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Abstract:  
 
We calibrated three models of commercially-manufactured, laminar flow meters (LFMs) at four 
pressures (100 kPa, 200 kPa, 300 kPa, and 400 kPa) with five gases (N2, Ar, He, CO2, and SF6) 
over a 10:1 flow range using NIST’s primary flow standards as references.  We combined three 
items: (1) the calibration data acquired with N2, (2) gas-property data from NIST’s database 
REFPROP 9.0, and (3) a physical model for each LFM that accounts for the effects of viscosity, 
entrance and exit effects, gas expansion, gas non-ideality, and slip.  This combination predicted 
the calibrations for the flow of Ar, He, CO2, and SF6 with a maximum error of 0.8 % for 
Reynolds numbers Re < 500.  Under these conditions, the present LFM model allows prediction 
of calibration results for other gases with approximately 3 times more accuracy than 
conventional approaches that plot the flow coefficient as a function of the viscosity coefficient or 
Re.  We represented the calibration data for SF6 in the range 500 < Re < 2000 by adding an 
empirical quadratic function to the model for one of the LFMs.   

 
 

1. Introduction   
 
The users and manufacturers of flow meters for process gases often calibrate meters with one gas 
and use them to measure the flow of other gases.  Below, we show that this can be done in the 
range Re < 500 with a maximum error of only 0.8 % for three different, commercially-
manufactured, laminar flow meters (LFMs) by calibrating each meter with nitrogen.  We 
obtained these accurate results for the test gases Ar, He, CO2, and SF6 by combining the 
nitrogen-determined calibration coefficients with gas-property data from NIST’s database 
REFPROP 9.0 [1].  For each meter and each gas, the data span the pressure range 100 kPa to 400 
kPa and a 10:1 flow range.   
 
The starting point for our LFM models is one of the best-understood flow meters for gases near 
100 kPa, a long, straight capillary with plenums at each end.  In a first approximation, the flow 
through such a capillary is deduced from the Hagen-Poiseuille equation using the measured 
temperature, the viscosity of the gas, and measurements of the stagnation pressure in each 
plenum.  When higher accuracy is desired, correction terms with theoretically estimated 
coefficients are added to the Hagen-Poiseuille equation to account for the effects of kinetic 
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energy, gas expansion, gas non-ideality, slip, and several, less-important phenomena [2].  The 
flow paths in commercially-manufactured LFMs are not long, straight capillaries.  Therefore, the 
correction terms in this work have coefficients that depend on the geometry of each LFM.  As 
shown in [3], these coefficients can be estimated from the geometry of each meter.  Here, we 
obtained errors less that 0.8 % in the range Re < 500 by fitting two of the coefficients and the 
hydraulic diameter Dh to nitrogen-based calibration data for each LFM. 
 
When we extrapolated the nitrogen-based calibration above Re = 500, the errors in the test gas 
flows grew with Re, reaching 0.9 % to 7.5 % (depending upon the specific LFM).  This is not 
surprising because at Re = 1800, the largest correction term reaches 5 % to 43 % of the Hagen-
Poiseuille term.  For two LFMs, we obtained acceptable calibrations in the extended range 0 < 
Re < 1800 by fitting the same coefficients to the calibration data for all five gases rather than 
nitrogen alone.  For the third LFM in the extended range, we could fit the flow data for all five 
test gases with the same coefficients plus a second-order function of Re.  Thus, Re = 500 is a 
practical limit for extrapolating nitrogen calibrations to other gases for the LFMs studied, the 
same value identified by Feng et. al [4]. 
   
2. Physical Model for the Laminar Flow Meters 

 
The simplest model for a laminar flow meter is the Hagen-Poiseuille (H-P) equation 
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which relates the mass flow of an incompressible fluid through a capillary of circular cross 
section to the density  and dynamic viscosity  of the fluid, the capillary radius r and length L, 
and the pressure drop P1 – P2 along the capillary. 
 
