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ABSTRACT 
A growing number of manufacturing industries are 

initiating efforts to address sustainability issues. According to 

the National Association of Manufacturers, the manufacturing 

sector currently accounts for about one third of all energy 

consumed in the United States [1]. Reducing energy costs and 

pollution emissions involves many areas within an industrial 

facility.  Peak electric demands are a significant component in 

the cost of electricity. Electric demand management relates to 

electric tariff rates, new power generation, and incentives to 

curtail peak usages. Shifting some equipment/machine usage to 

the periods of lower cost or using stand-by local generators 

during the peak demand period can yield important savings. 

Analysis of these options is important to decision makers to 

avoid unnecessary high cost of energy and equipment. This 

paper proposes a Decision-Guided energy management in 

manufacturing (DG-EMM) framework to perform what-if 

analysis and make optimal actionable recommendations for a 

manufacturing facility both on (1) operational energy 

management including load shedding, curtailment, and local 

generation and (2) planning and investment decisions for 

introducing renewable technologies. The DG-EMM is based on 

the novel technology of the Decision-Guidance Query 

Language (DGQL), which is a tool for fast development and 

iterative extension of decision-guidance and optimization 

solutions. The proposed DG-EMM will support user-defined 

objectives for optimal recommendations, such as minimizing 

emissions and energy costs and maximizing Return on 

Investment (ROI). A case study of the peak demand control for 

an example manufacturing facility is discussed. 

 

INTRODUCTION 
 More and more manufacturing industries are examining how 

to make their operations more sustainable. Sustainability related 

issues, such as energy consumption, emissions, and other 

environmental impact, are becoming a more integrated part of 

operational and long-term planning decisions in manufacturing. 

The Organization for Economic Co-operation and Development 

(OECD) states that Sustainable Manufacturing will reduce the 

intensity of materials use, energy consumption, emissions, and 

the creation of unwanted by-products while maintaining, or 

improving, the value of products to society and to 

organizations. The report further expands on the statement the 

infrastructure that enables it. Resource consumption is one of 

the largest factors affecting profitability and competitiveness. 

Material, labor and maintenance costs can be difficult to 

reduce without upsetting the delicate balance between product 

quality and process reliability. However, reducing energy costs 

and improving energy efficiency in production processes is 

easier than one may think. [2] 
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Manufacturers have always needed energy to keep factories 

open and production lines running, but energy management has 

had a lower priority compared to that of meeting production 

requirements. Energy was simply a cost of doing business, a 

line on the corporate balance sheet. The U.S. Energy 

Information Administration (EIA) expects substantial increases 

in energy prices over the next two decades. “then 

manufacturers, who don’t have much leeway when it comes to 

raising prices on their goods, will have to learn to run factories 

on less energy or risk financial strain. [3]”  

Improving energy efficiency, saving energy costs, and 

reducing emissions are plant-wide activities. Many 

manufacturers have made efforts in making their operations 

more energy-efficient in recent years. They have replaced 

energy-intensive equipment and initiated preventive 

maintenance programs to ensure that factory machinery is in 

optimal running condition. Companies such as Boeing, Ford, 

Fujitsu, General Motors (GM), Honda, and Philips have set 

goals for reducing energy usage, CO2 emissions, and water 

usage, limiting waste, and promoting recycle [4]. For example, 

Fujitsu has used energy-saving equipment, revised 

manufacturing processes, adjusted lighting and air conditioning, 

used simulations to model energy usage, and used renewable 

power [5]. GM is implementing an aggressive program 

employing EPA's ENERGY STAR practices to reduce energy 

usage across its global facilities. From 1995 to 2004, GM 

reduced its North American facility energy footprint by 26.6 

percent. As a charter Partner in EPA's Climate Leaders program, 

GM committed to a 10 percent reduction in CO2 emissions from 

2000 to 2005 for its North American facilities [6]. SAIC has 

used its Energy Management System (EMS) to realize 

significant facility efficiencies and cost savings for some large 

auto manufacturers in the U.S.  EMS helped monitor and 

control nearly 20 million square feet of facility with millions of 

dollars in savings [7]. Mort [8] has proposed several low-cost 

practical projects: 1) Metering, 2) Demand Control, 3) Heating, 

Ventilating, and Air Conditioning (HVAC) optimization, 4) 

Compressed Air, 5) Lighting, and 6) Heat Recovery. He stated 

that combining these projects provides savings exceeding 10% 

of the annual energy spent with an average payback of less than 

one year for a company. A standby/local generation facility 

reduced Boeing Helicopters’ utility cost by several million 

dollars per year for a period of seven and one-half years [9]. 

