
Instrument Control (iC) – an open-source software to automate

test equipment

K. P. Pernstich∗

National Institute of Standards and Technology (NIST), Gaithersburg, MD 20878, USA

(Dated: June 8, 2011)

Abstract
It has become common practice to automate data acquisition from programmable instrumenta-

tion, and a range of different software solutions fulfill this task. Many routine measurements require

sequential processing of certain tasks, for instance to adjust the temperature of a sample stage, take

a measurement, and repeat that cycle for other temperatures. We introduce an open-source Java

program that processes a series of text-based commands that define the measurement sequence.

These commands are in an intuitive format which provides great flexibility and allows quick and

easy adaptation to various measurement needs. For each of these commands, the iC-framework

calls a corresponding Java method that addresses the specified instrument to perform the desired

task. The way iC was designed enables one to quickly extend the functionality of Instrument

Control with minimal programming effort or by defining new commands in a text file without any

programming.

∗Electronic address: pernstich@alumni.ethz.ch

1

I. INTRODUCTION

A spectrum of automation software for scientific test equipment is available, ranging from

full-fledged solutions that provide data acquisition and management (e.g. LabView, VEE,

and EPICS) to data visualization and calculus software with the capability to communicate

with instruments (e.g. IgorPro, Origin, Matlab, Mathematica and SciLab)[8]. This arti-

cle introduces Instrument Control (iC) [1][9], an open-source Java program that provides

a convenient framework to automate data acquisition by processing a list of commands

stored in a conventional text file. Defining the test sequence with clear text commands is

one of the main advantages of iC as it enables quick and easy adaptation to different mea-

surement needs encountered in day-to-day laboratory situations, and to store the employed

measurement sequence together with the measured data for documentation purposes. An-

other great feature of iC is that new commands for an instrument can simply be defined in

a text file which then serves as the “driver” for that instrument. Instrument Control works

with General Purpose Interface Bus (GPIB) controllers [2] from major vendors (National

Instruments, Agilent, Prologix), and it is prepared to support other communication proto-

cols such as Ethernet, USB, or other proprietary protocols as well. Instrument Control uses

Java Native Access [3] to access the platform-specific drivers supplied by the vendors of the

communication controller (*.dll, *.dylib, *.so files), and it has been tested on Windows and

Macintosh operating systems. Instrument Control is comfortable to use, easily extendable,

and it is ideal for somebody already familiar with Java or a similar programming language,

or when budgetary considerations or the availability of the source-code are of concern.

The source code including documentation, tutorial videos, and a precompiled version

is available free of charge from [1]. The documentation also includes an up-to-date list of

supported instruments. The most recent source code can be conveniently downloaded from

the subversion server into the development environment (e.g. Netbeans) with a single mouse

click, and the necessary configuration steps are described in [4]. At the time of writing, the

source code comprises 7800 lines of code and more than 8700 lines of documentation, and

the size of the precompiled version is 10 MBytes. In the following, a brief introduction is

presented of how iC is used, as well as an overview how the iC-framework works internally.

Section III shows that the functionality of iC can be extended with little programming

effort. The last part explains how new commands that can be executed from the script can

2

Figure 1: Graphical user interface of Instrument Control (iC).

be defined in a generic way; i.e., in a simple text file containing the GPIB string to be sent

to the instrument and a description of the input parameters for the user.

II. USING INSTRUMENT CONTROL

Central to iC is a script (Listing 1) which contains a list of script-commands. Scripts are

stored as conventional text files, and a graphical user interface (GUI, Fig. 1) implemented

in iC offers a convenient way to write such scripts, although any other text editor is also

sufficient. Using text files is in general advantageous because text files are universal, cross-

platform compatible, unproblematic in terms of long-term readability, and can be read by

essentially all programs.

