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Abstract: We present a theoretical description of on- and off-resonance, 4 -
quasi-phasematched, second-harmonic generation (SHG) in microdisks 

made of GaAs or other materials possessing 4  symmetry, such as GaP or 
ZnSe. The theory describes the interplay between quasi-phasematching 
(QPM) and the cavity-resonance conditions. For optimal conversion, all 

waves should be resonant with the microdisk and should satisfy the 4 -QPM 
condition. We explore χ

(2)
 nonlinear mixing if one of the waves is not 

resonant with the microdisk cavity and calculate the second-harmonic 

conversion spectrum. We also describe perfectly destructive 4 -QPM where 
both the fundamental and second-harmonic are on-resonance with the cavity 
but SHG is suppressed. 

OCIS codes: (190.2620) Harmonic generation and mixing; (190.5970) 
Semiconductor nonlinear optics including MQW. 
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1. Introduction 

GaAs and other zincblende-structured crystals such as GaP and ZnSe are attractive nonlinear 
optical materials because of their large nonlinear coefficients and broad transmission ranges. 
These materials cannot be birefringently phasematched so other means of phasematching are 
required to achieve efficient nonlinear frequency conversion. Efficient conversion has been 
demonstrated in GaAs by quasi-phasematching (QPM) [1,2] using periodic domain inversions 
[3–5] and by Fresnel phasematching [6,7]. QPM in GaAs has also been shown using phase-
shifting mirrors [8]. 

Recently, 4 -quasi-phasematching ( 4 -QPM) in GaAs microdisks and microrings has been 

proposed [9–11]. 4 -QPM allows efficient χ
(2)

 nonlinear optical mixing of the whispering-

gallery modes of a GaAs microdisk without using external domain inversions. The 43m  

symmetry of zincblende semiconductors (such as GaAs, GaP and ZnSe) means that a 90° 
rotation about the <001> axis is equivalent to a domain inversion (see Figs. 1a and 1b). As 
waves propagate around a <001>-surface-normal microdisk, their crystal environment 
effectively experiences four 90° rotations, which is equivalent to four domain inversions due 

to the 4 -symmetry (Fig. 1c). The nonlinear tensor for 43m  materials dictates that one of the 

three interacting waves in the <001>-surface-normal microdisk must have TM polarization 
(electric field orthogonal to the disk) while the other two have TE polarization (electric field 
in the plane of the disk). The QPM effect can be seen by considering the interaction of the 

fields with the nonlinear tensor [9], as described for 43m crystals in Appendix A. In 

additional to microdisks and microrings, 4 -QPM can be obtained in other “bent” geometries 

such as square-shaped resonators [11] and curved waveguides [12]. 4 -QPM is also available 

in other crystals with 4 -symmetry such as those of the 42m  (KH2PO4, chalcopyrites, etc.), 

and 4  crystal classes [11]. 
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Fig. 1. Two views of the zincblende crystal structure with (a) inverted relative to (b). 4  
symmetry means that a 90° rotation combined with a crystal inversion reproduces the original 

crystal. Equivalently, a 90° rotation about the 4 axis is the same as a crystal inversion. (c) 
Waves propagating around a <001>-normal GaAs microdisk effectively experience four 90° 
rotations and hence, four domain inversions. 

The nonlinear conversion efficiency is also increased by the presence of the resonant 
cavity. External cavities have been used to enhance second-harmonic generation (SHG) in 
bulk crystals [13]. Resonantly enhanced nonlinear mixing can enable efficient optical-
frequency conversion in small volumes, which would be of interest for miniature integrated 
sources and generation of entangled photons [14]. Cavity-enhanced SHG has been 
demonstrated in microcavities including LiNbO3 whispering-gallery-mode resonators [15,16] 
and GaP photonic-crystal cavities [17]. In nonlinear microcavities where all the interacting 
waves are on-resonance, 100% conversion can be obtained theoretically with milliwatt-level 
pumping [18]. 

In this paper, we explore the interplay between cavity resonances and 4 -QPM in 
enhancing nonlinear-conversion efficiency in a GaAs microdisk. We describe on- and off-
resonance nonlinear-optical conversion. As an example, we consider SHG in a GaAs 
microdisk, but our results can be extended to three-frequency processes such as sum- and 

difference-frequency generation, and to other 4 -symmetry materials. We present a theoretical 

analysis in Section 2 of 4 -QPM in a traveling wave resonator. To maximize conversion, both 

fundamental and second-harmonic waves should be resonant with the microdisk and the 4 -
QPM condition should be satisfied. We investigate nonlinear conversion if one of the waves is 
not resonant with the microdisk cavity and calculate the conversion in these cases. We explore 
the effects of varying microdisk radius and temperature on the SH conversion spectrum in 
Section 3, which is important for experimental realization of SHG in a GaAs microdisk. In 
Section 4, we discuss interpretations of our results including analogies to Fresnel 

phasematching. We also describe perfectly destructive 4 -quasi-phasematching where both 
the fundamental and second-harmonic waves are on-resonance but SHG is suppressed. 

2. SHG conversion efficiency based on generalized waveguide-microresonator coupling 
theory 

In an air-clad GaAs microdisk with ẑ  surface-normal, SHG occurs for a TE-polarized 

fundamental (electric field in the plane of the disk, with magnetic field, f

z
H ) and a TM-

polarized second-harmonic (SH) (electric field orthogonal to the disk, SH

z
E ). With coordinates 

sketched in Fig. 2a, the fields can be represented by 
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Fig. 2. (a) Microdisk coordinate system. (b) Sketch of coupling between a fiber taper and a disk 
or ring resonator. ti and κi are the through- and cross-coupling coefficients, respectively; and i 
represents f or SH. 
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where Ai(θ,t) is the slowly varying amplitude at frequency ωi (the index i refers to the 
fundamental, f, or the second-harmonic, SH). In this section, Ai(θ,t) is normalized so that 
|Ai(θ,t)|

2
 = power. Ψi(r, z) is the mode profile, and mi is the azimuthal number of the mode, 

which is an integer for a resonant mode. The exp(-imiθ) factors describe the phase 

accumulated by the waves as they propagate around the disk, analogous to exp(-ikiℓ) terms 

found in linear propagation geometries. The change in the SH amplitude due to nonlinear 
mixing in the GaAs microdisk is described by [9,11] 