These examples show that the manufacturing industry has 

made progress with sustainability projects and energy 

management. However, most of them are stand-alone projects. 

The solutions are provided on a problem by problem basis, 

without a systematically structured and generalized reusable 

approach. Many of the complex interactions were not taken into 

account and could not be handled. Some companies provide 

demand controllers, which are programmed with a set of rules 

to monitor and control the actual energy usage and determine 

which equipment can be shut down or slowed down and for 

how long [10]. However, these static rules are not sufficient to 

satisfy the dynamic energy management needs (peak demand, 

utility rate schedules, dynamic pricing, peak demand pricing, 

time-of-day usage, load shedding, local generation, spot market, 

renewable resources, real time scheduling and control of loads). 

Also, many of their solutions are hardcoded and not extensible. 

Only those manufacturers that plan to manage energy efficiency 

and emissions in a systematic, dynamic, consistent, quantitative, 

and optimal manner will have a competitive advantage going 

forward, but they need methodologies and tools to achieve this 

higher-level energy management.  

Decision optimization is an effective tool to make the best 

decision out of a multitude of possible alternatives by means of 

rigorous mathematical techniques. A typical optimization model 

used in operations research (OR) specifies (1) decision 

variables, (2) constraints that have to be satisfied, and (3) an 

objective function to be optimized. A feasible solution to an OR 

model is an instantiation of values from corresponding domains 

to decision variables that satisfies all the constraints. An optimal 

solution is a feasible solution that makes the objective minimal 

or maximal, as required, among all feasible solutions. Modeling 

of an industrial process using A Mathematical Programming 

Language (AMPL) presents a considerable challenge due to the 

complexity. Brodsky et al. [11] [12] proposed a Decision 

Guidance Management System (DGMS) data model that is an 

extension of the relational model with probability distributions 

over a set of attributes as random variables. DGMS supports 

functions such as what-if analyses, monitoring and control, 

statistical learning, and decision optimization using the 

Decision Guidance Query Language (DGQL), which is an 

extension of Structured Query Language (SQL). The DGQL is 

simple and intuitive for database application developers or 

business personnel with database skills. The DGMS greatly 

simplified the efforts for both developer and users for decision 

optimization. The framework proposed in the next section is 

based on this DGMS technology. 

The contributions of this paper are: 

1. Development of a generic framework that provides analysis 

of action options for energy management and 

recommendations for both operational and investment 

planning for sustainable manufacturing.  

2. Requirement analysis for demand control DGQL modeling 

for energy efficiency manufacturing. 

3. Demonstration of the proposed methodology using a case 

study of DGQL model of energy demand control.  

 

 The paper is subdivided into five main sections. The next 

section introduces the proposed Decision-guided energy 

management in manufacturing (DG-EMM) framework, 

followed by discussion on requirement analysis of DGQL 

modeling for demand control in manufacturing, and then a case 

study of DGQL model of demand control for a manufacturing 

plant is discussed. Finally, a summary is provided and future 

work is discussed. 
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DECISION-GUIDED ENERGY MANAGEMENT IN 

MANUFACTURING FRAMEWORK 
The Decision-guided energy management in manufacturing 

(DG-EMM) framework is proposed for both enterprise energy 

management and sustainability investment and planning within 

industrial facilities to support production schedule, facility load 

control, utility and curtailment contracts, clean energy 

resources, on-site storage, and local generation [13]. Figure 1 

shows the framework of DG-EMM, which consists of a DGMS 

that is built on a relational database management system (R-

DBMS). It is also designed as an extensible technology 

platform on which other applications can be constructed. The 

DG-EMM framework is an open, flexible information 

technology architecture in which existing production systems 

and EMS can be integrated with database-driven optimization 

modeling capabilities. Other description models (e.g. system 

dynamics model; discrete event simulation model) can also be 

integrated into the proposed framework to aid decision making. 

