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Introduction
Oxidative stress that generates oxygen-derived species has been 

implicated in the pathogenesis of a wide variety of disease processes 
including carcinogenesis and aging [1,2]. Oxygen-derived species 
including free radicals, most notably the highly reactive hydroxyl 
radical (●OH) cause oxidatively induced damage to DNA in living 
aerobic organisms. These species are formed by normal cellular 
metabolism and by exogenous sources such as ionizing radiations, 
UV radiation, redox-cycling drugs and carcinogenic compounds [3]. 
Hydroxyl radical reacts with DNA constituents at or near diffusion-
controlled rates, causing damage to the heterocyclic bases and the sugar 
moiety by a variety of mechanisms. In addition, ionizing radiation-
generated H atom (H●), also a free radical, and hydrated electron (e-

aq) 
add to double bonds of DNA bases, leading to modifications [4]. DNA 
damage is encountered by cellular repair systems and can be repaired 
by a number of repair mechanisms [2]. If repair systems of living cells 
fail, oxidatively induced DNA damage may lead to mutagenesis [1,2,5], 
and may thus be a significant source of genomic instability, a hallmark 
of human cancers [6-8]. Experimental and epidemiological evidence 
suggests that this type of DNA damage may be a major contributor to 
human cancer [7].

Mechanisms of oxidatively induced DNA damage 

Hydroxyl radical reacts with DNA constituents by addition and 
abstraction. It adds to double bonds of heterocyclic DNA bases at 
diffusion-controlled rates with rate constants varying from 4.5 × 109 
M-1 s-1 to 9 × 109 M-1 s-1, and abstracts an H atom from the methyl 
group of thymine and from each of the C–H bonds of 2’-deoxyribose 
with rate constants of approximately 2 × 109 M-1 s-1 [1,4]. Ionizing 
radiation-generated e−

aq reacts with DNA bases at diffusion-controlled 
rates with rate constants varying from 0.9 × 1010 M-1 s-1 to 1.7 × 1010 M-1 

s-1, whereas the rates of H● reactions are lower and amount to 1-5 × 
108 M-1 s-1. Because of its electrophilic nature, ●OH preferentially adds 
to the site with the highest electron density. In the case of guanine, 
addition of ●OH to the C4-, C-5 and C-8 positions yields C4-OH–, 
C5-OH– and C8-OH–adduct radicals [9,10]. Adenine undergoes 
analogous reactions, yielding at least C4-OH– and C8-OH–adduct 
radicals [11]. Dehydration of C4-OH– and C5-OH–adduct radicals 
of adenine and guanine yields purine(–H)● radicals, which are 
then reduced and protonated to reconstitute adenine and guanine 
[1,10,12]. C8-OH–adduct radicals of purines undergo one-electron 

oxidation and one-electron reduction to give rise to 8-hydroxypurines 
[8-hydroxyadenine (8-OH-Ade) and 8-hydroxyguanine (8-OH-Gua)] 
and formamidopyrimidines [4,6-diamino-5-formamidopyrimidine 
(FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine 
(FapyGua)], respectively. Both types of products are formed in the 
absence and presence of oxygen, albeit with different yields. Reducing 
agents favor the formation of formamidopyrimidines, whereas 
8-hydroxypurines are preferentially produced by oxidizing agents [1]. 

Hydroxyl radical reacts with cytosine and thymine by addition to 
C5– and C6–positions yielding C5-OH– and C6-OH–adduct radicals, 
respectively, and by abstraction of an H● from the methyl group of 
thymine generating an allyl radical. C5-OH– and C6-OH–adduct 
radicals are oxidized followed by addition of water and subsequent 
deprotonation to yield cytosine glycol (Cyt glycol) and thymine 
glycol (Thy glycol) [1]. The oxidation of the allyl radical of thymine 
yields 5-(hydroxymethyl)uracil and 5-formyluracil. The type of the 
products and their yields vary depending on the absence and presence 
of oxygen that reacts with free radicals at diffusion-controlled rates 
to give peroxyl radicals. Depending on reaction conditions, cytosine 
products can dehydrate and deaminate, giving rise to products such 
as 5-hydroxycytosine (5-OH-Cyt), uracil glycol (Ura glycol) and 
5-hydroxyuracil (5-OH-Ura) [13]. The formation of the products 
of DNA bases has been extensively studied in the past. It is beyond 
the scope of this paper to review all possible reactions. The reader is 
referred to extensive review articles published previously [1,4,14]. 
Clustered damage also occurs in DNA by oxidatively induced damage 
[15-18].