The right side of iC’s user interface displays the script (Fig. 1a), and it contains a line to

type in new script-commands and buttons for the user to start, stop, and pause processing

of the script (Fig. 1b). All measurement data are saved in a project directory and a base

file name as specified in GUI (Fig. 1c). Script commands can add an extension to this base

file name, e.g., the actual sample temperature when the measurement commenced. The

GUI allows the user to add commands to the script that define new instruments (script-

command MAKE) and to include sub-scripts (script-command INCLUDE, Fig. 1d). Label e

3

in Fig. 1 marks a part of the GUI that lists all instruments used in the script as well as

the commands each instrument supports. This part of the GUI is dynamically generated

from annotations in the source code or the text file defining new script-commands in a

generic way as shown below. When the user selects a command of a particular instrument,

the command’s parameters are shown in a table as illustrated in Fig. 1e for the command

setTemp of the instrument with the name Tsample. This way, the user can comfortably add

new script-commands with the appropriate parameters. The ‘Send’ button allows the user

to send script-commands to the selected instrument while a script is being processed. This

is advantageous because many instruments cannot be operated from the front-panel while

they are accessed remotely. The text-field at the bottom left of the GUI (Fig. 1f) shows

status messages for the user.

1 MAKE Tsample ; Lakeshore 340; GPIB 4 // temperature controller

2 MAKE PA; Agilent 4155; GPIB 2 // semiconductor parameter

analyzer

3 INCLUDE setup PA.iC // sub - script to initialize PA

5 Tsample setTemp 300 // bring sample to 300 K

6 PA Measure 0; I,V; _300K.txt; "" // measure and store the I-V

characteristics

8 Tsample SetTemp 250

9 PA Measure 0; I,V; ; " Tsample getTemp A"

10 // append current sample temperature to file

name

Listing 1: An exemplary script to measure and store current-voltage characteristics of a diode at

two temperatures.

After the user starts processing the script, all script-commands are parsed to detect errors,

for instance typographical errors or parameters that are out of range. This syntax-check is

performed in the same way the script-commands are executed but without communicating

with the instruments, which minimizes the programming effort when extending iC. After

4

the successful syntax-check, the script-commands are sequentially processed. Each script-

command corresponds to a Java method which is invoked by the iC-framework with the

proper arguments.

A. An example script

Listing 1 shows an example of an iC-script to measure the current-voltage characteris-

tics of a diode at two different temperatures. Lines 1 and 2 define two new instruments:

a Lakeshore 340 temperature controller connected via GPIB at address 4, and an Agilent

4155 semiconductor parameter analyzer with GPIB address 2. To refer to these instruments

later in the script, the variables Tsample and PA were assigned. Whenever a new instru-

ment is defined, communication with the instrument is automatically established by the

iC-framework to minimize the programming effort when the functionality of iC is extended.

Line 3 in Listing 1 includes a sub-script, which, as an example, contains script-commands

that initialize the parameter analyzer to perform the desired measurements, i.e., assign the

source-monitor units, set the range of voltages measured, etc. The next script-command in-

vokes a method setTemp(float) in a class which implements all supported script-commands

of an instrument (driver-class), in this case, the class Lakeshore340 for the temperature con-

troller. Line 6 calls the method Agilent4155.Measure(int, String, String, String)

which starts the measurement and stores the measured parameters I and V in a text file.

The name of this file is comprised of the base file name specified in the GUI (Fig. 1c) and

the extension provided in the script-command, i.e., ‘Diode 1_300K.txt’. The last argument

is optional and allows the user to pass an additional script-command to the Measure()

method. This additional script-command (Line 9 in Listing 1) is processed from within

Measure() and it’s result is used to attach the current temperature to the file name, e.g.

‘Diode 1_250.15K.txt’.

III. EXTENDING INSTRUMENT CONTROL

iC facilitates two ways of extending its functionality. The programmatic way in which

new Java methods are implemented is discussed next, and the generic way of defining new

instrument-commands in a text file is discussed subsequently.

5

Listing 2: A possible implementation of a Java method to change the temperature set point and

wait until the temperature is reached.

1 public void setTemp (float SetPoint)

2 throws IOException {

4 // build the GPIB command string

5 String str = "SETP 1," + SetPoint ;

7 // send to the Instrument

8 SendViaGPIB (str);

10 // wait until set point is reached

11 float T;

12 do {

13 // get current temperature

14 str = QueryViaGPIB (" KRDG? A");

16 // convert to a float value

17 T = Float. parseFloat (str);

18 } while (Math.abs(T- SetPoint) < 0.1 &&

19 m_StopScripting == false);

20 }

A. Programmatic way

Listing 2 shows a possible implementation of the setTemp() Java method used to change

the temperature set point and wait until the temperature is within 0.1 K of this set point.

