
DRADEXML: A FIRST STEP TOWARD A UML BASED IMPLEMENTATION
FRAMEWORK FOR PLCS

Sylvere Krima
National Institute of Standards and Technology

Gaithersburg, Maryland 20899, USA
sylvere.krima@nist.gov

University of Burgundy, LE2i
Dijon, Bourgogne, France

Roch Bertucat
Engisis s.r.l
Rome, Italy

roch.bertucat@engisis.com

Joshua Lubell
National Institute of Standards

and Technology
Gaithersburg, Maryland 20899,

USA
lubell@nist.gov

Sudarsan Rachuri
National Institute of Standards

and Technology
Gaithersburg, Maryland, 20899,

USA
rachuri.sudarsan@nist.gov

Sebti Foufou
University of Burgundy, LE2i

Dijon, Bourgogne, 21000,
France

sfoufou@u-bourgogne.fr
CSE Dept, Qatar University

Doha, Qatar
sfoufou@qu.edu.qa

ABSTRACT
Data exchange specifications not only must be broad and

general to achieve acceptance, but also must be customizable
in a controlled and interoperable manner to be useful. The
Product Life Cycle Support (PLCS) suite of data exchange
specifications (known as DEXs) uses templates to enable
controlled customizability without sacrificing breadth or
interoperability. DEXs are business context-specific subsets of
ISO 10303 Application Protocol (AP) 239, subject to additional
constraints imposed by the templates. A PLCS template defines
how AP239 entities and their attributes will be instantiated
using an externally-defined controlled vocabulary defined in a
Reference Data Library. Template instantiations are defined
using an Instantiation Path (IP) specified using an arcane
syntax that must be manually written by the template developer.
The PLCS information model is formally defined in the ISO
10303 EXPRESS language, but there is no formalism used at
the template level. A challenge for newcomers to PLCS is to
dive into and understand all the bespoken, non-standardized
and PLCS-specific technologies (domain-specific languages

and software) used to develop and implement the templates.
DEXML presents an approach based on the Unified Modeling
Language (UML) enabling the use of mainstream software and
technologies to develop and implement DEXs, reducing the
need for nonstandard and unfamiliar languages and tools.

INTRODUCTION
Product Lifecycle Management (PLM) is the integration of

“people, data, processes, and business systems” to “provide a
product information backbone for companies and their
extended enterprise.” [1] PLM is complex due to the large
number of actors, lifecycle stages, and domains involved
throughout a product’s existence. Consequently, PLM systems
must manage an enormous quantity and variety of documents
and data. Examples include assemblies of collections of parts,
product configurations, maintenance tasks, and documentation
associated with a product such as analysis results or
requirements. Central to management of this information is the
product model itself, defined as “the representation of a product
in terms of parameters that reflect its descriptive and

Proceedings of the ASME 2011 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2011
August 28-31, 2011, Washington, DC, USA

DETC2011-48600

1 Copyright © 2011 by ASME
This work is in part a work of the U.S. Government. ASME disclaims all interest in the U.S. Government’s contributions.

mailto:sylvere.krima@nist.gov

performance characteristics.” [2] Because of its importance to
PLM, product modeling has been an intense area of research,
resulting in frameworks such as the Core Product Model (CPM)
[3] and the “Methodology and tools Oriented to Knowledge
based engineering Applications” (MOKA). [4]

CPM is an extensible conceptual representation of a
product and is not tied to any particular engineering domain or
implementation technology. CPM is intended to serve as a basis
for both extension and specialization meeting domain-specific
requirements. Extensions and specializations differ in how they
refine the conceptual model. Extensions are achieved by adding
new concepts to the initial conceptual model, thus increasing
the conceptual model’s scope. An example of an extension to
CPM is the Open Assembly Model, which adds concepts for
representing assembly structure and kinematics information. [5]
Specializations, on the other hand, add domain-specific
semantics to the concepts initially present in the model,
resulting in a model that is no longer purely conceptual but
rather is tied to a particular application area or business context.
An example of CPM specialization is the NIST Design
Repository, a software architecture and set of interfaces for
editing and browsing product models stored in design
repositories. [6]

MOKA, a predecessor and influence on the CPM research,
employs an approach combining product modeling with formal
logic and ontology. Bock et al [7] have recently proposed a
more rigorous ontological approach to product modeling,
enabling development of languages using terminology
comfortable for engineers, yet enjoying the benefits of ontology
and open world semantics.