Figure 1 illustrates the structures of the major products of the DNA 
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Figure 1: Structures of major oxidatively induced DNA base lesions and a thymine-tyrosine cross-link.
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bases that have been identified in DNA in vitro and in vivo. 

The sugar moiety of DNA undergoes reactions with ●OH by 
abstraction of an H● from each of the C-atoms, leading to five different 
C-centered radicals. Further reactions of these 2’-deoxyribose radicals 
yield a number of sugar products, strand breaks and base-free sites 
in DNA by a variety of mechanisms [1,4]. Sugar products are either 
released from DNA or constitute the end groups of broken strands 
or remain within DNA with both phosphate linkages being intact. 
Figure 2 shows the structures of the products of the sugar moiety. One 
unique reaction of the 2’-deoxyribose radicals in purine nucleosides 
is the attack of the C5’-centered sugar radical at the C8-position of 
the purine ring within the same nucleoside in the absence of oxygen 
leading to C5’–C8-intramolecular cyclization [19]. The rate constants 
for the intramolecular cyclization amounts to 1.6 × 105 s–1 and ~1 × 106 
s–1 for dA and dG, respectively [20,21]. Subsequent oxidation of the 
N-centered radical leads to 8,5’-Cyclopurine-2’- deoxyadenosine (cdA) 
from 2’-deoxyadenosine and 8,5’-Cyclopurine-2’-deoxyguanosine 
(cdG) from 2’-deoxyguanosine. Both R- and S-diastereomers of each 
compound are formed. Oxygen inhibits the intramolecular cyclization 
[22], because it reacts with the C5’-centered radical of the sugar moiety 
at a near diffusion-controlled reaction with a rate constant of ~1.9 × 
109 M–1 s–1 [20]. 8,5’-Cyclopurine-2’-deoxynucleosides represent a 
concomitant damage to both the base and sugar moieties of the same 
nucleoside, and thus, are regarded as tandem lesions in DNA. Another 
unique property of cdA and cdG is that they cause an unusual puckering 
of the sugar moiety leading to distortion of DNA helix [23,24]. The 

reaction mechanisms and formation of these compounds in vitro and 
in vivo has extensively been reviewed [25].

In addition, ●OH reactions with DNA and proteins in chromatin 
form covalent DNA-protein cross-links by different types of 
mechanisms. Thus, a thymine-tyrosine cross-link has been identified 
in mammalian chromatin in vitro and in vivo by exposure to free 
radical-generating agents such as ionizing radiation, H2O2, metal ions 
and carcinogenic compounds [26-28]. Other types of DNA protein 
cross-links have also been identified in mammalian chromatin in 
vitro. Figure 1 illustrates the structure of the thymine-tyrosine cross-
link. DNA damage products can be measured in DNA by different 
analytical techniques. Mass spectrometric techniques are the most used 
ones that provide positive identification and accurate quantification of 
DNA products. This field has extensively been reviewed in the past by a 
number of authors [see, e.g., [14,29]].

In the past two decades, numerous studies have shown elevated 
levels of aforementioned DNA base lesions in precancerous and 
cancerous tissues [30-41], strongly implicating oxidatively induced 
DNA damage in the etiology of cancer. As a result, oxidatively induced 
DNA base lesions have been suggested as potential sentinels for 
cancer risk assessment and therapy monitoring. The elevated levels 
of DNA lesions do not necessarily indicate that such DNA damage 
is responsible for carcinogenic events. However, most of these DNA 
lesions are strongly mutagenic and may thus be a major contributor to 
carcinogenesis, as will be discussed below.

~

~
~~ ~

~

Figure 2: Structures of oxidatively induced lesions of the 2’-deoxyribose moiety of DNA.
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Protection of the genomic stability