 ( )2 ( 2) ( 2) ,i m i mSH

f

A
A K e K eθ θ

θ
∆ + ∆ −

+ −

∂
= +

∂
  (2) 

where 2
SH f

m m m∆ = − , and K+  and K−  are the SHG coefficients. Details of the fields 

inside the microdisk and the derivation of Eq. (2) are discussed in Appendix A. If we assume 
the fundamental is undepleted (Af is constant), integrating Eq. (2) from θ = 0 to 2π yields 

 2(2 ) (0) ,
SH SH f

A A A Kπ − = ɶ   (3) 

where 

 ( )( 2) ( 2)
2 sinc[( 2) ] sinc[( 2) ] ,

i m i m
K K e m K e m

π ππ π π∆ + ∆ −
+ −= ∆ + + ∆ −ɶ   (4) 

and sinc(x) = sin(x)/x. Equation (3) describes the change in the amplitude of the second-
harmonic wave due to SHG and does not include loss. 

Let us consider coupling of the microdisk to a waveguide (Fig. 2b). Bn,i and Cn,i are the 
complex mode amplitudes normalized so that |Bn,i|

2
, |Cn,i|

2
 = power. We note that Bn,i and Cn,i 

differ from the slowly varying amplitudes Ai(θ, t) by phase terms. Following Ref [19], 
coupling between the resonator and waveguide (in the absence of reflections) is described by 

 
1, 1,

* *

2, 2,

.
i ii i

i ii i

C Bt

C Bt

κ
κ

    
=    −    

  (5) 

The coupler is taken to be lossless so that |κi|
2
 + |ti|

2
 = 1. 

Propagation of the fundamental around the ring produces loss, αf, and phase shift, φf, 

 
2, 2,

exp( ) .
f f f f

B i Cα φ=   (6) 
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At the SH wave, there is loss, phase shift and SHG gain. Equation (3) may be written as 

 
22,

2, 2, .
exp( )

SH

SH f

SH SH

B
C C K

iα φ
− = ɶ   (7) 

We assume the amplitude of the fundamental wave is constant (Af
2
 ≈|C2,f|

2
 ≈|B2,f|

2
). 

The quantity mi plays a role analogous to the wavevector ki in linear propagation 
geometries. Both describe the rate of phase accumulation due to propagation and, hence, the 
effective propagation constant inside the medium. However, mi is only well-defined at cavity-
resonance wavelengths. Inside the microdisk, it is reasonable to ask what the effective 
propagation constant is at a wavelength that does not fall at a cavity resonance. We can 
estimate this effective propagation constant by linearly interpolating between resonances of 

the same spatial-mode family and constructing a function '( )
i i

m λ . This continuous function 

describes the effective dispersion inside the microdisk. The phase shift from one round trip in 
the disk is 

 2 ' ,
i i

mφ π= −   (8) 

and the phase mismatch per round trip accumulated between the fundamental and SH waves 
is 

 2 2 .
SH f

mπ φ φ′− ∆ = −   (9) 

We can extend the description of SHG in a microdisk to include cases where the fundamental 

and/or SH waves are not resonant with the cavity by replacing m∆  by m′∆  in Eqs. (2) – (4). 

Using Eqs. (5) and (6), the circulating fundamental power is [19] 
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2 2
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and the transmitted power is 

 

2 2
2 2

1, 1,2 2
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f f f f f f
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where 

 exp( ) .
i i i

t t iψ= −   (12) 

We note that Eqs. (10) and (11) also describe the “passive” behavior of the resonator at the 
second-harmonic wavelength when the f subscripts are replaced by SH. 

For SHG in the microresonator, there is no incoming wave at the second-harmonic (B1,SH 
= 0) so that Eq. (5) becomes 

 
1, 2,

*

2, 2,
.

SH SH SH

SH SH SH

C B

C t B

κ=

=  
 (13) 

If we assume that the amplitude of the fundamental wave is unchanged (that is, αf ≈1 and 

|C2,f|
2
 ≈|B2,f|

2
), it follows from Eqs. (7) and (13) that the circulating second-harmonic power is 
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The transmitted SH power is 

 
2 2 2

1, 2, (1 | | ) .SH SH SHC B t= −   (15) 

The parameters αi and ti are related to the quality factors of the resonator. From Ref [19], 

the linewidths of the resonances are calculated by considering the shift in phase φi where the 
circulating power (Eq. (10)) is half of its peak value. The finesse at wave i, Fi, is the ratio 
between the phase shift between adjacent resonances, 2π, and the full-width at half maximum 
(FWHM) of the resonance. The finesse is also equal to the free spectral range (FSR) divided 

by the FWHM of the resonance. For a high-finesse resonator where , 1
i i

tα ≈ , the finesse is 

 
2

.
2 ( ) 1

i i FSR

i

i i i i FWHM

t
F

t

α δωπ
π

ψ φ α ω
= = =

∆ + − ∆
  (16) 

The quality factor, Qi, is ratio between the resonance frequency, ω0, and the linewidth, 
∆ωFWHM, and can be calculate from the finesse using 

 0 0 0 .
1

i i

i i

FWHM FSR i i FSR

t
Q F

t

αω ω ω
π

ω δω α δω
= = =
∆ −

  (17) 

The total (Qi), intrinsic ( 0

i
Q ) and coupling ( c

i
Q ) quality factors are related by 

 
0

1 1 1
,

c

i i i
Q Q Q

= +   (18) 

where 

 0

, ,

.
1 1

ii c

i i

i i i FSR i i i FSR

tc c
Q Q

f t f

α
π π

α λ δ λδ
= =

− −
                 (19) 

c is the speed of light, λi is the wavelength, and
,i FSR

fδ  is FSR in frequency units of wave i. 

3. On- and off-resonance second-harmonic generation in a GaAs microdisk 

Using Eqs. (14) and (15), we can understand SHG in a microdisk for the cases when both the 
fundamental and SH are resonant with the microdisk cavity, and for the cases when one or 

more of the waves is not resonant. We consider SHG with λf ≈2 µm in 161-nm thick GaAs 
microdisks where both fundamental and SH modes are the lowest-order vertical and lowest-
order radial modes. The disk thickness is chosen so that doubly resonant, quasi-phasematched 
SHG can be supported with disk radii near 2.6 µm. Throughout this section, we take the 

incident fundamental power (in the fiber waveguide) as 
2

1, 1
in

f fP B= = mW and 
0

f
Q  = 

c

f
Q  = 

0

SH
Q  = c

SH
Q  = 10000 , which corresponds to linewidths ∆λf = 2∆λSH = 0.4 nm. We also 
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assume the phase shifts from the coupler are ψf = ψSH = 0 (the main effects of non-zero 
coupler phase shifts are small wavelength shifts in the resonance locations). Values for K+ and 
K– are given in Table 1 of Appendix B. 