Figure 1. PLM modeling approach.

A common theme of these product modeling research
results is that they present a multilayered modeling architecture
for PLM combining a common metamodel with support for
domain-specific customizations. This idea, shown in Figure 1,
accommodates multiple business contexts while allowing for a
common, agreed-upon semantics to be shared. As the figure
illustrates, constructing a model meeting the requirements of a
specific business domain requires two operations. First, the

appropriate subset of the common metamodel must be
identified. Second, business context information must be added
to the identified subset.

These results are relevant to developers of PLM exchange
standards because, like product and process modeling,
exchange standards development for PLM benefits from a
multilayered approach. A data exchange schema for PLM must
describe in a computer-interpretable fashion the information to
be transferred between systems. Because of the many
information types, potential relationships between digital
objects, and the need to cover the whole product lifecycle, a
PLM exchange schema must be generic, broad, and
comprehensive. And Figure 1 applies to PLM standards as well
in that the creation of an exchange schema for a particular
domain requires determining the correct subset of the
comprehensive exchange schema, and then adding the
necessary business context.

But a PLM standards architecture needs more than just a
common base-level exchange schema. It also requires a
mechanism for applying potentially any business context to that
schema in such a way that business context-specific schemas
are interoperable not only with respect to the base-level
exchange schema, but also with one another. This “inter-
context” interoperability requires that the application of
business context be controlled and also traceable. In other
words, business context must be applied in an unambiguous,
uniform, and rigorously documented manner.

The rest of this paper focuses on a particular PLM
standards architecture, Product Life Cycle Support (PLCS),
which aims to enable controlled customizability without
sacrificing breadth or interoperability. Although PLCS has a
powerful, flexible mechanism for balancing interoperability
with extensibility, the nonstandard and unfamiliar languages
and tools currently used to develop PLCS exchange
specifications are a barrier to widespread adoption. We first
describe PLCS and its present day usage. Next we focus on
templates, critical elements of PLCS in that they manage the
application of a business context to the underlying PLCS
schema. Templates in effect encode the relationship between
the generic information model (i.e., PLCS schema) and
business context shown in Figure 1. We then present DEXML,
our approach based on the Unified Modeling Language (UML)
[8] which enables the use of mainstream software and
technologies to use PLCS to develop and implement business-
specific exchange specifications, thus removing some of the
PLCS obstacles. Next we discuss our implementation of
DEXML, and end with some concluding remarks.

PLCS DATA EXCHANGE SPECIFICATIONS
ISO 10303-239 – Product Life Cycle Support – (PLCS) [9]

is a STEP (Standard for the Exchange of Product model data)
[10] Application Protocol (AP239) that supports the
representation of the information involved in the whole
lifecycle of a product. AP239’s wide scope and agnosticism
with respect to business context makes it broadly applicable but
hard to understand, implement and use as a whole. To

2 Copyright © 2011 by ASME

overcome this, the creators of PLCS provide a customizable
architecture to allow users to work with a subset of the original
information model. This approach is somewhat analogous to
the conformance classes used in other STEP APs to represent a
subset of the AP’s information model in order to support some
specific use cases. But rather than specify an inflexible and
static set of conformance classes, the PLCS architecture enables
the definition of business context-specific subsets of AP239
called DEXs (Data Exchange specifications). DEXs use
templates [11] to define how PLCS entities and their attributes
will be instantiated, enabling customizability without
sacrificing breadth or interoperability. Instantiation uses an
externally-defined controlled vocabulary defined in a Reference
Data Library (RDL). Template instantiations are defined using
an Instantiation Path (IP). The IP uses a procedural language
that describes, in a computer interpretable fashion, the
information instantiations performed by a template.

DEX developers currently have to manually write the IP
using an arcane syntax and without the help of software tools.
This lack of tools results in errors (syntax error, data type
inconsistency) and inconsistencies (between the templates). In
this paper we present a new approach that defines the templates
and the IP using UML.