A detailed description of each block in the DG-EMM diagram 

will be discussed in the following subsections. 
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Figure 1. Decision-guided energy management in manufacturing 

Decision Guidance Management System and DGQL 

The DGMS platform allows for the fast iterative 

development of decision-guidance systems. DGMS supports 1) 

the integration of the data acquisition and construction of 

learning sets, 2) learning from the learning sets, using 

parameterized transformers and optionally defining an 

estimation utility, such as minimizing the sum of squares of 

errors, 3) probabilistic prediction and simulation using 

expressions that involve random variables, such as expectation, 

variance and probability of a logical formula, and 4) 

formulating and solving stochastic or deterministic 

optimization, where search space is defined as a set of feasible 

non-deterministic query evaluations. The domain knowledge for 

all these tasks is expressed in DGQL, so that the development 

of models is as simple as the development of database reporting 

applications.  

The four major functions DGMS supports do not need to 

be manually formulated when analyzing sustainable 

manufacturing energy management applications in an industry 

facility. Rather, they are automatically derived from abstract 

model views by the DGMS compiler to describe each 

application component, and factors such as manufacturing 

processes, production schedules, equipment/machine, energy 

efficiency, emissions control, waste control, sensing and 

communication, and contractual terms for procurement of 

electricity. Other scenarios ranging from loads priority, local 

generation, onsite storage, and renewable energy resources to 

the charging of the Plug-in Hybrid Electric Vehicle (PHEV) and 

Electric Vehicle (EV) can be represented with such database 

views. Essentially, each such model is comprised of table 

schemas that hold the relevant information and SQL views that 

compute their business metrics, such as energy consumption, 

emissions, and operational costs. They can also be annotated by 

indicating that some of the table columns are unknown, while 

another view can be annotated to indicate that the value it 

computes (e.g., adjusted cost) is to be used as an optimization 

objective. Given this information, The DGMS engine 

automatically generates, at run time, the corresponding formal 

mathematical problem with mathematical equations, 

inequalities, and the objective function and deploys a mix of 

algorithms best suited for the problem at hand, e.g., a Mixed 

Integer Linear Programming (MILP) using IBM ILOG CPLEX 

optimization solver. Therefore, when a new component is 

introduced, the only requirement is to simply add an SQL view 

model for this component, whereas all the DGMS functions are 

automatically implemented with the use of the DGMS compiler.  

The DGQL model predicts the minimum amount of energy 

needed to meet production requirements, with the least amount 

of emissions, at the lowest possible cost, and maintains the 

comfort level for employees. DGQL’s “what-if” forecasting 

scenarios can help facility managers optimize production and 

facility energy performance by analyzing the actions, costs, 

impacts, savings, payback period, and Return on Investment 

(ROI) of multiple strategies for different energy efficiency 

options. It removes guesswork and helps users to discover 

which efficiency opportunities offer the quickest or highest 

payback potential. With the appropriate abstract model views, 

the DGMS will support decision optimization functions such as 

[14]: 

 Optimal operational scheduling, including production, local 

generation, spot market purchase, on-site storage charge, 

and PHEV and EV charging 

 Optimal EMS thermostat settings 

 Optimal contractual terms including curtailment level 

commitment and peak demand limits 

 Optimal payback period and ROI for renewable resources, 

energy storage, and local generation  
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Enterprise Energy Management System 
In addition to the energy needs like those for a facility such 

as a university campus or large government building, most 

industry facilities have energy intensive manufacturing 

processes. Managing energy consumption in industry facilities 

will reduce operating costs in this increasingly competitive 

global marketplace.  

Manufacturing facilities normally have Manufacturing 

Execution Systems (MES) that handle production activities, and 

EMSs that handle energy related activities such as monitoring 

the status of lights, HVACs, exhaust fans, power meters, 

substations, and flow meters (which include those for natural 

gas, compressed air, chilled water, and steam) and provides real-

time energy consumption information. Other than the default 

configurations, the plant’s EMS can also provide control 

functions such as occupied/unoccupied for building services 

[15] [16] [17]. Historically, EMS and MES have been isolated 

systems. Production, quality, and other operational data resides 

in separate databases from facility energy consumption data. The 

integration of these data and systems make it possible to take 

into account all the complexity and interaction of all energy 

consumed within the whole factory floor. The integration also 

provides opportunities to improve both productivity and energy 

performance for manufacturing firms to achieve sustainable 

manufacturing. Figure 2 shows such concept for energy demand 

control in industry facilities.  
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Figure 2.  EMS-MES integration for energy demand control in 

industrial facilities   

 