DNA damage ultimately causes 80 to 90% of human cancers [42]. 
The genomic instability caused by DNA damage is a hallmark of cancer 
[8,43]. Living organisms evolved to possess elaborate mechanisms to 
repair DNA damage to protect the genome from DNA damage for 
survival. DNA repair is essential for the maintenance of the genomic 
stability and prevention of disease processes including carcinogenesis 
[2,44]. As outlined above, a plethora of products are formed in DNA 
in vivo by reactions of ●OH and other free radicals. Failure to repair 
such DNA lesions may lead to mutagenesis, cytotoxicity, cell death 
and consequently to disease processes such as carcinogenesis and 
aging. Oxidatively induced DNA lesions are removed from DNA by 
two major mechanisms, base-excision repair (BER) and nucleotide-
excision repair (NER) [2]. Both mechanisms involve multiple steps 
and enzymes to remove the lesions and subsequently restore the 
DNA structure. In BER, the enzymes known as DNA glycosylases 
remove DNA lesions by hydrolyzing the N-glycosidic bond between 
the modified base and the sugar moiety in the first step of this repair 
pathway, leaving behind an apurinic or apyrimidinic site (AP-site). 
Some DNA glycosylases are mono-functional and remove the lesion 
only. Others are also endowed with an associated AP-lyase activity 
that hydrolyzes the 3′-phosphodiester bond of the AP site by a β- or 
β-δ-elimination mechanism generating a 3′ α,β-unsaturated aldehyde 
and 5′-phosphate products, and thus strand breaks [2]. BER is highly 
conserved from bacteria to humans and is a multiprotein pathway, 
which is different from NER because of the action of diverse DNA 
glycosylases rather than a multiprotein complex. BER is sub-divided 
into two pathways, short-patch and long-patch pathways. A bi-
functional glycosylase predominantly initiates short-patch BER and a 
mono-functional glycosylase either pathway [45]. The removal of the 
lesion by a glycosylase is followed by the action of AP-endonucleases, 
DNA polymerases and DNA ligases that process the AP-sites to fully 
repair DNA. In the past three decades, numerous prokaryotic and 
eukaryotic DNA glycosylases have been isolated and purified, and 
their substrate specificities and excision kinetics have been determined 
(reviewed in [46]). 

DNA glycosylases are generally divided into two families on the 
basis of structure and sequence homology, the Fpg/Nei family and 
the Nth superfamily [47,48]. The Fpg/Nei family includes Escherichia 
coli formamidopyrimidine DNA glycosylase (Fpg, also called MutM), 
which specifically excises FapyAde, FapyGua and 8-OH-Gua from 
DNA containing multiple lesions [46,49], and E. coli endonuclease 
VIII (Nei), which is specific for the removal of pyrimidine lesions 
and FapyAde [46]. Another major DNA glycosylase of E. coli, 
endonuclease III (Nth) belongs to the Nth superfamily and possesses 
an overlapping substrate specificity with Nei, removing pyrimidine 
lesions and FapyAde [46]. In eukaryotes, three Fpg/Nei homologs, 
NEIL1, NEIL2 and NEIL3 have been discovered [50-53]. NEIL1 and 
NEIL3 specifically remove FapyAde and FapyGua from DNA and also 
some pyrimidine lesions to a lesser extent; however, they exhibit no 
activity for 8-OH-Gua [50,54-56]. Figure 3 illustrates a comparison 
of the substrate specificities of mouse NEIL1 and NEIL3 (glycosylase 
domain) with those of some E.coli glycosylases. NEIL2 exhibits no 
significant sequence homology to NEIL1 and is independent of cell 
cycle expression [52,57]. This enzyme possesses a unique preference 
for excision from DNA bubbles generated during transcription and/
or replication, and preferentially excises 5-OH-Ura with some lower 
activity for 5-OH-Cyt and 5,6-dihydrouracil [52]. However, excision 
of any lesion by NEIL2 from DNA containing multiple lesions has not 
yet been reported. The Nth superfamily contains 8-hydroxyguanine-

DNA glycosylase (OGG1) in eukaryotes, which is a functional homolog 
of Fpg, and exhibits a strong specificity for excision of FapyGua and 
8-OH-Gua, but not FapyAde, unlike Fpg and NEIL1 [58,59]. Different 
substrate specificities of NEIL1 (mouse and human), E. coli Fpg and 
human OGG1 for purine lesions are clearly demonstrated in Figure 4.

NER is a major versatile repair mechanism for removal of bulky 
DNA-distorting lesions from DNA such as cyclobutane pyrimidine 
dimers, benzo[a]pyrene-guanine adducts and guanine-cisplatin 
adducts [60,61]. NER consists of global genome repair, which is 
responsible for the repair of the entire genome, and transcription-
coupled repair, which preferentially repairs transcribing DNA strands 
[62-64]. Several syndromes are associated with defects in NER. For 
example, NER-defective xeroderma pigmentosum exhibits dramatic 
increase in sun-induced skin cancer. In prokaryotes and eukaryotes, 
an excinuclease, which is a multisubunit enzyme system, makes dual 
incisions in the DNA strand to remove an oligodeoxynucleotide 
containing the lesion. This is followed by the action of polymerases 
to fill the resulting gap and ligation by ligases to complete the repair. 
The removed oligodeoxynucleotide contains 12-13 deoxynucleotides 
in prokaryotes and 24-32 deoxynucleotides in eukaryotes [60,65]. 
Human excinuclease is also involved in the repair of other lesions 
that do not distort DNA helix such as AP-sites, methylated bases and 
mismatches [66]. Repair by NER of oxidatively induced lesions Thy 
glycol and 8-OH-Gua has been reported [67,68]. 8,5’-Cyclopurine-2’-
deoxynucleosides are repaired by NER only, because the 8,5’-covalent 
bond in these molecules prevents their removal by DNA glycosylases 
[69-72].