The PLCS information model is formally defined in a data
modeling language called EXPRESS (ISO 10303-11) [12] but
there is no formally standardized language used at the template
level. PLCS template information models are defined in a non-
standard variant of EXPRESS-G, a graphical presentation of the
EXPRESS language defined in ISO 10303-11. But the
EXPRESS-G variant does not provide information about the IP.
The IP is defined separately using the aforementioned textual
format lacking robust, mainstream tool support. Using a
formalized mechanism based on UML to represent the IP is a
way to make DEXs easier to develop and implement.

The Object Management Group (OMG) has standardized
two graphical languages for representing ordered sets of
processes (instantiations in our context): the Business Process
Modeling Notation (BPMN) [13] and the UML activity
diagram. BPMN is designed only to formally represent the
workflows involved during an activity and does not provide any
mechanism to represent an information model. This lack of
information model representation is the reason why BPMN
does not appear as the best candidate for our purpose. On the
other hand, UML activity diagrams describe the business
workflows of a component in a system, which makes them a
good candidate for representing the instantiation of a template.
Moreover, the UML activity diagram can be used with a UML
class diagram to add type information to the data exchanged
between different processes.

DEXML, our implementation, employs UML activity
diagrams to enable the use of mainstream software and
technologies to develop and implement DEXs, reducing the
need for nonstandard and unfamiliar languages and tools. In the
next section, we describe PLCS DEX templates and their
representation in UML in greater detail. We then discuss the
DEXML implementation, an important aspect of which is a

mapping of the AP239 information model from EXPRESS to
UML. The mapping is needed to achieve consistency at the
language level between the AP239 information model and
template process models represented in UML.

WHAT IS A TEMPLATE?
As mentioned earlier, a template specifies an IP. This IP

describes the template’s instantiation, invocation, and usage.
But this IP is only one component of a template. A template
additionally contains:

 A textual documentation that describes the role of the
template

 A textual description of the input parameters and
output

 A graphical information model expressed in an
EXPRESS-G based graphical language

 Some uniqueness constraints
 One or more instance diagram(s)
Now let us consider the template

Assigning_reference_data, [14] whose information model is
shown in Figure 2. This template describes classification of
something, where the class’s definition is specified in an
external RDL. Because classification is fundamental to the
usage of AP239, DEXs use this template more than any other.
Readers familiar with EXPRESS-G will notice that this
diagram includes the following non-EXPRESS-G annotations:

 The textual annotation beginning with the ‘^’ character
describes output parameters. For example, the
External_class entity (in the bottom left of the picture)
contains the ^ext_class annotation, meaning that the
template will create an instance of the External_class
entity, instance named ext_class.

 The blue arrows are used to bind input parameters to
attributes of entities. The blue arrow in the bottom
right of the picture means that the user needs to
provide an input parameter called
assigning_reference_data.ecl_id which will be used
to set up the value of the id attribute of the instance
called ext_class_lib.

More information on this extended EXPRESS-G notation
can be found in the PLCS Technical Description online
document [11]. The only software supporting the extensions is
a freeware third-party plug-in [15]1 for an obsolete and no-
longer-maintained version of a commercial diagramming
software package.

The IP describes how to use and instantiate this
information model. The IP uses a procedural language similar
to that of ISO10303 SC4 reference paths [16] and specifies:

 Input parameters of a template which correspond to
the user input

1 Mention of commercial or third party products or services in this paper

does not imply approval or endorsement by NIST, nor does it imply that such
products or services are necessarily the best available for the purpose.

3 Copyright © 2011 by ASME

 Reference parameters of a template which correspond
to the instances created by the template

 Assignment of a value to an attribute of an entity
 Invocation of other templates
 Instantiation of entities
 The ordering of assignments, template invocations,

and entity instantiations

Figure 2. Information model for Assigning_reference_data.

DEXML
To overcome the drawbacks resulting from the use of non-

standard technologies, DEXML presents a first step toward a
UML-based implementation framework for PLCS. DEXML
uses UML because it meets the requirements we have identified
to replace the existing technologies and tools in use. Moreover,
UML enjoys strong software support.

The main goal of DEXML is to provide an implementation
framework that is easier to understand and use for both
newcomers to PLCS and current PLCS users. To reach this
goal, DEXML meets the following benefits, through the use of
UML:

 Decreases complexity. Development of a template is
done within a single UML authoring tool.

 Increases software choices. Any UML2-compliant tool
can be used.