The assumptions of the Hagen-Poiseuille (H-P) equation are [5]: 

1. the flow has negligible kinetic energy, 
2. the flow is laminar and steady, 
3. the capillary is straight and has a uniform, circular cross section, 
4. the fluid is incompressible and its density is constant, 
5. the fluid is Newtonian, 
6. the temperature of the fluid is constant and viscous heating is negligible, 
7. there is no slip at the wall of the capillary. 
 

The first assumption is invalid when the upstream and downstream pressures are measured at 
taps located in large chambers (plenums) upstream and downstream from the capillary, in which 
the flow velocity is much smaller than in the capillary.  Pressure drops associated with 
development of the laminar flow profile at the entrance and jetting at the exit are called entrance 
and exit effects or kinetic energy effects.  Conventional presentations of LFM calibration data 
account for laminar flow viscous effects (the H-P equation) and for kinetic energy effects [6] by 
plotting the flow coefficient FC as a function of the viscosity coefficient VC with the definitions:  
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In prior work, Wright showed how to choose length scales so that  3 34VC L r Re for a circular 

capillary [7].  Therefore, we will replace conventional plots of FC vs VC with plots of FC vs Re, 
to facilitate comparing the conventional approach to our more complete physical model. 
 
The third H-P assumption is invalid for two of the present flow meters, which have noncircular 
cross sections.  Fortunately, hydrodynamic equations have been derived for a variety of cross 
sections; see, for example, Shah and London [8] or White [9].  The fourth assumption of 
incompressibility is invalid for gases.  However, combining Eq. (1) with the ideal gas law for 
density at the average pressure  1 2 2P P  gives an expression that is simple and accurate to 

within a few percent for most LFMs:  
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Here R is the universal gas constant, T is the temperature, M is the molar mass, and (T,0) is the gas 
viscosity evaluated at temperature T in the limit of zero pressure. 
Further improving the accuracy requires corrections for the following five effects: 

1. Density dependence of the gas viscosity and departures from the ideal gas law (gvirial term 
in Eqs. (4) and (6)). 

2. Slip at the capillary wall, which increases the flow.  This effect is proportional to the 
Knudsen number Kn, which is the gas mean free path divided by a length that 
characterizes the capillary cross section (Kslip term). See Eq. (11) for the definition of Kn. 

3. The increase of kinetic energy near the capillary entrance, which decreases the flow. A 
correction with the same functional form arises where the flow exits the capillary and 
enters the downstream plenum (Kent + Kexit terms). The decreased flow is due to the pressure 
drop associated with Bernoulli’s principle. 

4. Gas expansion along the capillary, which increases the kinetic energy and decreases the 
flow (Kexp term). 

5. The transverse temperature distribution in the fluid due to the imperfect cancellation of 
cooling due to gas expansion and viscous heating due to shear (gtherm term). 

 
In [2] and [10], Berg used the results of previous researchers [5, 11, 12] to develop a 
combination of corrections for these five effects.  Equation 4 summarizes the result for the mass 
flow through a single, long, straight, circular tube [2]:  
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 All pressures used herein are absolute. 
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Table 1. Properties of three laminar flow meters: cross section geometry (not to scale), full scale 
flow, dimensions, and the parameters of the generalized LFM model (Eqs. (6)-(12)).  For each 
meter, Dh was fitted to the nitrogen flow data.  Then, more accurate calibrations were obtained by 
fitting the dimensionless coefficients (Kent + Kexit), Kexp, and, in the case of the circular segment, 
also fitting a quadratic function of Re. 