The challenge to deploy the DG-EMM framework and 

extend the plant’s conventional EMS and MES involves 

defining and acquiring the data collection mechanisms to allow 

the DGMS to provide effective assessment and decision making 

for operational and investment recommendations. The system 

will provide facility energy managers with optimal actionable 

recommendations, and receive inputs from the managers such as 

constraints and priorities, the iterative process continues until 

the manager is satisfied with a recommendation and decides to 

implement it. To utilize the data acquired through EMS and 

MES making optimal operational decisions on energy 

management, we need to extend the capabilities of existing 

EMS by integrating it with DGMS. The result of the integration 

will help decision making such as:  

 Benchmark processes/facility 

 Evaluate performance trends  

 Validate utility bills 

 Assess equipment/process/building energy consumption 

 Assess power system capacity 

 Reduce peak demand and power factor penalties 

 Maximize power system use 

 Evaluate alternative renewable energy suppliers 

 Evaluate sustainability capital equipment investment and 

alternative strategies 

 Create cost saving and efficiency targets 

 Develop plans according to the analysis results  

 Allocate costs to encourage savings 

 

Sustainability Investment Advisor 
The development and deployment of energy efficient 

manufacturing technology requires making a range of decisions 

by facility managers on optimal mixes of investments and 

operational energy management. These decisions may be both 

very complex and unique for various manufacturers. There is a 

large range of energy management technologies available today, 

e.g., renewable energy sources, local generators, energy storage 

systems, highly efficient HVAC systems, energy harvesting 

solutions, and soon charging stations for EVs. What mix of 

these technologies achieves sustainability conformance? What 

interrelated contractual arrangement should the company make 

with power and gas utilities, as well as load curtailment 

companies for energy efficiency manufacturing? How do we 

assess the total energy cost, renewable energy credits, and 

savings and ROI for a particular mix of investments and 

contractual terms? How do we recommend an optimal mix, e.g., 

with maximum ROI subject to budget limitations over time? 

Unfortunately, simple answers such as “introducing technology 

X typically saves Y%,” do not work for any non-trivial system 

since the technology components are highly interdependent and 

may involve complex interactions among them. To do the 

assessment, one needs to analyze historical and projected 

energy consumption demand patterns (e.g., per device, over 

space and time). Then, a baseline must be computed, which is 

what the consumption and costs would be without introducing 

new technologies. Finally, one needs to assess the consumption 

and costs with the new technology mix introduced. The last part 



 5 Copyright © 2011 by ASME 

is particularly challenging: we need to assess the consumption 

not per historical energy consumption pattern, but for optimally 

scheduled and configured energy demand. For example, if one 

introduces energy storage and local generation, the company 

could commit to a much higher level of curtailment that would 

have higher economic rewards. The company may schedule an 

interruptible load, e.g., cooling or heating water within the peak 

demand bounds. The company may decide that significant solar 

generation, which is highly interruptible, could be compensated 

with local generation. Both the assessment of savings (energy, 

emissions, cost) for a particular mix of energy efficient 

technologies and a recommendation for the ”best” mix require 

considerable formal modeling, decision optimization, and 

statistical learning software solutions [13].  

Clean energy (renewable energy) technologies are growing 

rapidly in response to a variety of critical drivers, which include 

exponential growth in world energy demand, concern about 

pollution of the environment, highly volatile fossil-fuel prices, 

and technological advances that are improving the performance 

and lowering the costs of renewable energy systems. It is 

critical to develop metrics and models to assess and evaluate 

clean energy technology products such as:   

 Renewable energy technology products: Build an optimal 

renewable energy model that minimizes the cost/efficiency 

ratio and determines the optimum investment of different 

renewable energy sources such as wind energy, solar-

photovoltaic and solar-thermal products, geothermal 

systems, and biomass conversion for liquid bio-fuels. What 

will be the optimum mix of renewable and storage 

resources? What will be the optimal mix of hybrid 

renewable and natural gas systems to compare 

economically with electric only systems?  

 Energy storage
 
products: Energy storage enables a shift of 

consumption to off-peak periods without impacting on the 

operation of the productive process. These may be 

compressed-air energy storage, rechargeable batteries and 

their application in clean energy vehicles PHEV, 

superconducting magnetic energy storage, and fuel cells 

and hydrogen energy storage, or thermal energy in a 

storage tank for heating water, air, or oil, if required. The 

plant usually draws power from the grid during the off-peak 

period to charge the equipment, which is subsequently 

discharged during the period of peak demand. The direct 

storage of electricity through batteries needs to be 

evaluated for the cost and the optimal charge/discharge 

cycle. Optimal investment evaluation for the mix of these 

technology products can be modeled using DGQL.  