Mismatch repair (MMR) is another major mechanism involved in 
the removal of nucleotides that are incorrectly paired with a correct 
nucleotide on the opposite DNA strand during replication [2]. In the 
case of oxidatively induced DNA damage, 8-OH-Gua mispairs with 
Ade during replication, forming the Ade●8-OH-Gua mismatch. In 
E.coli, Ade is removed from this mismatch by the DNA glycosylase 
MutY, facilitating the pairing of 8-OH-Gua with Cyt, which is then 
repaired by BER [73]. The human homolog of this enzyme MUTYH 
has been identified [74]. Both enzymes belong to the Nth superfamily. 
MUTYH is targeted to both the nucleus and the mitochondrion [73,75-
78]. MUTYH also removes 2-OH-Ade from opposite all four intact 
DNA bases [78]. There is a compelling amount of data supporting 
the evidence that inherited mutations in the mutyh gene predispose 
individuals to colorectal cancer and somatic G→T mutations [73,79-
82]. This indicates the importance of MUTYH in preventing human 
carcinogenesis. No other DNA base lesions in mismatches have been 
found to be substrates of MUTYH. FapyGua, which is another highly 

E. coli Fpg E. coli NthE. coli Nei mNEIL1 MmuNEIL3
Δ324

5-OH-5-MeHyd
5-OH-Ura
5-OH-Cyt
Thy glycol
FapyAde
8-OH-Ade
FapyGua
8-OH-Gua

Figure 3: Comparison of the substrate specificities of E. coli DNA glycosylases 
with those of mouse NEIL1 and NEIL3. The normalized levels of excised 
lesions are shown (data from ref. [56]).
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mutagenic Gua lesion and gives rise to G→T mutations (see above) 
associated with MUTYH and colorectal cancer, should be investigated 
for its potential to be a substrate of MUTYH and its role in colorectal 
cancer.

Repair in the nucleotide pool also occurs, hydrolyzing oxidized 
2’-deoxynucleoside triphosphates to monosphates thus functionally 
eliminating them before they can be inserted into DNA by DNA 
polymerases [83-85]. The MutT protein of E. coli hydrolyzes 8-OH-
dGTP to 8-OH-dGMP and prevent its incorporation into DNA [83]. 
8-OH-dGMP cannot be rephosphorylated by guanylate kinase. A 
mammalian homolog of this enzyme with the same function has also 
been discovered and named MTH1 protein [84,86]. Human MTH1 and 
E. coli MutT possess some sequence homology and similar molecular 
mass [87]. Mth1–/– mice have been found to be prone to spontaneous 
carcinogenesis with many tumors found in lungs and livers [87,88]. 
MTH1 also hydrolyzes 8-OH-dATP and 2-OH-dATP [89], pointing 
to an important role of human MTH1 protein in prevention of 
mutagenesis and consequently carcinogenesis. Another type of 
oxidatively induced damage to DNA is DNA single- and double-strand 
breaks, which present a threat to the genomic integrity. Single strand 
breaks are repaired in a fashion similar to that discussed in the case of 
BER. However, repair of double-strand breaks is more complex and 
occurs by either homologous recombination or non-homologous end-
joining mechanisms [90,91].

DNA repair and cancer

Unrepaired and accumulated DNA lesions may have detrimental 
consequences in living organisms. Resulting increase in mutation 
rate, i.e., mutator phenotype, can lead to increased genetic instability, 
which is a hallmark of cancer [6,8,43]. Genetic instability may affect 

gene expressions involved in many cellular processes such as DNA 
replication, DNA repair, apoptosis, etc. [92]. Single GC→AT transitions 
are the most frequent mutations that accumulate in human tumors 
[93]. 60% of cancer cell lines have somatic mutations in DNA repair 
genes (for example, see http://www.sanger.ac.uk/genetics/CGP). 
Germline mutations and polymorphisms in DNA repair genes are also 
linked to predisposition to cancer [2,8,43,44,94-96]. Thus, DNA repair 
plays a major role in carcinogenesis and many other disease processes. 
A variety of cancers are associated with defects in DNA repair [8,92,94-
102]. Numerous studies demonstrated an association of OGG1-Cys326, 
a polymorphic form of OGG1 with the risk of esophageal, colon, 
orolaryngeal, lung, gastric, cervical, gallbladder, head, neck, kidney and 
bladder cancers [103-118]. Mutant forms OGG1-His154 and OGG1-
Gln46 have been discovered in a human gastric cancer cell line and 
human kidney tumors, respectively [104,119]. Moreover, low OGG1 
activity has been shown to constitute a risk factor in lung, head and 
neck cancers [120-124]. It should be pointed out that OGG1-Cys326, 
OGG1-His154 and OGG1-Gln46 exhibit lower activity for the excision of 
FapyGua and 8-OH-Gua from DNA than wild type OGG1 [58,59]. This 
fact may indicate a role for these mutagenic lesions in carcinogenesis.