 
Flow meter Annular Circular segment Circular (n = 12) 

Geometry 

 
 

Full Scale (sccm)* 1000 100 1000 
Length of LFE (mm) 60 60 75 

Fitted Dh (mm) 2(a  b) = 0.0696 H = 0.0803 2r = 0.427 
Additional length (mm) a = 3.95 W = 1.6  

L/ Dh 860 674 175 
 6 4 4 
 (a  b)/(12L) H/(24L) r/(16L) 
 (a  b)/(20L) 9H/(140L) r/(16L) 
 a(a  b)3/6 WH3/96 r4/16 
pw 2(a + b)  2W 2r 

Estimated (Kent + Kexit) 0.90 1.00 1.14 
(Kent + Kexit) fitted to all gases 0.55 1.17 1.32 

Estimated Kexp 1 1 1 
Kexp fitted to all gases 1 0.55 0.4 

*sccm = standard cubic centimeter per minute at 101.325 kPa and 0 °C. 
 
 
The commercially manufactured LFMs studied in this work are not long, straight tubes with a 
circular cross section.  Table 1 characterizes the three LFMs used in this study.  The circular 
LFM is a bundle of 12 short tubes with no flow passage in the interstitial spaces.  The annular 
LFM has a solid cylinder of radius b centered inside a hollow cylinder of a slightly larger radius 
a. The circular segment LFM has a solid cylinder of diameter D (not identified on figure in Table 
1) with a small flat ground along its length inside a hollow cylinder of the same diameter.  The 
resulting cross section is a shallow circular segment whose width W and maximum height H are 
related, in the limit of small W/D, by 

 
2
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We describe the flow through the commercially manufactured LFMs with annular, circular and 
circular-segment cross sections using the same functional form as Eq. (4) but with different 
geometric parameters.  To emphasize this, we generalize Eq. (4) to 

                                                      
 In our prior publication [3], Eq. (5) was incorrectly written: H=W2/(2D). 
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where the geometrical parameters , , and   for the three LFMs are listed in Table 1 (see 
references [2] and [3] for derivations).  Similarly, the Hagen-Poiseuille mass flow for a circular 
cross section is generalized as 
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where the geometrical parameter   is also listed in Table 1. 
 

The five corrections in Eq. (6) depend on the Reynolds number Re, the Knudsen number Kn, the 
function gvirial, which corrects for the density dependence of the gas viscosity and departures 
from the ideal gas law, and the function gtherm, which depends upon the gas and the LFM shape.  
The function gtherm accounts for viscous heating and for the cooling of the gas as it expands along 
the capillary.  

 
For all three LFM geometries, the length scale used in the Reynolds number is the hydraulic 
diameter,  
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where A and pw are respectively the area and “wetted perimeter” of the cross section.  The 
Reynolds number for an LFM is 
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where  ,T P  is the viscosity evaluated at the pressure averaged along the length of the 

capillary [10]:  
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Values of the geometric parameters pw and Dh for each cross section are listed in Table 1.  Note 
that by substituting Eqs. (7) and (9) into Eq. (6) and rearranging, an explicit expression for mass 
flow can be written.  This rearranged equation can be used to calculate the flow through a 
calibrated LFM. 
 
Equation (6) for the mass flow and Eq. (9) for the Reynolds number are for a single flow path.  
The circular LFM shown in Table 1 has 12 parallel tubes; therefore, the model flow must be 
multiplied by n = 12 for this LFM.  

 
The Knudsen number is defined as  
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where 
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is the mean free path evaluated at P1/2  (P1 + P2) / 2. 
 

The expressions for the annular and circular segment models are approximations that are valid in 
the respective limits H << W and (a – b) << a.  For the annular model, the exact solution for  is 
[8, 9]  
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which simplifies to the approximate expression listed in Table 1 that shows that the flow depends 
on the cube of the gap between the cylinders.  The derivation of the circular segment model is in 
reference [3]. 
 