 Avoids redundancy. A single process defines the whole
template, as opposed to multiple overlapping
processes.

 Uses modern, widely supported, and standardized
technologies.

 Represents the IP graphically using UML, enabling the
IP to be linked to a UML class diagram.

 Facilitates code generation. Many UML tools can
create programming language code from UML
models.

 Enables data type checking at the definition level.
Using a class diagram to represent the data in an
activity diagram means that type checking is
performed by the UML tool during the creation of the
activity diagram.

The current version of UML provides all the functionality
needed to satisfy the previously listed requirements. UML 2
specifies 14 diagram types classified as structure, behavior and
interaction diagrams.

DEXML uses the UML diagram types as follows:
 The UML class diagram is used to represent the

AP239 information model.
 The UML activity diagram, which can represent

any sequence of processes as well as input and
output parameters used or generated by these
processes, is used to define the IP of a template.

 The UML profile diagram, which can redefine the
semantics of any UML element, is used to extend
the semantics of the activity diagram to represent
the IP.

The UML profile is an important component of DEXML
since it redefines/extends the semantics of some UML
elements. To develop a DEXML UML profile we first map the
IP language syntax elements to UML constructs having similar
semantics, and then create new UML elements through the
profile for the IP elements that do not have a match in UML. As
it turns out, all IP elements naturally correspond to UML
elements except for entity instantiation, which does not have an
exact UML equivalent. The mapping is described in Table 1.

Table 1. Mapping from IP to UML

IP UML
Template Activity

Input parameter Activity parameter node: UML allows
classifying a node as an input of an

activity.
Reference
parameter

Activity parameter node: UML allows
classifying a node as an output of an

activity.
Attribute

assignment
Object flow, which defines an assignment

from a node to another.
Next action Action flow, which defines the order of

the activities/actions.
Template call Call behavior action, which allows the

reuse of an activity within another.
Entity

instantiation
Create Object Action, which has a similar
semantics but it does not fully match our

need, as it does not accept inputs. We
address this issue in the “Implementation”

section of our paper.

4 Copyright © 2011 by ASME

Figure 3 shows the resulting activity diagram-based
DEXML representation of the Assigning_reference_data
template [14], after mapping of its IP. In this figure, input
parameters are represented by the boxes on the left side. The
boxes on the right side represent the reference parameters. All
these parameters are classified using the AP239 class diagram
obtained by transforming the AP239 EXPRESS schema to
UML (as discussed later). Blue arrows represent the object
flow, and black arrows represent the control flow (which
defines the order of processing). Object flows are used both for
binding the input parameters to the attributes of the instances
and also the reference parameters to the instances created. The
first instance created by CreateExternal_class_library is an
instance of External_class_library and is bound to the
ext_class_lib reference parameter through ObjectFlow2. The id
attribute of this instance is bound to the ecl_id input parameter
through ObjectFlow1. Once these operations are performed,
ControlFlow2 indicates the next operation to perform:
CreateExternal_class.

Figure 3. DEXML representation of the Assigning_reference_data IP.

IMPLEMENTATION OF A DEXML EDITOR
A standard is of benefit only if people and/or applications

use it. The more widely a standard is adopted, the more it
acquires value, and the more it enables data exchange and
collaboration. To promote the usage of the standards, it is
critical that their implementations are based on mainstream
technologies and common languages. The implementation of
DEXML follows this principle and therefore consists of a UML
representation of the PLCS data model, a UML profile, and a
plug-in for Topcased [17], an open source UML tool.

use it. The more widely a standard is adopted, the more it
acquires value, and the more it enables data exchange and
collaboration. To promote the usage of the standards, it is
critical that their implementations are based on mainstream
technologies and common languages. The implementation of
DEXML follows this principle and therefore consists of a UML
representation of the PLCS data model, a UML profile, and a
plug-in for Topcased

UML representation of the PLCS data modelUML representation of the PLCS data model

[17], an open source UML tool.

Reeper [18] is a set of Ruby [19] tools for manipulating

ISO EXPRESS data models. One of these tools allows mapping
from an EXPRESS file to a UML2 XML Metadata Interchange
(XMI) [20] file derived using the ISO 10303-25 standard [21].
In our DEXML editor, the UML2 representation of the PLCS
data model is generated with Reeper.

