00-05-02, May 2000. 

[6] Workflow Management Coalition, “Workflow Standard - Interoperability Abstract 
Specification”, http://www.wfmc.org/standards/docs/TC-1012_Nov_99.pdf, 
November 1999. 

About the author 
Conrad Bock is a Computer Scientist at the National Institute of 
Standards and Technology.  He is the workgroup lead for activities and 
actions in the UML 2 submission team, and can be reached at 
conrad.bock@nist.gov . 

http://www.omg.org/cgi-bin/doc?ad/2003-04-01
http://www.omg.org/cgi-bin/doc?ad/2003-04-01
http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/cgi-bin/doc?formal/00-05-02
http://www.wfmc.org/standards/docs/TC-1012_Nov_99.pdf
mailto:conrad.bock@nist.gov

	1 BACKGROUND
	2 MULTIPLE DOMAINS
	3 FLOW MODELS AND SEMANTICS
	4 ACTIVITY NODES AND EDGES
	5 ACTIONS
	6 ACTIVITIES
	7 BEHAVIOR IN UML 2
	8 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