For some LFM geometries, the values of Kslip, Kent, Kexit, Kexp and gtherm can be calculated from 
analytic theory or computational fluid dynamics.  Occasionally, prior researchers have measured 
them experimentally.  Calculating Kslip and gtherm involves few and safe assumptions, and it is 
difficult to justify departures from their theoretical values (Kslip=1).  This is not the case for 
(Kent + Kexit) and Kexp because their values depend on details of the three commercial LFMs that 
we do not know, such as the size and shape of the plenums.  Even if we knew the geometries, 
theoretical calculations would be difficult.  Hence, we used theory to choose the functional form 
of the LFM corrections (Eq. 6) and fitted the equation to calibration data to determine the values 
for (Kent + Kexit) and Kexp.  To the extent that our model, Eq. (6), is successful, the values of 
(Kent + Kexit) and Kexp determined from flow measurements with one gas (e.g. nitrogen) will work 
for other gases.   
 
It is possible to apply Eq. (6) to LFMs with different geometries. To do so, one would use 
expressions for , , , and  analogous to those in Table 1, If such expressions were not 
available, one would fit the parameters , , , and  to nitrogen calibration data. For example, 
the entrance correction, which is Kentr/(16L) for the circular cross section, would be described 
simply as (Kent + Kexit) r/L, where r is a characteristic transverse dimension, L is the LFM length, 
and (Kent + Kexit) could be much different from 1. 
 
3. Description of the LFM Calibrations 

 
A pressure regulator and mass flow controller were used to set the flow of gas through the 
laminar flow meter as shown in Figure 1.  A back-pressure regulator or a throttling valve was 
used to maintain a nominal pressure at the exit of the LFM despite increases in the upstream 
pressure.  With this equipment, each LFM was tested at flows of 10 %, 25 %, 50 %, 75 %, and 
100 % of full scale, and the nominal pressures at the LFM exit were 100 kPa, 200, kPa, 300 kPa, 
and 400 kPa.  This arrangement gave at least 20 combinations of flow and pressure for each flow 
meter and each gas.  The gases used were nitrogen, argon, helium, carbon dioxide, and sulfur 
hexafluoride.  The data plotted herein are averages of 10 or more individual flow measurements 
made at each combination. 
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Figure 1. Schematic of the test arrangement to calibrate the laminar flow meters against the 

PVTt and RoR flow standards. 
 
For the circular segment LFM and the annular LFM, P1 and P2 were measured with two absolute 
pressure sensors with a full scale of 550 kPa.  The differential pressures ranged from 2 kPa to 
63 kPa.  Periodic taring of the two sensors kept the expanded uncertainty of the differential 
pressures within 10 Pa, i.e. 0.5 % of the minimum differential pressure.  

 
For the circular LFM, P1 was measured with a 1400 kPa full scale sensor (0.04 % uncertainty).  
The differential pressure P1 – P2 ranged from 0.1 kPa to 2.6 kPa, and it was measured with a 1 
kPa or a 10 kPa full scale sensor with uncertainty of 2 Pa.  The LFM gas temperature (0.08 % 
uncertainty) was measured by placing sensors in good contact with the LFM body. 

 
Three flow standards were used to calibrate the LFMs and to evaluate the LFM physical model: 

 
1) PVTt: The 34 L Pressure-Volume-Temperature and time (PVTt) standard determined the mass 
of gas accumulated in a collection tank over a measured period of time.  Details about this 
standard and its expanded uncertainty of 0.025 % can be found in reference [13]. 

 
2) Rate-of-Rise: At 10 sccm, it takes 57 h to make a single PVTt flow measurement that fills the 
34 L collection tank from vacuum to 100 kPa.  The Rate-of-Rise technique allows the same tank 
and instrumentation to be used more efficiently.  This method acquires time-stamped pressure 
and temperature values for the gas in the collection tank while the tank is filling.  The pressure 
and temperature are used to calculate the density of gas.  The mass of gas at each time step is 
obtained by multiplying the calculated density by the collection volume, V.  At each time ti, the 
derivative of the accumulated mass with respect to time is the mass flow, i.e.:  
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For the present measurements, this technique has an expanded uncertainty of 0.054 %. 
 