A GaAs disk with radius R = 2.609 µm has both the fundamental and SH waves on-
resonance at λf = 2λSH = 1998.7 nm with fundamental wave (mf = 13) TE-polarized and the SH 
wave (mSH = 28) TM-polarized (satisfying mSH – 2mf = 2). We used finite-element modeling 
software and GaAs dispersion data [20] to calculate resonance wavelengths for various values 

of mf and mSH, and linearly interpolated between resonances to calculate '( )
i

m λ  and the phase 

shifts, φi (Eq. (8)). Figure 3 shows the SH conversion efficiency, η = |C1,SH|
2
 /|B1,f|

2
, for this 

microdisk. 
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Fig. 3. SH conversion efficiency for various pumping wavelengths in a GaAs microdisk (R = 
2.609 µm, h = 161nm) that supports doubly resonant SHG at λf = 2λSH = 1998.7 nm (where mf = 
13, mSH = 28, ∆m = 2). The maximum conversion efficiency is η = 1.2% for 1 mW of incident 
fundamental power. The top inset shows locations of the fundamental and SH (2λSH) cavity 
resonances. 

A maximum conversion of η = 1.2% is obtained at a pumping wavelength of 1998.7 nm. 
At this wavelength, both the fundamental and SH waves are resonant with the microdisk and 
∆m = mSH – 2mf = 2. Figure 3 also shows the SH conversion efficiency at other wavelengths 
that do not necessarily correspond to cavity resonances. When the fundamental is on-
resonance but the SH is not, there is a local maximum in η, but its value is more than four 
orders of magnitude smaller than the maximum conversion found at 1998.7 nm. There are 
also local maxima when only the SH is on-resonance and the fundamental is not, but these 
peaks are even weaker than the fundamental-only peaks. The difference in relative peak sizes 
confirms that resonance-enhancement at the fundamental wave is a larger contributor to 
increased SHG than resonance-enhancement at the SH wave, which can also be seen in the 

expression for SHG calculated by coupled-mode theory (Eq. (62) in Appendix B) where out

SH
P  

is roughly proportional to 
2

)(
c c

SH f
Q Q . 

Another feature of Fig. 3 are the sharp dips in the SH conversion. These dips correspond 

to wavelengths where 0,m′∆ =  ±1, ±3, etc., and there is perfectly destructive 4 -QPM. These 

wavelengths need not correspond to cavity resonances; for instance, 0m′∆ =  occurs at λf = 

2093.7 nm in Fig. 3 where '
f

m  = 11.87 and '
SH

m  = 23.75. SHG is suppressed at these 

wavelengths in the same way that nonlinear conversion is suppressed in even-order QPM 
gratings having 50% duty cycle [2]. 
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Fig. 4. SH conversion efficiency for different pumping wavelengths in a GaAs microdisk (R = 

2.587 µm, h = 161nm). Near 1990 nm where ∆m’ ≈2, the fundamental and SH resonances do 

not overlap and are separated by λf – 2λSH = −5.4 nm. The maximum SH conversion occurs at a 
pumping wavelength of 1987.4 nm with η = 1.4 × 10-3% (Pf

in = 1 mW). The top inset shows 
locations of the fundamental and SH (2λSH) cavity resonances. 

Figure 4 plots the SH conversion for a slightly smaller GaAs microdisk (R = 2.587 µm, h 
= 161 nm) where the fundamental and SH resonances near 1990 nm do not overlap. For this 
disk, the mf = 13 fundamental resonance occurs at λf = 1987.4 nm and the mSH = 28 SH 
resonance occurs at 2λSH = 1992.8 nm such that |λf – 2λSH | = 5.4 nm. A maximum conversion 
of η = 1.4×10

-3
% is obtained at a pumping wavelength of 1987.4 nm (where only the 

fundamental is on-resonance and m′∆  = 2.24). As in Fig. 3, there are local maxima in η when 

either the fundamental or the SH are resonant with the microdisk cavity. SH conversion is 

maximized at 1987.4 nm since the value of m′∆ is close to 2, but conversion at this 

wavelength is only one or two orders of magnitude larger than other peaks. In contrast, the 
global maximum in conversion efficiency when the resonances overlap (Fig. 3) can be four or 
more orders of magnitude larger than other peaks. 

By increasing the microdisk radius to 2.643 µm, doubly resonant SHG can be achieved at 

a pumping wavelength of 2186.9 nm with ∆m = −2 (Fig. 5). At this wavelength, η = 0.29%. 
The difference in maximum η between this case and the R = 2.609 µm case is due to different 
values of K+ and K- (see Table 1 in Appendix B). Other peaks in SH conversion are produced 
at wavelengths where only the fundamental or only the SH wave is on-resonance. For 
instance, a local maximum occurs at λf = 2016.7 nm where the fundamental is on-resonance 

(mf = 13) while the SH is not. At this pumping wavelength, m′∆  = 1.61 and η = 6.5 × 10
-4

%. 

Figure 6 shows details of the SH conversion spectra for these three microdisk sizes in two 
different pumping-wavelength ranges. Figure 6a plots conversion efficiency near a pump 

wavelength of 2000 nm where m′∆ ≈2. For the R = 2.609 µm disk, the fundamental and SH 

resonances are aligned and very large SH conversion is achieved (η = 1.2%). For the other 
disk sizes, the fundamental (mf = 13) and SH (mSH = 28) resonances become misaligned, 
resulting in decreased SH conversion. Figure 6b plots the conversion near 2190 nm pumping 

wavelength where m′∆ ≈-2. Overlapping fundamental and SH resonances are obtained with 

the R = 2.643 µm disk, resulting in high SH conversion (η = 0.29%). 
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Fig. 5. SH conversion efficiency for various pumping wavelengths in a GaAs microdisk (R = 
2.643 µm, h = 161nm). Doubly resonant SHG is achieved at λf = 2λSH = 2186.9 nm where mf = 

11, mSH = 20, ∆m = −2; and SH conversion is maximized with η = 0.29% (Pf
in = 1 mW). The 

top inset shows locations of the fundamental and SH (2λSH) cavity resonances. 
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Fig. 6. Detailed pump-wavelength dependence of SH conversion efficiency for three different 
GaAs microdisk sizes (h = 161nm). (a) Double resonance satisfying ∆m = 2 is achieved at λf = 

2λSH = 1998.7 nm in the 2.609-µm-radius disk, and (b) double resonance satisfying ∆m = −2 is 
achieved at λf = 2λSH = 2186.9 nm in the 2.643-µm-radius disk. 