Mammalian NEIL1 has been isolated and characterized by a 
number of laboratories [50,51,53-55,57,125-131]. Activation of NEIL1 
depends on cell cycle. NEIL1 is expressed predominantly during the 
S-phase and thus likely to be associated with replication-associated 
and/or transcription-coupled repair [50,132,133]. Similar to E. coli Nei 
and Fpg, this enzyme contains a “zinc-less finger” motif [127]. Human 
NEIL1 and mouse NEIL1 possess identical substrate specificities and 
efficiently excise FapyAde and FapyGua from DNA containing multiple 
lesions with somewhat reduced activity for pyrimidine lesions and with 
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Figure 4: Comparison of the substrate specificities of E. coli Fpg, mouse NEIL1 and human OGG1. The uncertainties are standard deviations (data from refs. 
[49,54,58]).
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no activity for 8-OH-Gua unlike Fpg and OGG1 [50,54,55,131]. NEIL1 
is located to both the nucleus and mitochondrion [129], suggesting 
the involvement of this enzyme in the overall maintenance of the 
genomic integrity. Four polymorphic variants of NEIL1, NEIL1-Cys82, 
NEIL1-Asp83, NEIL1-Asn252 and NEIL1-Arg136 have been discovered in 
humans [55]. NEIL1-Cys82 and NEIL1-Asn252 exhibited near wild type 
glycosylase activity for FapyAde and FapyGua. In contrast, NEIL1-
Asp83 completely lacked this activity and also failed to catalyze the wild 
type β,δ-elimination reaction, only exhibiting β-elimination. These 
findings suggest that individuals with neil1 mutations may be at risk 
for disease development. Recent work pointed to a significant role 
of NEIL1 in the prevention of disease processes. Decreased levels of 
NEIL1 led to accumulation of oxidatively induced DNA damage and 
enhanced spontaneous mutations in human and Chinese hamster 

cells [133]. Downregulation of NEIL1 expression by siRNA sensitized 
mouse embryonic stem cells to killing effects of ionizing radiation [126]. 
Oxidative stress increased neil1 mRNA levels in human carcinoma cells 
[134]. There is evidence for a correlation of mutations in the neil1 gene 
with human gastric cancer [135]. In the absence of exogenous oxidative 
stress, neil1–/– mice exhibited increased levels of mitochondrial DNA 
damage and deletions, and symptoms of diseases associated with the 
metabolic syndrome, suggesting a significant role for NEIL1 in disease 
prevention [136]. In a subsequent study, neil1–/– mice have been shown 
to accumulate greater levels of FapyAde and FapyGua, but not 8-OH-
Gua, in their livers, kidneys and brains than control animals [137]. 
Figure 5 illustrates the levels of FapyAde, FapyGua and 8-OH-Gua 
in livers and kidneys of control and neil1–/– mice. This finding is on a 
par with the substrate specificity of mouse NEIL1 and human NEIL1, 
which was previously observed in vitro using DNA containing multiple 
lesions, as discussed above. Neil1–/– mice developed pulmonary and 
hepatocellular tumors in the second half of their lives [137]. Additional 
knockout of the nth1 gene in these animals significantly increased the 
tumor incidence, indicating an important role for NEIL1 and NTH1 
in cancer prevention. Figure 6 illustrates histological sections of liver 
tumors, pre-malignant livers and lung tumors of neil1–/–, nth1–/– and 
neil1–/–/nth1–/– mice. The pulmonary tumors contained activating 
GGT→GAT transitions in codon 12 of K-ras of their DNA. This is in 
contrast to the GGT→GTT transversions of codon 12 in K-ras found 
in the pulmonary tumors of mice lacking OGG1 and MUTY [138]. 
The accumulation of FapyAde and FapyGua in neil1–/– mice strongly 
suggests a role for these compounds in carcinogenesis, which are 
mutagenic as discussed below.