3) Dynamic Gravimetric: A commercial dynamic gravimetric flow standard was used to measure 
the mass of a pressurized gas cylinder as a function of time while discharging through the LFM.  
Its expanded uncertainty is 0.1 % [14]. 

 
The three flow standards agreed with each other within 0.05 %. 

                                                      
 Uncertainties herein are expanded, k = 2, with a 95 % confidence level unless otherwise stated. 
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4. Results and Discussion 
 
Figures 2, 4, and 6 summarize our results by plotting the ratio of the flow calculated by a 
particular LFM model to the reference flow measured with the reference flow standards.  For 
each LFM, the hydraulic diameter Dh was fitted to a single set of nitrogen flow data and used 
consistently throughout the analysis, i.e. the value of Dh that minimized the difference between 
the model and experimental data for nitrogen at low Re was determined.  Each plot includes the 
flow and pressure combinations for all five gases.  The four panels for each LFM in Figures 2, 4 
and 6 compare the following sequence of LFM models: 

(A) The conventionally used flow coefficient (FC), defined in Eq. (2), which was fitted by a 
second-order polynomial in Re.  

(B) Eq. (6) with values of Kslip, (Kent + Kexit), Kexp and gtherm determined analytically, 
computationally, or experimentally, based on prior research (“estimated K values”).  

(C) Eq. (6) with (Kent + Kexit) and Kexp values fitted to the nitrogen flow data (“K values fitted 
to N2”).  

(D) Eq. (6) with (Kent + Kexit) and Kexp values fitted to the flow data for all five gas species 
(“K values fitted to all gases”).  

No fitting was necessary for Kslip because the theoretical value of 1 worked well. For plots (C) 
and (D), the values of (Kent + Kexit) and Kexp were fitted by iterating the following two steps: 

1) Adjust (Kent + Kexit) until the slope of model / standard flow versus Re plot (like Figure 2) 
is approximately zero. 

2) Adjust Kexp to minimize dispersion of the model / standard values at the highest Re values 
(where expansion corrections are largest).  

In the case of the circular cross section LFM, differences up to 2 % remained for large Reynolds 
numbers even after fitting Eq. (6) to all five gases.  For that LFM, we multiplied Eq. (6) by an ad 
hoc second-order function of Re. (See also the discussion near the end of this section.) 
 
Figure 2 shows the results for the annular LFM. In panel (A), a second-order fit of FC versus Re 
gives a flow ratio within 2 % of the standard; however, this conventional approach does not 
correct for slip flow effects evident in the helium data by vertical separation of data taken at 
different pressures. Panel (B) of Fig. 2 demonstrates the benefit of the slip corrections.  In panel 
(C), (Kent + Kexit) and Kexp were fitted to the N2 flow data; however, when this model is 
extrapolated to the SF6 data at large values of Re, the flow ratios have errors of 1 %. Panel (D) 
shows the results when (Kent + Kexit) and Kexp are fitted to the flow data for all five gases: all flow 
ratios are within 0.4 % of the flow standard. 
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Figure 2. Flow ratio versus Reynolds number for the annular LFM for various model versions. 

 
The annular LFM has the lowest maximum Re (600) and the largest aspect ratio (1/  = 20640) 
of the three LFMs tested; hence the limitations of Eq. (6) are not severely tested.  The largest 
correction for any test condition for this LFM is the virial correction for SF6 at 400 kPa, and it 
was only 4.7 % of the H-P flow.  
 
For the annular LFM, Figure 3 displays the relative importance of the five correction terms in 
Eq. (6) for two representative cases: helium at 100 kPa and nitrogen at 400 kPa. These plots were 
obtained by using the K values fitted to all gases to calculate the individual terms in Eq. (6). The 
large aspect ratio yields small entrance and exit corrections (< 0.3 %).  However, the relatively 
small transverse length (a - b) leads to a large Knudsen number, particularly for low pressure 
helium, and it gives slip corrections as large as 3.5 %.  For a fixed exit pressure, the slip 
correction decreases with increasing flow or Re because the average pressure increases, which 
shortens the mean free path. 
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Figure 3. Corrections applied for the annular LFM for a) helium at P2 ≈ 100 kPa and b) 

nitrogen at P2 ≈ 400 kPa. 
 