5 Copyright © 2011 by ASME

During our development with Reeper, we discovered that
XMI/UML tool implementations differ from vendor to vendor,
so none of the implementations really interoperate yet. As a
result, we had to tweak the Reeper-generated mapping from
EXPRESS to UML2 to meet the requirements of our UML
software. We shared our modifications with the Reeper
developers for possible inclusion in a future Reeper release.

UML profile
The UML profile for DEXML extends the semantics of the

UML element “Create Object Action.” UML defines “Create
Object Action” as “an action that creates an object that
conforms to a statically specified classifier and puts it on an
output pin at runtime.” [8] Create Object Action does not
permit input parameters (input pins). It simply exposes the
created instance through an output parameter (output pin).

Our DEXML implementation creates a subclass of Create
Object Action called Create Entity Action. Create Entity Action
enables DEXML to specify input parameters when the entity is
created. These input parameters allow for assignment of values
to the attributes needed for the instantiation of the AP239 entity.
We formally define Create Entity Action as an action that
creates an instance that conforms to a statically-specified
classifier (AP239 entity) with initial parameters passed through
the input pins and made available through an output pin at
runtime. Figure 4 shows Create Entity Action being used to
create an instance of the AP239 entity
Identification_Assignment.

Figure 4. Example of Create Entity Action.

Topcased plug-in
Topcased is an open source software environment

providing methods and tools for critical embedded systems
development. It is based on the Eclipse [22] Integrated
Development Environment (IDE) open source project.
Topcased provides a graphical environment for UML2

diagrams development, implemented on top of the Eclipse
UML2 component. An Eclipse plug-in extends the initial set of
functionalities of the Eclipse IDE

We developed a Topcased plug-in for DEXML to generate
and apply our UML profile to the AP239 UML model. Figure 5
shows the menu added by the DEXML plug-in to Topcased.

Figure 5. New menu added to Topcased.

The plug-in assists the user in the creation of an AP239
entity. Figure 6 shows the dialog that appears in Topcased when
the user creates a Create Object Action. It allows the user to
select the AP239 entity. Once the user confirms the selection,
the plug-in automatically creates the corresponding Create
Entity Action together with the input pins representing the
attributes of the selected AP239 entity (as shown in Figure 4).

Figure 6. Dialog box for Create Object Action.

CONCLUSION AND FUTURE WORK
The PLCS/DEX architecture is analogous to the notion of

specialization in the product modeling research discussed in the
Introduction. PLCS goes a step further, however, in that
through the use of templates, DEXs – specializations of the
AP239 schema – are assured to be interoperable with one
another. The templates also aggregate lower level concepts into
higher level concepts, easing DEX development. [23]
DEXML’s goal is to advance AP239 adoption by providing a
robust, standards-based framework for developing templates
and implementing PLCS (through DEXs). In this paper we
have shown a first step toward such a framework by providing
a graphical, UML-based representation of the IP. UML is
simpler and more reliable for PLCS developers and
implementers to use than the bespoken technologies currently
available. We have demonstrated how DEXML addresses issues

6 Copyright © 2011 by ASME

with the current DEX development technologies. DEXML can
be used with any UML tool that supports UML profiles.

Our next step is to enable a migration path from the current
PLCS/DEX architecture to DEXML by developing tools for
converting existing templates into activity diagrams. We are
also implementing a reverse mapping from the IP activity
diagram to the present IP syntax in accordance with Table 1.

ACKNOWLEGMENTS
The authors are grateful to Paul Witherell for his helpful

and insightful comments on an earlier draft of this paper. Any
remaining mistakes are the authors’ sole responsibility.

REFERENCES
[1] PLM Technology Guide.

http://plmtechnologyguide.com.
[2] K. Papamichael, H. Chauvet, J. LaPorta and R.

Dandridge. Product modeling for computer-aided
decision-making. Automation in Construction 8 (1999)
339-350. The Netherlands. Elsevier Science B.V.
1999.

[3] Steven J. Fenves, Sebti Foufou, Conrad Bock, Ram D.
Sriram. CPM2: A Core Model for Product Data.
Journal of Computing and Information Science in
Engineering. March 2008. Vol. 8.

[4] M. Stokes (Ed.), Managing Engineering Knowledge:
MOKA Methodology for Knowledge Based
Engineering Applications. Professional Engineering
Publishing. 2001.