An additional function of NEIL1 has recently been discovered. 
Significant accumulation of R-cdA and S-cdA has been observed in 
livers of neil1–/– mice, but not in ogg1–/– mice [139]. Figure 7A illustrates 
the levels of S-cdA in control, neil1–/– and ogg1–/– mice. Since R-cdA 
and S-cdA are repaired by NER, not by BER, as discussed above, this 
finding strongly suggests that NEIL1 plays a role in NER in addition 
to its role as a DNA glycosylase in BER. This work also showed the 
accumulation of FapyGua, but no accumulation of 8-OH-Gua, in livers 
of neil1–/– mice; however, ogg1–/– mice accumulated 8-OH-Gua along 
with FapyGua [Figure 7B,C]. These findings are on a par with those 
reported previously [137], and with the substrate specificity of NEIL1 
[50,54,55,131]. Accumulation of 8-OH-Gua and FapyGua in livers of 
ogg1–/– mice is in agreement with the substrate specificity of OGG1 [58]. 
Mechanism of action of NEIL1 in NER is not known. In this context, 
Cockayne syndrome B protein has been shown to stimulate the repair 
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Figure 6: Histological sections of liver tumors, pre-malignant livers and lung 
tumors of knock-out mice. A: Nodular hyperplasia of hepatocytes in neil1–/– 
mice; B: hepatocellular carcinoma in nth1–/– mice; C: Severe hepatocellular 
dysplasia in neil1–/–/nth1–/– mice; D: lung tumors in neil1–/–/nth1–/– mice (from 
ref. [137]).
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Figure 7: Levels of S-cdA (A), FapyGua (B) and 8-OH-Gua (C) in livers of 
control, neil1–/– and ogg1–/– mice. Stars denote statistical significance (p<0.05). 
The uncertainties are standard deviations (from ref. [139]).
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of FapyAde and FapyGua by NEIL1 and play a role in NER of S-cdA 
[131,140]. This indicates that NEIL1 may interact with other proteins 
of the NER complex. Future studies may elucidate the mechanism of 
action of NEIL1 in NER.

Defective expression of DNA repair genes may affect DNA repair 
status of tumors and thus cause therapy resistance, and affect the 
outcome of cancer and survival of patients [141-143]. DNA repair may 
be increased in malignant tumors as recent evidence suggests. Nonsmall-
cell lung cancer has been shown to exhibit resistance to chemotherapy, 
which is associated with elevated DNA repair in tumors [141,143]. 
Greater overexpression of ogg1 mRNA for the excision of 8-OH-Gua 
has been observed in a number of lung cancer cell lines when compared 
to control lung cell lines [144]. Cancerous colon tissues exhibited lower 
levels of ethano-DNA adducts than non-cancerous tissues of colorectal 
cancer patients, indicating enhanced DNA repair in cancerous tissues 
[145,146]. During evolution of cancer, additional mutations resulting 
in an increase in genetic instability may provide cancerous cells with 
survival advantage. In contrast, increased mutations may also cause cell 
death late in tumor evolution. However, tumors that overexpress DNA 
repair genes may be favored by natural selection to become capable of 
surviving. With time, tumors may develop greater DNA repair capacity 
than non-cancerous tissues. Increased DNA repair in cancerous tissues 
may cause resistance to therapeutic agents and thus affect patient 
survival. These facts suggest that DNA repair capacity of tumors would 
be an essential factor to be determined prior to treatment. Thus far, 
accumulated evidence points to DNA repair proteins as important 
predictive, early detection, prognostic and therapeutic factors in cancer 
[95]. In this context, DNA repair pathways are promising drug targets 
for cancer treatment. DNA repair inhibitors are being developed to 
reduce DNA repair in cancerous tissues and thus increase the efficacy 
of therapy [95,96]. Selective development of DNA repair inhibitors for 
combination therapy or as single agents for monotherapy targeting 
both BER and NER pathways will be of outmost importance for future 
advances in cancer therapy.

Biological effects of oxidatively induced DNA damage

Among the oxidatively induced DNA lesions, 8-OH-Gua has 
been investigated extensively for more than 25 years, perhaps at 
the expense of other lesions that may be equally important. 8-OH-
Gua has been found to be strongly mutagenic and mispair with Ade 
leading to G→T transversions [147-150], which are the second most 
common somatic mutations found in human cancers, with 14.6% 
of all mutations in the tumor suppressor gene TP53 following C→T 
transition mutations [44.2%] [151]. However, this does not mean 
that all G→T mutations result from 8-OH-Gua. Other Gua lesions 
may lead to this type of mutations such as FapyGua, another major 
oxidatively induced product of guanine. Albeit to a lesser extent, 
8-OH-Ade is premutagenic and induces A→G transitions and A→C 
transversions in mammalian cells [152-154]. The other major purine 
lesions FapyAde and FapyGua also posses mutagenic properties. Early 
studies suggested that these lesions were lethal rather than mutagenic. 
This was based on the inference with lethal lesions N7-Me-FapyAde 
and N7-Me-FapyGua, which are alkylation products of Ade and Gua, 
respectively, [155-159], unlike FapyAde and FapyGua, the formation 
mechanism of which was discussed above. Recently, base-pairing 
properties and biological effects of FapyAde and FapyGua have 
definitively been established using synthetic oligodeoxynucleotides 
containing these compounds at a defined position. FapyAde pairs 
with Ade leading to A→T transversions and may be more mutagenic 
than 8-OH-Ade [160,161]. Similarly, Ade is misincorporated opposite 