Figure 4 shows the results for the circular segment LFM.  The conventional FC fit displays 
errors up to 3.5 % due to its neglect of expansion effects (SF6) and slip effects (He).  Our prior 
publication [3] contained an incorrect version of Eq. (5). That error did not affect the values for 
, , , and , but it did affect the values of H and W and the deviation plots. Here, we used the 
correct version and obtained greatly improved results when estimated K values were used: the 
model results in Figure 4(B) are within 3 %. However, at Re > 100, pressure dependence is 
observed in the N2, Ar, and SF6 data, i.e. higher flow ratios were measured as the pressure was 
increased from 100 kPa to 400 kPa.  The expansion correction term depends on the pressure ratio 
P2/P1 as well as Re.  This pressure dependence is significantly reduced by changing Kexp from 1 
to 0.7, as can be seen by comparing Figures 4(B) and 4(C).  Using K values fitted to the N2 data 
improves the model results to 1.3 % even for the SF6 data at Re values more than five times 
larger than the N2 data.  Figure 4(D) shows that when Eq. (6) is fitted to all gases (Kexp=0.55), the 
results are within 0.5 % of the standard. 
 
For the circular segment LFM, Figure 5 shows the model corrections for SF6 at two exit 
pressures, 100 kPa and 400 kPa.  The expansion correction is larger at the lower pressure (5 % vs 
0.5 %) because, at higher pressures, P2→P1 for a given flow rate and the  2 1ln P P  dependence 

of this correction term approaches zero.  



Published in Flow Measurement and Instrumentation, Volume 25, June 2012, Pages 8-14. 

 
Figure 4. Flow ratio versus Reynolds number for the circular segment LFM. 

 

 
Figure 5. Corrections applied for the circular segment LFM for SF6 at a) P2 ≈ 100 kPa and b) P2 

≈ 400 kPa. 
 
Figure 6 shows the results for the circular LFM.  The second-order FC fit gives flow ratios 
within 1 % of the standard because the entrance and exit effects are the dominant corrections 
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(43 % of H-P flow 0m ) and depend on Re.  All other correction terms are < 5 % of 0m .  Figure 

6(B) shows that estimated K values give 2 % results.  Figure 6(C) shows that fitted K values give 
improved results for Re < 500, but that extrapolation to Re > 500 leads to errors up to 7.5 % 
(beyond the scale of the figure as indicated by the down arrows).  
 
The curvature apparent in these two plots could not be removed by fitting (Kent + Kexit) or Kexp.  
However, multiplying Eq. (6) by the ad hoc function 5 8 21 1.8 10 5.8 10Re Re     did correct 
the curvature, as shown in 6(D), where all results are within 0.8 % of the standard.  We note that 
the ad hoc function of Re is functionally similar to the second-order FC fit, which also fits the 
experimental data well.  
 

 
Figure 6. Flow ratio versus Reynolds number for the circular LFM. 
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Figure 7. Corrections applied for the circular LFM for a) helium at P2 ≈ 100 kPa and b) carbon 

dioxide at P2 ≈ 400 kPa. 
 
Equation (6) is a linear function of Re because the corrections are calculated only to first-order 
and are assumed to act independently.  This linear model is no longer valid when the entrance 
and exit effects are large.  For example, each LFM has an entrance length Le, over which the 
uniform entrance profile develops into the invariant quadratic profile assumed by the H-P 
equation.  For the circular LFM, which has the smallest aspect ratio, that length is 

e h0.06 0.62L D Re L   at Re = 1800 [8].  Thus, only 38 % of the length of the circular LFM 

contained the fully developed flow assumed by the H-P equation.  Another justification for a 
term proportional to Re2 is interactions between corrections.  
 