The main purpose of this method is to generate the GPIB strings that are sent to the

instrument to perform the desired tasks, and to interpret the string which is read back from

the instrument that contains the measurement data. Line 5 in Listing 2 creates the GPIB

string to set the temperature set point of control loop ‘1’, and Line 8 sends this string to the

6

instrument via GPIB. The method SendViaGPIB(String) is defined by the iC-framework

and handles all communication with the instruments via GPIB. The method throws an

IOException when a communication error occurs, and this Exception is – just as all other

Exceptions – automatically handled by the iC-framework. Therefore, new code does, in

general, not require any Exception handling. The documentation [4] elaborates in greater

detail how Exceptions are used to handle possible errors. In Line 14 of Listing 2, the

method String QueryViaGPIB(String) is used to query the current temperature of input

channel ‘A’. When the difference between set point and current temperature is withing 0.1

K or the user has pressed the ‘Stop’ button in the GUI, setTemp() returns and the next

script-command is processed.

The documentation [4] contains step-by-step instructions to implement new and extend

existing driver-classes, and a reference implementation of a Java method included in the

source code is recommended to serve as a template for new code. To minimize programming

effort when implementing new script-commands, Java’s Reflection mechanism is used to

access class information at run-time. Any public method that is added to a driver-class

is automatically recognized by the iC-framework and, hence, accessible as script-command

without further programming. Java methods are allowed to start new Threads to enable

parallel processing of certain tasks, such as to display various temperatures on a graph while

a script is being processed.

Data received from instruments is in general handled by the Java methods, although a

return value from a Java method can also be used in the successive script-command. Most

methods that receive measurement data store the data in a text file for further processing

in visualization or calculus software. Java also provides convenient ways to save data as xml

files, in a binary format, or in a compressed archive which can be advantageous for large

data sets. The open-source software package JFreeChart [5] is integrated in iC, making it

very easy to display data in high quality graphs. iC also integrates Apache’s Common Math

package [6] for advanced data manipulations such as Spline interpolation of data points,

statistical analysis, numerical integration, and much more.

Listing 3 illustrates the mechanism used to dynamically generate the part of the GUI

shown in Fig. 1e and also how the syntax-check mechanism is implemented. The Java

language allows to define annotations in the source code which can be evaluated at run-

time. Instrument Control uses this technique to automatically build a GUI at run-time

7

by defining an annotation @AutoGUIAnnotation() (lines 1-5 in Listing 3) with fields that

provide a detailed description of the method’s purpose (tool-tip in Fig. 1e), the names of

it’s input parameters, the default values, and the tool-tip texts for each parameter.

Instrument Control uses a second annotation @iC_Annotation() (line 6 in Listing 3)

which declares that the method performs a syntax-check. If a syntax-check is implemented,

the method should throw a DataFormatException if a parameter is not allowed (lines 11-12

in Listing 3), and the method must return without any communication when the program

is in syntax-check mode (lines 15-16 in Listing 3).

Listing 3: Annotations used by iC to define part of the GUI in the source code, and to declare if

a method implements a syntax-check.

1 @AutoGUIAnnotation (

2 DescriptionForUser = "Sets the SetPoint temperature .",

3 ParameterNames = {" Temperature [unit of SetPoint]"},

4 DefaultValues = {"295"} ,

5 ToolTips = {" Define tool -tips here "})

6 @iC_Annotation (MethodChecksSyntax = true)

7 public void setTemp (float SetPoint)

8 throws IOException , DataFormatException {

10 // perform Syntax -check

11 if (SetPoint < 0 || SetPoint > 500)

12 throw new DataFormatException (" Set point out of range .");

14 // exit if in Syntax -check mode

15 if (inSyntaxCheckMode ())

16 return ;