 Stand-by/local power generation: Because of the high cost 

of electricity during peak periods, local electricity 

generation can be economical. An optimal solution needs to 

be obtained as investment and operating constraints are 

often very complicated. All ancillaries such as location and 

amount of space required, motor preheating and cooling, 

emissions, noise, and vibration insulation have to be taken 

into account. Local generators are connected to the factory 

using switch control interface during peak demand periods 

or in case of any malfunction with the distributor’s supply 

[18].  

REQUIREMENT ANALYSIS OF DGQL MODELING FOR 

DEMAND CONTROL IN MANUFACTURING 
A variety of opportunities exist within factory plants to 

reduce energy consumption or improve energy efficiency in 

order to lower cost while maintaining or enhancing the 

productivity of the plant. For example, energy cost can be 

reduced by minimizing the use of electricity during the peak 

demand periods. Electric demand management relates to electric 

tariff rates, new power generation, and incentives to curtail peak 

usage. The following classes of decisions regarding energy 

consumption, carbon emissions, and operational costs can be 

made through the integration of EMS and DGMS/DGQL [13]. 

 Optimal settings of the target peak demand and curtailment 

commitment: A high peak demand target may be 

prohibitively expensive, it could lead to less interruption of 

power and cheaper per kWh rates; whereas, a low peak 

demand target may lead to more interruption and the need 

to shed load, using local generation, buying power on the 

spot market, or any mix of the above. 

 Optimal control of supply and/or demand in response to 

unforeseen changes: For example, a solar energy supply 

can be interrupted (e.g., on a cloudy day), a curtailment 

signal from a utility, or demand may increase (e.g., due to 

extreme weather). The response may involve load shedding 

to decrease consumption, using local generation, on-site 

storage, buying on the spot market, or any mix thereof. 

 Optimal scheduling of consumption through aggregation 

and/or prioritization: For situations such as low-priority, 

interruptible manufacturing processes, on-site battery 

charging, or ice production for cooling, one would like to 

enable such consumption during off-peak hours and below 

peak demand target. Also, the schedule should be arranged 

to guarantee potential curtail energy, which will generate 

revenue that exceeds the average per kWh cost. These 

decisions must be optimally made while taking into account 

business constraints such as due date for production.  

 Optimal load shedding: Load shedding of electricity 

consumption is to postpone some low-priority activities so 

as not to exceed the contractual threshold over the period. 

Such common loads include electric hot-water heaters, air 

conditioners, fans, and lighting zones. For example, 

depending on the thermal inertia of buildings, HVAC 

should be used during the off-peak rate period to pre-heat 

or pre-cool premises. Process rescheduling is more 

appropriate for facilities that operate on two or three shifts. 

If two or more production lines are involved, the operation 

cycles can be modified to avoid their coincidence at peak 

time. An optimization solution that combines all the 
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interactions is needed to determine the best load shedding 

schedules.  

 Optimal demand control: The control of loads is performed 

by means of rules that optimize power reduction or 

disconnection from the grid on the basis of a pre-

established limit regarding the maximum load. A large 

amount of dynamically collected data is the basis to make 

valid optimal decision. 

 

Figure 3 shows a DGQL/SQL combined functional diagram 

for energy management in manufacturing facilities. 
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Figure 3. DGQL/SQL combined functional diagram 

 

Model Inputs 
In Figure 3, the inputs to the model are utility contract, 

curtailment contract, energy consumption from both production 

loads and building service loads, production schedule, and 

renewable energy technology data. These input data may be 

obtained from contracts, an Enterprise Resource Planning 

(ERP) system, MES, EMS, meters, sensors, products 

specifications, weather data, building data, or the utility 

company’s WebPages. Further explanations are listed below: 

 Energy consumption data: Basic historical electricity 

consumption data overtime for different levels, i.e., plant 

level, floor level, production line level, and equipment 

level. The data then can be graphed and analyzed, and peak 

demand can be determined.  

 Meter data: Data may come from energy meters and 

submeters, which may include electricity, chilled water, 

steam, gas, fuel, water, and other metered resources. 

 Utility contract data: Billing data from which different rates 

can be determined, such as how much the company pays 

for peak usage and what the normal rates are. 

 Curtailment contract data: information about how much 

reward the company receives from curtailment commitment  

 Stand-by generators data: information about the capacity, 

type, price, efficiency curves of the local generators, 

conditions, and constraints. 