A notable pressure dependence in the SF6 data remains unexplained.  Without the SF6 pressure 
dependence and the lowest pressure helium data, the data scatter would be < 0.3 %.  We also 
note that we used the LFM at eight times the maximum Re recommended by the manufacturer. 
 
For the circular LFM, Figure 7 shows that the corrections vary widely with the gas used.  For 
helium at 100 kPa, all the corrections are < 1%, but for CO2 at 400 kPa, the virial corrections are 
2 % and the entrance and exit corrections are as large as 12 %. 
 
5. Summary 
 
Our flow measurements and their interpretation rely on measurements of absolute pressure, 
differential pressure, temperature, and mass flow, and values of the compressibility, density, and 
viscosity from the database REFPROP [1].  (REFPROP 9.0. does not contain values for the 
viscosity of SF6; for that gas, we used the viscosity measured in [15].)  The most significant 
associated uncertainties are for the measurements of differential pressure at 10 % of the LFM full 
scale flow (0.25 %). 
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Equation (6) gives a physical model for the laminar flow meter based on the Hagen-Poiseuille 
equation, generalized for various flow geometries, with corrections for the effects of gas non-
ideality, slip, entrance and exit flows, gas expansion through the meter, and heat transfer.  For 
three commercially produced LFMs, the parameters of the LFM model were based on the shape 
of the LFM cross section, literature values, and calibrations of the LFMs in nitrogen, argon, 
helium, carbon dioxide, and sulfur hexafluoride for a range of flows (10% to 100 % of full scale 
flow) and pressures (100 kPa to 400 kPa).  The LFM model was evaluated by plotting the ratio 
of the flow predicted by the model to the flow measured by the reference flow standards with 
uncertainty < 0.1 %.  

 
These measurements demonstrate the significance of the corrections in Eq. (6) for commercial 
LFMs and explore the limitations of the model. Our helium data demonstrate the significance of 
the slip correction at atmospheric pressure for the two meters where the mean free path is a 
significant fraction of the smallest transverse dimension.  The large molar mass of sulfur 
hexafluoride emphasizes the corrections that are related to kinetic energy and thus Re.  (Some 
process gases, e.g WF6, have larger molar masses than SF6.)  In fact, the maximum value of Re 
likely exceeded that for the transition from laminar to turbulent flow, which ranges from 200 for 
short metal tubes to 2300 for long glass tubes [5].  The non-ideal behavior of CO2 and SF6 at the 
higher pressures demonstrates the importance of virial corrections.  Our use of pressures between 
100 kPa and 400 kPa tested the expansion and virial corrections. 

 
For all three LFMs, Eq. (6) and our flow standards agreed within < 3 % when we used values of 
K estimated from dimensions as in [3].  When we fitted (Kent + Kexit) and Kexp to nitrogen flow 
data, the agreement improved to 0.8 % for the five gases tested in the range Re< 500.  When Eq. 
(6) was extrapolated to Re = 1800 using the nitrogen flow parameters, errors as large as 7.5 % 
resulted.  Refitting (Kent + Kexit) and Kexp to all five gases reduced the errors for the annular and 
circular segment to ≤ 0.5 %.  For the circular LFM, we had to multiply Eq. (6) by a second-order 
function of Re to obtain deviations ≤ 0.8 %.  We speculate that this function accounts for the 
long entrance length and large end corrections due to the small aspect ratio of this LFM. 
 
The results are instructive to those who use LFMs with multiple gases, and it motivates us to 
move beyond FC fits.  We anticipate that laboratories that calibrate LFMs will design data 
collection protocols optimized to determine the LFM model parameters, i.e. Dh, Kent + Kexit, and 
Kexp.  This protocol could use only one gas if it spanned a wide range of average pressures and 
flows. 
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