18 // continue as in Listing 2

8

B. Generic way

The programmatic way of implementing new script-commands offers great versatility

but requires re-compilation of the source code and some programming skills. Defining new

script-commands in a generic way using text files requires neither of these and is, therefore,

ideally suited for quick testing or implementing simple functions. An example of a generic

instrument definition for a SRS Lock-In amplifier is given in Listing 4. The file name (without

extension) is taken as the name used in the MAKE commands (e.g. MAKE lia; SRS SR810;

GPIB 8). Every line contains a definition of a new script-command and comprises the

following tokens: (1) the name of the script-command; (2) the GPIB string where %d, %f,

%s (and other format specifiers [4]) are placeholders for integer, double and string values

which will be replaced by the values specified in the script; and (3) and (4) specify the

parameter names shown in the table of the GUI (Fig. 1e). As illustrated in line 3 of

Listing 4, the tokens can also include tool tip texts (enclosed in curly braces) as well as a

minimum and maximum numerical value (enclosed in square braces) and a default value

for the GUI (enclosed in round braces). If a method name (token (1) in Listing 4) starts

with ‘get’ or ‘save’, the instrument is addressed to talk and the result of this query is made

available to the next script-command. If the method name starts with ‘save’ the result is

additionally stored in a text file and the last parameter is interpreted as a file extension

(token (5) in Listing 4). The text files defining new generic GPIB instruments need to

reside in a particular directory (<user home>/iC/Generic GPIB Instruments/), and the

file name must contain ‘.GPIBinstrument’ to be recognized by iC. If the file name matches

the name of an existing instrument (e.g. Agilent 4155.GPIBinstrument), the generically

defined commands are added to the existing commands of that instrument. All generic

GPIB instrument definitions are read when iC starts, which makes it very easy to write new

“instrument drivers” or extend existing ones without any Java programming.

Listing 4: Example for a generic definition of script-commands for a SRS SR810 Lock-In am-

plifier. These definitions are stored in a text file named ‘SRS SR810.GPIBinstrument.txt’ and

automatically recognized by iC at start-up.

1 // (1) (2) (3) (4)

2 setAUX | AUXV %d,%f | AUX channel | Voltage

3 getAUX | AUXV? %d | AUX channel {can be 1..4} [1 ,4] (1)

9

4 saveIDN | *IDN? | File Extension

5 // (5)

IV. SUMMARY

Instrument Control (iC) is an easy to use open-source software to automate test equip-

ment which uses intuitive script-commands stored in a conventional text file to quickly adapt

to various measurement needs. It is very easy to extend the functionality of iC by either im-

plementing new Java methods in a driver-class or by defining generic instrument definitions

in a text file. Instrument Control works with GPIB controllers of major vendors on various

operating systems, and it is prepared to support other communication protocols as well.

Instrument Control is made available as open source to follow a call to publish computer

code [7] and in the hope that it will serve the scientific community.

V. ACKNOWLEDGEMENTS

The author is grateful for the all-time support of D. J. Gundlach and C. A. Richter.

Special thanks to Jason Campbell for his idea for generic instruments. Financial support

from the Swiss National Science Foundation and from NIST is greatly appreciated.

[1] K. P. Pernstich, Instrument Control (iC), URL http://kenai.com/projects/icontrol.

[2] IEC 60488-2 First edition 2004-05; IEEE 488.2 pp. 1–256 (2004), URL http://ieeexplore.

ieee.org/servlet/opac?punumber=9359.

[3] Java Native Access (JNA), URL http://jna.java.net.

[4] K. P. Pernstich, Instrument Control (iC) – javadoc, URL http://icontrol.kenai.com.

[5] JFreeChart, URL http://www.jfree.org/jfreechart.

[6] Apache Commons Math, URL http://commons.apache.org/math.

[7] N. Barnes, Nature 467, 753 (2010).

[8] Certain commercial equipment, instruments, or materials are identified in this paper to foster

understanding. Such identification does not imply recommendation or endorsement by the Na-

10

tional Institute of Standards and Technology, nor does it imply that the materials or equipment

identified are necessarily the best available for the purpose.

[9] The Instrument Control software is an experimental system. Neither NIST, nor the Swiss

National Science Foundation nor the author assumes any responsibility whatsoever for its use

by other parties, and makes no guarantees, expressed or implied, about its quality, reliability,

or any other characteristic.

11