 Schedule data: Production line schedules, facilities 

schedules, and personnel schedules. 

 

Model Logic Flow 
As discussed earlier, the DGQL modeling is very similar to 

the traditional SQL modeling. First, the input data needs to be 

processed and formatted in R-DBMS. SQL schemas and views 

that compute metrics such as energy consumption, emissions, 

and cost need to be developed. The views can be annotated by 

indicating that some of the table columns are unknown, while 

another view can be annotated to indicate that the value it 

computes is to be used as an optimization objective in DGQL. 

With constraints on these metrics (e.g., budget limit, minimal 

energy) and objective defined (e.g., minimal cost, lowest 

emission), the optimization problem can be formulated and 

solved. SQL knowledge is the basis for inputs to the DGQL 

engine. The decision recommendation then returns to the 

database table where the results can be retrieved by the user 

through SQL queries. Any database application developers are 

capable of implementing the DGQL applications.   

 

Model Metrics and Optimization Objective    
DGQL views need to be developed to compute metrics for 

baseline and alternatives. Often, the difference between the 

metrics will be used as the objective. For example, the saving 

can be the difference between the current total cost and the 

future total cost derived by implementing certain improvement 

option, to maximize the saving can be one of the optimization 

objectives. The investment cost may include energy cost, 

equipment (such as generators, solar panels) cost, maintenance 

cost, and fuel cost. The revenue can be the curtailment rewards.   

ROI and payback period can be calculated. Emission reduction 

can also be computed. By knowing the rate at which a generator 

or other engine consumes fuel, a very accurate calculation of 

carbon dioxide (CO2) emissions can be obtained. For example, 

every gallon of diesel fuel contains 2,778 grams of pure carbon. 

Every gram of atomic carbon, when oxidized with oxygen, 

forms 3.666 grams of carbon dioxide. Therefore, we can 

multiply the amount of carbon per gallon of diesel by the ratio 

of carbon weight to CO2 weight by 99 percent, which is the 

percentage of the fuel that will oxidize [19]. 

 

CO2= 2,778 g x 3.666 x 0.99 = 10,082 g.             (1) 

 

That is, each gallon of diesel fuel produces, on average, 

10,082 g of CO2, or about 22.2 lb of CO2.  

 

DGMS/DGQL Methodology Procedures  
The DGMS/DGQL methodology involves several 

activities. The detailed steps are listed below.  

1. Define an energy management or investment/planning 

problem by setting up objectives and scope 

2. Identify the key performance indicators and their metrics 

for the problem  

3. Identify input data required for the modeling 
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4. Collect historical data (energy consumption from the 

production system, utility contract, and curtailment contract 

data) 

5. Understand core EMS database structure and how to 

augment and extend it with the database structure of the 

DGMS 

6. Integrate the manufacturing process energy data collection 

with the EMS and DGMS 

7. Determine controllable parameters 

8. Process the raw data to extract the useful subset 

9. Develop R-DBMS schemas and populate the tables 

10. Identify/develop algorithms to compute metrics 

11. Develop database views to calculate metrics 

12. Formulate optimization problem using DGQL 

13. Create test scenarios  

14. Obtain optimal solutions 

15. Develop plan and act based on optimization results 

A CASE STUDY: DGQL MODEL FOR DEMAND 

CONTROL OF A MANUFACTURING FACILITY  
A simple DGQL model of demand control for a 

manufacturing facility is discussed and implemented to 

demonstrate the proposed methodology. 

Electricity costs differently at different times of the day. 

Peak electric demand is a significant component in the cost of 

electricity. Electricity for most industrial facilities has two types 

of charges: energy cost that is measured as kilowatt hours 

(kWh) and a demand cost measured at kilowatts (kW). It is 

Tariff Rate Schedule (TRS) in utility terms. There will be 

potential opportunities for demand control in the following 

cases [8]: 

 The facility has production loads that operate less than 24 

hours per day. 

 The electric load profile shows demand peaks. 

 There are equipment loads that can be interrupted for a 

period of more than 15 minutes. 

From the company’s utility contract, the TRS can be 

analyzed. Table 1 is an example tariff table. The demand 

portion of the energy cost is $16.00 per kW, which means that 

the utility company measures the electricity usage every 15 

minutes for the whole month, the peak energy use of the month 

is called the demand and is multiplied by $16.00 to determine 

the demand charge. Every kW reduced from this peak is worth 

$16.00. The energy manager of the facility decides the peak 

demand. Shifting some equipment/machine usage to the periods 

of lower cost or using stand-by local generators during the 

demand period can save a huge amount of money. Decisions 

also need to be made for curtailment commitment and what 

generator to buy and how many are needed. Analyses of these 

options are important to the decision makers in order to make 

decisions to avoid unnecessary high cost of energy and 

equipment.  
 