Maximum SHG is obtained when the fundamental and SH resonances overlap and have 
azimuthal numbers that satisfy ∆m = mSH – 2mf = ±2. As the disk radius, thickness or 

temperature is changed, the resonances no longer coincide and m′∆ ≠ ±2, which reduces 

SHG. Figure 7 illustrates the effect of radius and temperature tuning on SH conversion. The 
reference microdisk has 161-nm thickness and R0 = 2.609 µm, and supports doubly resonant 
SHG at λf = 2λSH = 1998.7 nm (mf = 13, mSH = 28). By changing the radius of the microdisk by 
5 nm, the fundamental and SH resonances become detuned by |λf – 2λSH| = 1.3 nm (several 
times the 0.4 nm linewidth of these Qf = QSH = 5000 resonances), and the maximum SH 
conversion efficiency drops from 1.2% to 2.8×10

-2
% (see Fig. 7a). Temperature can be used 

for fine tuning, as shown in Fig. 7b. Maximum conversion is obtained at T = 30 °C while at T 
= 10 °C or 50 °C, the fundamental and SH resonances are detuned by |λf – 2λSH| = 0.5 nm, 
resulting in a sevenfold decrease in peak SH conversion. The curves become noticeably 
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asymmetric as the fundamental and SH resonances only partially overlap. Varying the 
geometry or temperature also changes the strength of the interaction through K+ and K–, but 
the SH conversion is more strongly affected by the detuning of the resonances (for this 
example, changing the microdisk radius by 5 nm changes the magnitudes of K+ and K– by 
only 0.2%). 
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Fig. 7. (a) Varying disk radius around R0 = 2.609 µm for fixed disk thickness of 161 nm. When 
the radius is changed by ± 5 nm, the resonances become detuned by |λf – 2λSH| = 1.3 nm 
(linewidths of passive cavity resonances are 0.4 nm), which results in a 41-fold reduction in 
maximum conversion efficiency. (b) Temperature tuning in a R0 = 2.609 µm, h = 161 nm GaAs 
microdisk. At T = 10 °C and 50 °C, fundamental and SH resonances are separated by |λf – 2λSH| 
= 0.5 nm and the peak conversion efficiency is seven times smaller than the peak at T = 30 °C. 
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Fig. 8. Overlapping fundamental and SH resonances (λf = 2λSH) occur in a 2.587-µm-radius, 
161-nm-thick GaAs microdisk, but ∆m = 4 (mf = 14, mSH = 32), which results in a suppression 

of SHG due to perfectly destructive 4 -QPM. 

It is possible for the fundamental and SH resonances of a microdisk to be aligned but ∆m 
is not equal to ±2 but another integer instead. This situation occurs in a 2.587-µm radius, 161-
nm-thick GaAs microdisk at a pumping wavelength of 1903.4 nm, shown in Fig. 4 with a 
detailed plot in Fig. 8. SHG is suppressed when ∆m = 0, ±1, ±3, etc. due to perfectly 

destructive 4 -quasi-phasematching. The width of the dip is comparable to the linewidths of 
the passive cavity resonances (discussed in Section 4). This feature is interesting from an 
experimental standpoint. It is difficult to measure directly the m values of the resonances, but 

the presence of the dip clearly indicates that ∆m ≠ ±2. Since the dip arises from perfectly 
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balanced destructive interference of the SH wave, the observed sharpness and depth of the dip 
can be a measure of the quality of the microdisk (its circularity, uniformity and loss). 

4. Discussion 

Three effects enhance χ
(2)

 conversion in a GaAs microdisk — resonance enhancement at the 

fundamental wave, resonance enhancement at the second-harmonic wave, and 4 -quasi-
phasematching. SHG is significantly enhanced when all three resonance conditions are 
satisfied. In the examples discussed in Section 3, up to 1.2% conversion efficiency can be 
obtained using 1 mW of external fundamental power. Resonantly enhanced SHG in a 
microdisk is far more efficient than single-pass SHG in a GaAs crystal of comparable size. 

Confocally focused SHG in a GaAs sample of length 2 16Rπ = µm only produces η ≈10
-6

% 

with 1mW of incident power. As a side note, Section 3 discusses mixing of lowest-order 
radial modes, which produces larger η than mixing a fundamental with one radial antinode 
and a SH with two [11] due to better radial-mode overlap. 

It is possible to observe SHG in a GaAs microdisk even if the resonance conditions are not 
all satisfied. Comparing Eqs. (10), (14), and (15), we see the spectrum of the SHG output has 
three factors 

 
24 2

2

1, 2, 2, ,| | ( ) ( ) .
out

SH SH f f SH passive SHP C B K Bφ φ= ∝ × ×ɶ   (20) 

The first factor is the square of the circulating fundamental spectrum, and the last factor is the 
circulating SH spectrum of the passive cavity. The middle factor in Eq. (20) is the 
contribution from the nonlinear mixing, whose spectral dependence is described by Eq. (4). 

The bandwidth of 2| |Kɶ  is broad because it is determined by one roundtrip of nonlinear 

mixing (essentially, 2 2| | sinc ( / 2)K k∝ ∆ɶ ℓ  where ∆k is the wavevector mismatch and  the 

length of one cavity roundtrip). The relative spectral overlap between the three factors in Eq. 

(20) determine the total SH conversion. Since out

SH
P  varies as the square of the circulating 

fundamental power and linearly with the SH power, resonance enhancement at λf has a bigger 
effect than resonance enhancement at λSH. 