FapyGua, resulting in G→T transversions [162]. This is the same 
mutation caused by 8-OH-Gua, as discussed above. FapyGua has been 
found to be 25-35% more mutagenic than 8-OH-Gua in simian kidney 
cells (COS-7) [161], although it is weakly mutagenic in E. coli, when 
bypassed in different sequence contexts [163]. These findings clearly 
proved, in contrast to the common assumption in the literature, that 
the well known G→T mutations may not be exclusively due to 8-OH-
Gua as a result of oxidatively induced damage to DNA, and that the 
biological effects of FapyAde and FapyGua completely differ from 
those of N7-Me-FapyAde and N7-Me-FapyGua. 2-Hydroxyadenine, 
which is a minor product of Ade [164], is mutagenic in prokaryotic and 
eukaryotic cells, and pairs with Cyt leading to A→G transitions [165]. 
Its pairing with Ade has also been reported [166].

The major oxidatively induced product of Cyt is Cyt glycol, which 
yields 5-OH-Cyt by dehydration, Ura glycol by deamination and 
5-OH-Ura by deamination and dehydration [13]. All these compounds 
may simultaneously exist in DNA [167]. Ura glycol and 5-OH-Ura 
pair with Ade and efficiently induce C→T transitions [5,168-170]. This 
is the most frequently observed mutation resulting from oxidatively 
induced DNA damage [171,172]. 5-OH-Cyt is less mutagenic than 
Ura glycol and 5-OH-Ura and leads to C→T transitions as well as 
C→G transversions[169,172,173]. Tandem double CC→TT mutations 
have also been observed due to oxidatively induced DNA damage; 
however, the identity of the Cyt product(s) leading to these mutations 
is not known [174]. Thy glycol, which is the most extensively studied 
pyrimidine lesion, pairs with Ade and is poorly mutagenic [5,175,176]. 
However, when inserted into a bypass sequence, a low level of pairing 
with Gua also occurs giving rise to T→C transitions [177]. Thy glycol is 
a strong block to most DNA polymerases in vitro, and thus a strongly 
lethal lesion in vivo [5,175,176,178-180]. Other pyrimidine lesions 
listed in Figure 1 are either weakly mutagenic or lethal lesions [1,5].

Biological consequences of 8,5′-cyclopurine-2′-deoxynucleosides 
have been investigated in the past decade. S-cdA is a strong block to 
DNA polymerases and reduces transcription by blocking transcription 
binding factor, reducing gene expression [71,72,181,182]. Furthermore, 
S-cdA causes transcriptional mutagenesis [183], which occurs when 
prokaryotic RNA polymerases bypass non-bulky DNA lesions such as 
modified DNA bases [184]. Mutant transcripts resulting from bypass 
of S-cdA by RNA polymerase II in vivo have been characterized [183]. 
Bypass of S-cdA by RNA polymerase II misincorporates an adenosine 
opposite to the next nucleotide 5’- to S-cdA and causes multiple 
nucleotide deletions [183]. S-cdA may give rise to neuronal death in a 
number of diseases such as NER-defective xeroderma pigmentosum by 
blocking neuronal gene expression [185]. A more recent work showed 
that S-cdG is a strong block to replication and a highly mutagenic 
lesion leading to G→A transitions with G→T transversions to a lesser 
extent, and is inefficiently repaired in E. coli [186]. Elevated levels of 
8,5′-cyclopurine-2′-deoxynucleosides in genomic DNA in vivo in a 
number of diseases including cancer suggest that these lesions may play 
a role in carcinogenesis and other disease processes [25,38,187-190].