Case Study Setting 
The objective of this case study is to model part of the 

demand control using DGQL and provide recommendations on 

energy usage patterns, number and types of generators needed, 

and optimal curtailment amounts to maximize savings and 

minimize energy consumption and emissions. 

The case study scenario and some data are adopted from 

[9]; the plant has a curtailment energy purchase contract with its 

utility company. The facility needs local gas combustion turbine 

generators (CTG’s). If the standby generator output is lower 

than plant load, the facility must either shed load or provide for 

a contractual utility supply of up to the difference during 

curtailments.  
Table 1: An example tariff table  

 

Time Period Energy Cost Unit 

Peak Demand Load  (1600 kW): 

8am – 8pm Monday- Friday 

$16 kW 

On Peak : 8am – 8pm Monday- 

Friday 

$ 0.08 kWh 

Off-Peak: 8pm – 8am Everyday $0.06 kWh 

 
Raw data (e.g., metering data, production and building 

service loads energy consumption) are from facility EMS, 

utility bill and contract (dynamic pricing), curtailment contract 

(curtailment level and revenue), local generator specification 

(e.g., capacity, fuel consumption requirement, price, and 

maintenance cost), and loads schedules (both production and 

building service loads). Different types of generators have 

different power generation capabilities, annual maintenance 

cost, fuel needs, and prices. 

Energy suppliers include utility companies, spot market, 

stand-by generator, on-site storage, renewable energy sources. 

Energy demand includes production system and buildings 

services within the facility. 
To determine monthly savings, first, from the curtailment 

contract, the revenue is determined by the level of commitment. 

Then, we use historical energy consumption data per interval to 

come up with the actual consumption costs. We use monthly 

accumulated usage to determine peak demand price. The usage 

of local generators reduces per interval consumption, which 

leads to a cost reduction, and consequently, the monthly target 

peak demand is reduced, this, in turn, lowers the per peak 

demand price. Generator prices, maintenance cost, and fuel cost 

need to be considered as cost. The optimization problem is to 

maximize the savings, which is the difference between total cost 

and revenue [13]. Relationships of computation elements of the 

model are shown in Figure 4 and Figure 5. For example, the 

emission can be calculated through energy and fuel consumed 

from both the operational and maintenance aspect. It can be 
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also calculated through life cycle analysis of a product or a 

process. 

To determine the savings, payback period, and ROI for a 

simplified case, we use the formulas below.  

 

Savings = current cost – future cost 

             = (total operational cost + maintenance cost) –   

                (predicted operational cost + investment cost +  

                predicted maintenance cost – curtailment revenue) (2) 

 

Payback period = generator investment/annual savings         (3) 

 

ROI = savings/generators investment                        (4) 

 

Investment
Annual revenue

adjusted cost

ROI

Annual

revenue
Annual cost

Maintenance

cost

Operational

cost
Curtailment

Solar

panels
Local

Generators

On site

storage

 
 

Figure 4. Relationship of computation elements for ROI 

 

Emissions

LifecycleOperational Maintenance

 
 

Figure 5. Relationship of computation elements for emission 

 

If the investment does not have a positive ROI, or if the 

payback period is too long, then the investment should not be 

undertaken.  

 

DGQL Data Model 
As shown in Figure 3, based on the case scenario, 

performance indicators and metrics, optimization objective, and 

constraints, input data schema tables need to be defined, and 

metrics calculation data views need to be developed. DGQL 

optimization views provide the solutions.  

 

DGQL Input Tables 

Some of the input tables are given below. Decision 

variables are shown in italics. These are the variables for which 

the DGQL system will do instantiation and produce optimal 

values. For every supply type, find parameters that allow 

computing costs, and emissions.  