There is a strong analogy between 4 -QPM in a microdisk and Fresnel phasematching in a 
plate [6,7]. The output SH intensity in Fresnel phasematching is proportion to [6,7] 

 

22
sin( / 2) sin( / 2)

,
/ 2 sin( / 2)

out

SH

kL N
I

kL

ε
ε

 ∆ ∝   ∆   
  (21) 

where L is the distance between zigzag bounces, N is the total number of bounces and ε is the 
phase error accumulated per zigzag path. The first factor in Eq. (21) represents the gain factor 
while the second factor represents the resonance condition [6]. For small ε, the second factor 
can be written as [7] 

 

2

2 2sin( / 2)
sinc ( / 2) .

sin( / 2)

N
N N

ε
ε

ε
 

= 
 

  (22) 

This factor is analogous to the passive-cavity-spectra factors in Eq. (20); more bounces in 
the plate (i. e., larger N) lead to more SHG while narrowing the generated spectrum in the 
same way that higher Qf and QSH lead to more roundtrips in the cavity, higher circulating 

powers and narrower spectra. In both Fresnel phasematching and 4 -QPM in a microdisk, the 
gain factors (represented by the first factor in Eq. (21) and the second factor in Eq. (20)) are 
multiplied by the cavity-resonance factors, much in the same way that a Fabry-Perot cavity 
resonance interacts with a gain medium [6]. 

A big difference between Fresnel phasematching and 4 -QPM in a microdisk is the 
presence of the resonant cavity for the latter. Firstly, the microdisk cavity allows for a much 
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more compact device compared to a Fresnel-phasematched device. Secondly, the cavity 
enforces high periodicity for long, total path-length. Variations in plate thickness (from 
roughness or wedge) can lead to large phase error, ε. If the phase error is too large, then the 
useful net path-length (that is, useful N) is reduced. Large phase errors also reduce the 
wavelength-acceptance bandwidth. 

The high periodicity of the effective domain inversions provided by the microdisk cavity 

makes microcavity structures attractive for efficient 4 -QPM conversion. Curved waveguide 

structures have also been proposed for 4 -QPM [12]. These structures are challenging to 
fabricate since the length of each domain inversion can vary due to fabrication errors. The 
domain-length errors are similar to phase errors in Fresnel phasematching; both types of 
errors will reduce the net conversion efficiency and reduce the wavelength-acceptance 
bandwidth. 

Equations (14) and (15) describe very well 4 -quasi-phasematched SHG in a microdisk for 
cases where either the fundamental or SH wave is not resonant with the cavity. We can also 
give an intuitive description for this process. If light is not resonant with a cavity, then there is 
destructive interference between the incident and circulating waves, which results in 
suppression of light circulating inside the cavity. However, due to finite quality factors, the 
amount of light inside the cavity is non-zero even if the wave is off-resonance. If the 
fundamental wave is resonant with the cavity, then the circulating intensity inside the cavity at 
λf will be high. This light can initiate second-harmonic generation at the entrance of the 

cavity. The second-harmonic will increase due to 4 -QPM as it propagates around the cavity 
and if the SH is resonant with the cavity, then the SH light from previous round trips will add 
constructively to subsequent round trips. However, if the SH light is not resonant with the 
cavity, then some amount of SH is coupled out, and the remaining SH inside the cavity 
interferes destructively with light from previous round trips. In essence, when the SH wave is 
off-resonance with the cavity, there is negligible λSH light at the entrance of the cavity, and the 
net amount of SH generated is essentially the amount produced on one round trip times the 
out-coupling coefficient. Having the fundamental wave resonant with the cavity will 
significantly increase SHG since the driving fields will be large (due to resonance 
enhancement). Conversely, if the fundamental is not resonant with the cavity, but λf/2 matches 
a cavity resonance, then there will still be an enhancement of SHG in the cavity. Since Qf is 
finite, there will be some small amount of fundamental light in the cavity and this light can 
initiate SHG. The generated second-harmonic light is resonant with the cavity and will 
experience build-up as SH light from subsequent round-trips add constructively. 

Equation (2) implies that a perfectly circular cavity has only two components that can 
contribute to quasi-phasematching: ∆m = ±2. It would be interesting to explore square [11] or 
deformed cavities [21,22] that would provide resonance enhancement of the circulating waves 
and allow higher-order QPM. The deformed cavities would have interesting applications with 
free-space couplers because of their directional output. 

When ∆m = 0, ±1, ±3, etc. in a circular cavity, SHG is suppressed due to perfectly 

destructive 4 -QPM (Fig. 8). In this process, each round trip in the cavity produces no net SH, 
similar to the way there is no net SH is produced after exactly two coherence lengths in a non-

phasematched crystal. This suppression is analogous to operating a nonlinear crystal at η ∝ 
sinc

2
(∆kL/2) = 0, which occurs when ∆kL/2 = ± π, ± 2π, etc. We can derive an expression for 

the width of the destructive 4 -QPM dip when the fundamental and SH resonances overlap (λf 

= 2λSH) and ∆m = 0, ±1, ±3, etc. In the vicinity of the dip, 2 2

0
| | ( - )K λ λ∝ɶ  since the sinc

2
 

function varies quadratically near its zeros. The circulating power spectrum of the 
fundamental and SH resonances (Eq. (10)) can be approximated by Lorentzian lineshapes 
with FWHM widths wf and wSH, respectively (in wavelength units). If wf = 2wSH (same total 

quality factors for both waves), then the width of the destructive 4 -QPM dip is 0.31wf. The 

sharpness of a measured, destructive 4 -QPM dip where ∆m ≠ ± 2 can be used to characterize 
the circularity and ideality of a microdisk. 
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5. Conclusions 

We have presented a theory of 4 -quasi-phasematched second-harmonic generation in a GaAs 
microdisk that describes both on- and off-resonance conversion. For doubly resonant mixing 
of lowest-order vertical and radial modes satisfying mf = 13, mSH = 28 and ∆m = 2 in a 2.609-
µm-radius, 161-nm-thick microdisk, the theory predicts 1.2% conversion efficiency with 1 
mW of λf = 1998.7 nm external fundamental light (assuming critical coupling and Qf = QSH = 
5000). Our theory also describes SHG when the fundamental and SH resonances no longer 

overlap (λf –2λSH ≠ 0), and SHG is no longer doubly resonant. When |λf – 2λSH| = 1.3 nm, we 
expect a maximum conversion efficiency of η = 2.8 × 10

-2
% and when |λf – 2λSH| = 5.4 nm, we 

expect η = 1.4×10
-3

% (for Qf = QSH = 5000, the linewidths of the passive-cavity resonances 
are 0.4 nm). We show that the SH conversion spectrum is a product of the circulating-power 
cavity spectra at the fundamental and SH wavelengths, and the nonlinear gain spectrum, 

2| |Kɶ . In analogy to Fresnel phasematching, narrowing the passive cavity spectra (through 

higher Q) is associated with longer total interaction length and higher conversion. Higher 
quality factors also lead to tighter fabrication tolerances for achieving the double-resonance 
condition (λf = 2λSH). Using a series of lower-quality-factor, waveguide-coupled GaAs 
microdisks would allow higher nonlinear conversion with broader spectral bandwidth [23]. 