Oxidatively induced DNA lesions and DNA repair proteins 
as biomarkers

The findings reviewed above suggest that DNA lesions and DNA 
repair proteins may serve as potential biomarkers for cancer risk 
assessment and monitoring of the therapy. Noninvasive biomarkers 
such as those found in human urine have been extensively investigated. 
DNA lesions excreted into urine may be used as tumor markers for 
diagnosis, early detection and therapy monitoring, as well as in 
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population-based studies such as epidemiological investigations. In 
terms of oxidatively induced DNA damage, early studies suggested two 
oxidatively modified DNA nucleosides, 8-hydroxy-2’-deoxyguanosine 
(8-OH-dG) and 2’-deoxythymidine glycol as suitable biological 
markers [191,192]. Since then, 8-OH-dG and its free base 8-OH-Gua 
in urine have been the mostly investigated lesions as biomarkers, 
albeit with some significant controversy in terms of the measurement 
by different analytical techniques between laboratories (reviewed in 
[193]). The source of these lesions in urine has also been debated for 
some time. In general, the possible sources of oxidatively induced 
DNA lesions have been considered to be diet, cell death/turnover and 
DNA repair [194]. Some recent work provided strong evidence that 
diet does not significantly contribute to the urinary levels of 8-OH-dG 
and 8-OH-Gua [195]. This may also be true for cell death [196,197]. 
BER is a likely source for the presence of 8-OH-Gua in urine [198], 
since this lesion is efficiently removed from DNA by OGG1 as was 
discussed above. However, this repair pathway cannot remove the 
nucleoside 8-OH-dG. It is not clear how DNA repair would remove 
this lesion. NER may excise 8-OH-dG and 2’-deoxythymidine glycol 
within an oligodeoxynucleotide as was discussed above. However, no 
oligodeoxynucleotides containing 8-OH-dG have been identified in 
human urine [196]. Further processing of such oligodeoxynucleotides 
by unknown mechanisms may yield 8-OH-dG. The nucleotide pool 
may also be a major source of 8-OH-dG in urine [199,200]. Whatever 
the source of 8-OH-dG or 8-OH-Gua is in human urine, these lesions 
appear to be potential biomarkers, especially for DNA repair activity 
in tumors. Other modified DNA bases such as 5-OH-Ura, 8-OH-Ade 
and FapyGua have also been identified in urine as potential biomarkers 
[201,202]; however, these lesions have thus far not received as much 
attention as 8-OH-dG or 8-OH-Gua. A more recent work discovered 
the presence of R-cdA and S-cdA as free nucleosides in human urine 
[203]. These lesions are subject to NER rather than BER (see above); 
therefore, their source in urine is likely to be NER. This suggests that 
R-cdA and S-cdA may serve as alternative well-suited biomarkers for 
cancer.

As was discussed above, DNA repair capacity is a risk factor for 
carcinogenesis. DNA repair pathways are promising drug targets and 
DNA repair inhibitors are being developed to inhibit the activity of 
DNA repair proteins in tumors to enhance the efficacy of cancer therapy 
[95,96]. All the accumulated evidence points to DNA repair proteins as 
early detection, prognostic and therapeutic biomarkers in cancer. For 
this purpose, the accurate measurement of these proteins in normal 
and cancerous human tissues will be of outmost importance. As a first 
step in this direction to positively identify and accurately quantify 
DNA repair proteins, we recently developed methodologies using 
mass spectrometric techniques with isotopically labeled analogues of 
these proteins as internal standards [204,205]. More efforts will have 
to be spent to assess DNA repair proteins as suitable biomarkers in 
cancer. In view of the important role of DNA repair in protection of 
the genomic stability, there is no doubt that these proteins will become 
powerful biomarkers not only for cancer, but also for other diseases.

Conclusions
Evidence accumulated over many years points to an important 

role of oxidatively induced DNA damage in the etiology of cancer. This 
type of damage occurs in living organisms endogenously due to oxygen 
metabolism and by a variety of exogenous sources. The existence of 
various repair mechanisms and repair proteins in vivo for the repair of 
oxidatively induced DNA lesions is a strong testament to the detrimental 

biological effects caused by these lesions in living organisms. Many of 
the lesions are strongly mutagenic leading to transition and transversion 
mutations that are commonly found in cancer. They also accumulate 
significantly in cancerous tissues when compared to normal tissues, 
possibly contributing to genomic instability and metastatic potential. 
Recent evidence suggests an increase of DNA repair in some types of 
tumors, which may cause resistance to therapy. There is evidence that 
defective DNA repair, and mutations and polymorphisms in DNA 
repair genes contribute to carcinogenesis. Oxidatively induced DNA 
lesions and DNA repair enzymes are potential cancer biomarkers.

DNA repair enzymes are emerging as important early detection, 
prognostic and therapeutic factors in cancer. DNA repair inhibitors 
are being developed to increase the efficacy of cancer therapy. More 
research in the field of oxidatively induced genomic DNA damage and 
its repair may lead to development of cancer biomarkers, DNA repair 
inhibitors and enhancement of our capabilities to understand and fight 
cancer.
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