 Schedule (interval, account, KW, on_flag) 

 Interval: 15 minutes time slot 

 Account: any suppliers that produce power or loads that 

consume power 

 KW: supply adds KW and demand subtracts KW 

 On_flag: 1 if the account is enabled, 0 if the account is 

disabled 

 supply (interval, account, KW, on_flag, solar_cost) 

 predicted_demand (interval, account,  KW, on_flag) 

 utility_contract_decision (account, peak_demand) 

 utility_contract_per_KWH (account, season, 

day_peak_flag, KWH_cost) 

 utility_contract_per_peak_demand (account, 

demand_bound, MW_charge) 

 curtailment_intervals (interval, baselineKW, KW,  

curtailment_commitment) 

 max_interruptions_per_account (account, 

max_interruptions) 

 minimum_curtailment (min_curtailment, min_reward) 

 curtailment_graph (bound, rewards_per_MW) 

 controllable_loads (id, name, priority, max_interruptions)  

 local_generators (id, price, maint_cost, min_output, 

max_output, max_fuel_required, min_fuel_required, name, 

fuel_cost)  

 local_generator_efficiency_curve (generator_id, seq_no, 

tangent, left_x) 

 local_generator_purchase (id, qty) 

 solar_panel (id, qty) 

 

DGQL Output Tables 

Some of the output tables are given below. For every 

supply type, find parameters that allow computing costs, 

emissions.  

 total_vs_peak_from_grid (interval, total_from_grid, 

peak_demand) 

 predicted_curtailment_per_interval (interval, 

curtailment_flag) 

 from_grid_schedule (interval, KW) 

 prev_vs_current (prev_interval, prevKW, interval, KW, 

curtailment_KW) 

 curtailment_revenue = min_reward + (x-min_curtailment) * 

rewards_per_MW 

 Cost computation (cost) 

 Maintenance cost (cost) 

 Total cost per type (amount ) 

 Total savings (savings) 

 Proposed ROI (percent) 
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 Total emissions (amount) 

 

DGQL Constraints 

Some of the constraints are given below.  

 Total supply = total consumption (for every interval) 

 Source that are both supply and demand (e.g., energy 

storage) must satisfy that either supply is on or demand is 

on, but not both for every time slot 

 The total power expected from generators during 

curtailment must not exceed the total generator capacity of 

all generators 

 Total_from_grid < = peak_demand 

 KW <= base_line_KW – curtailment_commitment 

 

DGQL Views 

The goal of the model is to find the maximum savings, ROI 

and minimum emission, assuming given curtailment 

commitment, peak demand setting, and investment for local 

generation. According to (2), (3), and (4), step by step 

computations are needed.  

 

For example, one of the DGQL optimization views is shown as 

below: 

SELECT *  

FROM dgql.maxmize (savings); 

 

Figure 6 and Figure 7 are examples of the DGQL table and 

computation views. Currently, the input data are testing data. By 

replacing the testing data with a company’s real data, the 

decision recommendations, which are the optimal results, will 

be derived.  

 

 
 

Figure 6. An example DGQL table screen 

 
 

Figure 7. An example DGQL computation view screen 

CONCLUSION  
A growing number of manufacturing industries are initiating 

efforts to address sustainability issues. Energy management and 

investment decisions for improving energy efficiency require 

predicting behavior of a complex system and making decisions 

to direct the system towards desirable outcomes. These include 

reducing energy consumption and carbon emissions, and saving 

operational costs, while maintaining a desirable production 

level. In such applications, predictions and decisions are to be 

made in the presence of large amounts of dynamically collected 

data and learned uncertainty models. This paper proposes a 

DG-EMM framework to perform what-if analysis and make 

optimal actionable recommendations for a manufacturing 

facility. The proposed DG-EMM will support user-defined 

objectives for optimal recommendations, such as minimizing 

emissions, minimizing energy costs, and maximizing ROI. The 

optimal balance between predicted energy demand and cost-

optimized, sustainable energy supply can be determined. 

This paper also reviewed the fundamental requirements of 

DGQL modeling for energy management and discussed various 

components such as the objective, scope, model elements, and 

its input and output requirements for DGQL modeling 

implementations.  DGQL analysis helps make decisions for 

manufacturers to sustain the savings and obtain more energy 

efficiency from buildings, equipment, and production processes 

within the plant. A case study of the peak demand control for an 

example manufacturing facility was discussed. It allows 

assessing the investment options using historical data as input 

and evaluating different options for an optimal decision making 

in capital equipment investment. 

 

DISCLAIMER 
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No approval or endorsement of any commercial product by 

the National Institute of Standards and Technology is intended 

or implied. Certain commercial software systems are identified 

in this paper to facilitate understanding. Such identification 

does not imply that these software systems are necessarily the 

best available for the purpose. 
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