We also identify the process of perfectly destructive 4 -QPM; SHG is suppressed in a circular 

GaAs microdisk at the wavelengths where m′∆  = 0, ±1, ±3, etc. In this process, there is 

destructive interference of the second-harmonic wave, which result in no net SHG per cavity 

round-trip and a dip in the SH conversion spectrum. This dip can be used to confirm ∆m ≠ ± 2 
and to evaluate the circularity and ideality of the microdisk. 

Appendix A. Derivation of second-harmonic generation coefficients 

In this appendix, we derive the SHG coefficients ( K+  and K− ) used in Section 2. 

Calculations of the whispering gallery modes and their normalization conditions are reviewed. 
We describe the power normalization of the fields, where |Ai(θ)|

2
 represents the circulating 

power inside the microdisk. The fields can also be normalized to represent stored energy, 
which is used in coupled-mode theory [11,24] (Appendix B). 

A.1 Stationary eigenmodes 

The eigenmodes of a microdisk can be approximated by the analytical expressions presented 

in Ref [25], which we will summarize here. In a thin microdisk with surface normal ẑ , the 
fields naturally decouple into transverse electric (TE, {Hz, Er, Eθ}) and transverse magnetic 
(TM, {Ez, Hr, Hθ}) polarizations. By using Maxwell’s equations, the radial and azimuthal 
components can be derived from the z-components (Hz or Ez) 
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 (23) 

The field Fz (where Fz = Hz or Ez) is separable and can be written as 

 exp( ) ( ) ( ) ( ) exp[ ( )].
z

F i t A r Z z i t mω θ ψ ω θ= −   (24) 

Using Eq. (24), Maxwell’s wave equation in cylindrical coordinates becomes three 
differential equations 

#149422 - $15.00 USD Received 20 Jun 2011; revised 25 Jul 2011; accepted 25 Jul 2011; published 15 Aug 2011
(C) 2011 OSA 29 August 2011 / Vol. 19,  No. 18 / OPTICS EXPRESS  16910



  

 

2
2 2 2

02

2 2
2 2

02 2

2
2 2

2

( ) 0

1
,

2

Z
k n n Z

z

l
k n

r rr r

A A
im m A l A

ψ ψ
ψ ψ

θθ

∂
+ − =

∂
∂ ∂

+ + =
∂∂

∂ ∂
− − = −

∂∂

  (25) 

where k0 = ω/c is the vacuum wavevector and n = n(r) is the refractive index. If we take the 

slowly varying envelope approximation (SVEA) so that ∂2
A/∂θ2

 = ∂A/∂θ = 0, then the last 
equation implies l = m and A(θ) is approximately constant. 

The vertical dependence, Z(z), can be solved by considering a slab-waveguide model [26], 

which yields an effective index, n . The slab can support multiple modes, which are indexed 

by an integer q = 1, 2,… that counts the number of vertical antinodes. We should therefore 

write the effective index as 
q

n . The functional form of Z(z) involves real functions: 

exponentials, sines and cosines [26]. 
The unnormalized radial dependence is approximated by 
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where R is the disk radius, 
0

( )
m q

J k n r  is the Bessel function of the first kind and αɶ  = k0( q
n

2
 

– n
2
)

1/2
 [25]. The decaying exponential for r>R is an approximation for the actual solution, 

which is the Hankel function of the second kind: 
(2)

0
( )

m q
H k n r  [9]. We match boundary 

conditions to solve for the resonant wavelength where Eq. (25) is a valid solution. Equation 
(26) incorporates the first boundary condition that ψ(r) is continuous at r = R (i. e., Hz and Ez 
are continuous at the disk boundary). The other boundary condition is that the tangential fields 
are continuous; that is [25] 
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 (27) 

We assume that n = 1 outside the microdisk. These boundary conditions allow us to find 
the resonant wavelengths by solving the following transcendental equations 
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 (28) 

There are multiple solutions to Eq. (28) indexed by the number of radial antinodes, p, in ψ(r). 
Solving Eq. (28) gives us the wavelengths of the resonant modes, λmpq. Both Zq(z) and 

ψp(r) are not normalized. They can be inserted into expressions for Hz and Ez (Eq. (24)), 
which can then be normalized to determine the constant A(θ). 

A.2 Normalization of eigenmodes 

The eigenmodes may be normalized such that |A(θ)|
2
 represents the circulating power inside 

the microdisk. The generalized waveguide-microresonator theory in Section 2 uses this 

normalization. For clarity, let ( )
q

Z zɶ  and ( )
p

rψɶ represent normalized functions, which are 

related to the unnormalized functions Zq(z) and ψp(r) by 
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The circulating power, Pcirc, of the microdisk is 
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2
circP drdzθ θ= ⋅ = × ⋅∫P E H    (30) 

The integration is performed over the cross-sectional area of the microdisk and includes the 
evanescent field extending slightly outside the disk. For the power normalization, Pcirc = 
|A(θ)|

2
, which implies 
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The double integral over r and z separates into two normalization equations. We can set 
the integral over z to unity and obtain the following conditions 
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We note that Zq(z) and ψp(r) constructed in section A.1 are real, so the absolute value in Eq. 
(32) is not needed. 

A.3 Nonlinear optical coupling 

Nonlinear interactions between the modes of the microdisk can be described using a 
perturbative approach [27]. The eigenmodes, as described in Section A.1, obey the 
unperturbed wave equation 

 
2

2

2
0 ,

t
µε

∂
∇ − =

∂
E

E   (33) 

where µ = µ0 (for a non-magnetic material), ε = ε0n
2
 inside the microdisk, and ε = ε0 outside 

the disk. We can introduce a perturbing polarization source arising from the nonlinear 
interaction, P

NL
, which produces a perturbed wave equation 
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µε µ
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E   (34) 

The eigenmodes that solve the unperturbed wave equation (Eq. (33)) form a complete, 
mutually orthogonal set, and therefore the solution to Eq. (34) can be written as a linear 
combination of these eigenmodes. 