[5] Sudarsan Rachuri, Young-Hyun Han, Sebti Foufou,
Shaw C. Feng, Utpal Roy, Fujun Wang, Ram D.
Sriram, and Kevin W. Lyons. A Model for Capturing
Product Assembly Information. J. Comput. Inf. Sci.
Eng. 6, 11 (2006), DOI:10.1115/1.2164451

[6] Simon Szykman and Ram D. Sriram. Design and
implementation of the Web-enabled NIST design
repository. ACM Transactions on Internet Technology.
Vol. 6. No. 1. February 2006. Pages 85-116.
DOI=10.1145/1125274.1125278

[7] Bock, C.; Zha, X.; Suh, H.; Lee, J. Ontological
Product Modeling for Collaborative Design. Advanced
Engineering Informatics. 24 (2010) 510 - 524.
http://www.nist.gov/manuscript-publication-
search.cfm?pub_id=822748.

[8] OMG. UML 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?ptc/03-08-02 . 2003.

[9] ISO 10303-239:2005. Industrial automation systems
and integration – Product data representation and

exchange – Part 239: Application protocol: Product
life cycle support.

[10] Sharon Kemmerer. “STEP: The Grand Experience”
(Editor of). NIST Special Publication 939. National
Institute of Standards and Technology. Gaithersburg,
MD, 1999.

[11] PLCS technical description, Templates.
http://www.plcs-
resources.org/plcs/dexlib/help/dex/techdes_template.ht
m . 2010.

[12] ISO 10303-11:1994. Industrial automation systems
and integration – Product data representation and
exchange – Part 11: Description methods: The
EXPRESS language reference manual.

[13] Object Management Group (OMG). Business Process
Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/ . 2011.

[14] PLCS template: assigning_reference_data.
http://www.plcs-
resources.org/plcs/dexlib/data/templates/assigning_ref
erence_data/sys/section.htm#description . 2009.

[15] Eurostep. DEXTemplate.
http://www.eurostep.com/global/solutions/download-
software.aspx#DEXTemplate . 2006.

[16] ISO TC 184/SC4/N1977:2005(E). Guidelines for the
development of mapping specifications. ISO TC
184/SC4 Standing Document. 2005-09-09.

[17] Topcased. The Open-Source Toolkit for Critical
Systems. http://www.topcased.org/ . 2011.

[18] Reeper: EXPRESS to UML2 Mapper.
http://www.nist.gov/el/msid/reeper.cfm . 2010.

[19] Ruby programming language. http://www.ruby-
lang.org/en/

[20] Object Management Group. MOF2.0/XMI Mapping,
V2.1.1. 12-01-2007

[21] ISO 10303-25:2005. Industrial automation systems
and integration – Product data representation and
exchange – Part 25: Implementation methods:
EXPRESS to XMI binding.

[22] Eclipse - The Eclipse Foundation open source
community website. http://www.eclipse.org/

[23] Keith A. Hunten and Allison Barnard Feeney. Business
Objects for Industrial Data Standards. To appear in
Proceedings of the ASME 2011 International Design
Engineering Technical Conferences & Computers and
Information in Engineering Conference. August 29-31,
2011.

7 Copyright © 2011 by ASME

http://plmtechnologyguide.com/
http://www.omg.org/cgi-bin/doc?ptc/03-08-02
http://www.plcs-resources.org/plcs/dexlib/help/dex/techdes_template.htm
http://www.plcs-resources.org/plcs/dexlib/help/dex/techdes_template.htm
http://www.plcs-resources.org/plcs/dexlib/help/dex/techdes_template.htm
http://www.omg.org/spec/BPMN/
http://www.plcs-resources.org/plcs/dexlib/data/templates/assigning_reference_data/sys/section.htm#description
http://www.plcs-resources.org/plcs/dexlib/data/templates/assigning_reference_data/sys/section.htm#description
http://www.plcs-resources.org/plcs/dexlib/data/templates/assigning_reference_data/sys/section.htm#description
http://www.eurostep.com/global/solutions/download-software.aspx#DEXTemplate
http://www.eurostep.com/global/solutions/download-software.aspx#DEXTemplate
http://www.topcased.org/
http://www.nist.gov/el/msid/reeper.cfm
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.eclipse.org/