Let us consider SHG with a TE-polarized fundamental and a TM-polarized second 
harmonic. The SH field that satisfies Eq. (34), Ez, can be written as a sum over the TM-
polarized SH eigenmodes that solved the unperturbed equation: 
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(35) 

The terms ' ' ' ( )
SH SH SHm p qA θ

  
are slowly-varying envelope functions and act like the weighting 

factors. We have explicitly written out the indices associated with the constituent functions. 
For this analysis, we neglect the effect of the radiation modes since we are more interested in 
the guided modes of the microdisk. 

Equation (35) can be substituted into Eq. (34), and many of the terms will sum to zero 
because the constituent functions are all solutions to the homogeneous equation, Eq. (33). The 

only remaining terms are those that involve the derivatives of ' ' ' ( )
SH SH SHm p qA θ

  
 and the z-

component of the nonlinear polarization: 

 

2

' ' ' ' ' '

2 2
' , ' , '

( ' ) 2

' ' ' ' 0

1
2 '

( ) ( ) .

SH SH SH SH SH SH

SH SH SH

SH SH

SH SH SH SH

m p q m p q

SH

m p q

i t m NL

m p q q SH z

A A
im

r

r Z z e P
ω θ

θθ

ψ µ ω−

 ∂ ∂
− ×  ∂∂ 

= −

∑

ɶɶ

    

  

   
                                  

 (36) 

Since 
2 2

' /
SHmA θ∂ ∂ « '2 /

SHSH mm A θ′ ∂ ∂  (SVEA), the first term in the parentheses can be 

neglected. We also assumed the nonlinear polarization oscillates at frequency ωSH so that 

∂2
Pz

NL
/∂t

2
 ≈ -ωSH

2
 Pz

NL
. We can now utilize the orthogonality of the eigenmodes [28] 

 
2 , ' ' '

, ' ' '
0 0

,
z m p q

z mpq mm pp qq

F
F drd dz

r

π
θ δ δ δ

∞ ∞

−∞
∝∫ ∫ ∫   (37) 

where Fz = Hz or Ez, and “project out” the coefficients associated with (mSH, pSH, qSH) by 

multiplying both sides of Eq. (36) by ( ) ( ) SH

SH SH SH SH

im

m p q qr r Z z e
θψ ɶɶ

  
and integrating over all θ, r 

and z: 
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' ' '
0 0

' , ' , '
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'

( )
2 ' ( )

( ) ( )

SH SH SH SH

SH SH SH

SH SH SH

SH SH SH

SH SH

m m p q

SH m p q

m p q

i m m i t

q q

A r
im r

r

Z z Z z e drd dze

π

θ ω

ψ
ψ

θ

θ

∞ ∞

−∞

−

∂  
− ×  

∂  
∑∫ ∫ ∫

ɶ
ɶ

ɶ ɶ

   

  

                                            

                       
2

2

0
0 0

( ) ( ) .SH

SH SH SH SH

imNL

SH z m p q q
P r r Z z e drd dz

π θµ ω ψ θ
∞ ∞

−∞
= − ∫ ∫ ∫ ɶɶ  

   
     

(38) 

Since ' ' 'SH SH SHm p qA
  

is the slowly varying envelope, its derivative ' ' ' /
SH SH SHm p qA θ∂ ∂

  
 is 

essentially a constant with respect to θ, so the 
2

( ' )

0

SH SHi m m
e d

π θ θ−∫  integral acts like the 

Kronecker delta function, 'SH SHm mδ . The integral over θ on the left-hand side of Eq. (38) is 

 
2 ' ' ' ' '( ' )

0
'

2 .SH SH SH SH SH SHSH SH

SH

m p q m p qi m m

m

A A
e d

π θ θ π
θ θ

−
∂ ∂

≈
∂ ∂∑ ∫         (39) 

The r and z integrals on the left-hand side of Eq. (38) select out the terms p′SH = pSH and q′SH = 
qSH. The integral can be simplified using the normalization expressions. Using Eq. (32) so that 

2

SH SH SHm p qA
   

 represent power, Eq. (38) becomes 
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0
0 0

2
4

( ) ( ) .

SH SH SH SH

SH

SH SH SH SH

m p q i tSH

SH

SH

imNL

SH z m p q q

A
im e

m

P r r Z z e drd dz

ω

π θ

µ ω
π

θ

µ ω ψ θ
∞ ∞

−∞

∂  
− = 

∂  

− ∫ ∫ ∫ ɶɶ

   

 

   
                           

 (40) 

In GaAs and other crystals with 43m point-group symmetry, the only non-zero nonlinear-

susceptibility-tensor elements are d14 = d25 = d36 = dzxy so the z-component of P
NL

 is 

 
0 14

2 .
NL f f

z x y
P d E Eε=   (41) 

In terms of Er and Eθ, 

 
cos sin

sin cos ,

x r

y r

E E E

E E E

θ

θ

θ θ

θ θ

= −

= +  
 (42) 

so that 

 
2 2

0 14

1
2 cos 2 sin 2 ( ) .

2

NL f f f f

z r r
P d E E E Eθ θε θ θ = + −  

   (43) 

From Eq. (23), f

r
E  and fEθ are proportional to f

z
H and /f

z
H r∂ ∂ , respectively, which are 

both proportional to fim
e

θ−  
. The sine and cosine terms in Eq. (43) produce factors of 2ie θ and 

2ie θ− , so NL

z
P  is proportional to 

( 2 2)fi m
e

θ− +
 and 

( 2 2)fi m
e

θ− −
. 

If we let ( )
SH SH SHSH m p q rψ ψ=ɶ ɶ

  
, then combining and rearranging Eqs. (23), (24), (40) and 

(43), we see that 

 

2

/ 2
214

2 /2
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( 2)
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2

( 2)

0

2
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f f f

SH f
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h
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SH f
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SH f

A
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n

m
e r dr
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m
e r dr

r r

θ

θ

π
θ

ε ω

ψ
ψ ψ

ψ
ψ ψ

−

∆ +

∆ −

∂
=

∂

 −
×  

 

 ∂ 
 + 

∂  
 

∂  
− −  ∂  

∫

∫

∫

ɶ ɶ

ɶ
ɶ ɶ

ɶ
ɶ ɶ

  

        

                  

        

2

0
d

π
θ



∫  

 (44) 

where 2
SH f

m m m∆ = − . Note that the limits of integration are [0,R] for r and [-h/2, h/2] for z 

(where R and h are the radius and height of the microdisk) since the nonlinearity, d14, is only 

non-zero inside the disk. For good vertical mode overlap, 
2

( ) ( )
f SHq qZ z Z z∝ɶ ɶ  (i.e., the shape of 

2
( )

fqZ zɶ  should match that of ( )
SHqZ zɶ ). 

We had approximated that /
SH SH SHm p qA θ∂ ∂

  
is a constant with respect to θ, so the left-hand 

side is actually ( )2

0
/

SH SH SHm p q
A d

π
θ θ∂ ∂∫   

. Terms on the right-hand side of Eq. (44) can be 

collected and we identify 

 ( )2 ( 2) ( 2) ,SH SH SH

f f f

m p q i m i m

m p q

A
A K e K eθ θ

θ
∆ + ∆ −

+ −

∂
= +

∂
    (45) 
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where 
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4 /2 0
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2
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214

4 / 2 0
0

( ) ( )
2

( ) ( ) .
2

SH f

SH f

h R f fpow

q q SH f
h

SH f

h R f fpow

q q SH f
h

SH f

md
K Z z Z z dz r dr

r rn

md
K Z z Z z dz r dr

r rn

ψ
ψ ψ

ε ω

ψ
ψ ψ

ε ω

+ −

− −

∂ 
= − + 

∂ 

∂ 
= − 

∂ 

∫ ∫

∫ ∫

ɶ
ɶ ɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶ  

 (46) 

powK±  in Eq. (46) are labeled by the pow superscript to indicate that they are calculated using 

the power normalization of the fields. 
The quasi-phasematching condition can be seen in Eq. (45): the sinusoidally varying 

portion of /
SH SH SHm p qA θ∂ ∂

  
 vanishes if ∆m = mSH - 2mf = ±2. Equation (45) differs from Eq. 

(2) in Ref [11]. by a factor i since here, NL

z
P  is shown to be imaginary. 

We note that the integral over the vertically varying wavefunctions can be approximated 

by a simple expression if the unnormalized functions are related by 
2

( ) ( )
SH fq qZ z Z z= : 

 

2
/ 2

2

/2
( ) ( ) ,

f

SH f

SH

h q

q q
h

q

d
Z z Z z dz

d−
≈∫ ɶ ɶ   (47) 

where the constants 
iqd  are defined in Eq. (29). We found that Eq. (47) is a good 

approximation when ( )
fqZ zɶ  and ( )

SHqZ zɶ are the lowest-order vertical modes. 

Appendix B. Conversion efficiency and coupled-mode theory 

In this appendix, we derive the conversion efficiency for SHG in microdisks based on 
coupled-mode theory (CMT) [29]. In CMT, |A(θ)|

2
 represents the stored energy inside the 

resonator rather than the circulating power. We describe energy normalization of the fields 

and its effect on the SHG coefficients ( K+  and K− ). We calculate the conversion efficiency 

using CMT and show it agrees with results from Section 2 that were based on the generalized 
waveguide-microresonator theory (GWMT). 

B.1 Energy normalization and SHG coefficients 

To have |A(θ)|
2
 represent the stored energy, W, we can relate Pcirc to W by [29] 

 

2

.circ g g

AW
P v v= =

ℓ ℓ
 (48) 

ℓ is the length of the resonator and vg is the group velocity. The group velocity of waves in a 

microdisk is [30] 

 ,
g FSR

v rδω=   (49) 

where r is the radial coordinate inside the microdisk, and δωFSR is the angular-frequency 
separation between adjacent modes or the free-spectral range (FSR). Equation (49) implies 

that the group velocity of the wave depends on its radial location in the disk. However, ℓ also 

depends on r through ℓ = 2πr. Thus the ratio vg/ℓ is independent of r and 

 
2

,
circ FSR

P A fδ=   (50) 
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where δfFSR = δωFSR/2π is the FSR in frequency units. Combining Eqs. (30) and (50), we 
obtain the energy normalization: 

 

2

-

2

0
0

2

2 0
0

( ) 1

1
TM: ( ) .

2

1
TE: ( )

2

q

en
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r dr f
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ψ δ
ε ω

∞

∞

∞

∞

=

=

=

∫

∫

∫

ɶ

ɶ

ɶ

       

   

 (51) 

Here, the normalized radial functions, ( )
en

p
rψɶ , are given the en superscript since they are 

calculated using the energy normalization of the fields. 
Following the procedure outlined in Section A.3 (most notably using Eq. (51) instead of 

(32) to derive Eq. (40)), the SHG coefficients using the energy normalization are 
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214
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ε δ ω
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− −
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= − +  ∂ 

 ∂
= −  ∂ 

∫ ∫
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ɶ
ɶ ɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶ  

(52) 

Numerically, enK±  can be calculated from powK±  (the coefficients calculated using the power 

normalization, Eq. (46)) using , ,/
en pow

FSR f FSR SHK K f fδ δ± ±= . 

B.2 Coupled-mode theory 

The coupled wave equations describing the fundamental and SH modes in a resonator are [29] 

 

0

0

1 1 2

1 1
.

f

f f f fc c

f f f

NLSH

SH SH SHc

SH SH

a
i a a s

t

a
i a a s

t

ω
τ τ τ

ω
τ τ

 ∂
= − + +  ∂  

 ∂
= − + + 

∂  
 

 (53) 

ai is related to Ai (the slowly varying envelope) by 

 exp( ) .
i i i

a A i tω=   (54) 

The fields are normalized so that |ai|
2
 and |Ai|

2
 represent the stored energy. 0

i
τ and c

i
τ are the 

intrinsic and external coupling photon lifetimes, respectively. The lifetimes are related to the 
quality factors (Qi) by Qi = ωiτi/2. The total quality factor at wave i is given by 

01/ 1/ 1/ c

i i i
Q Q Q= + . We assume that the fundamental mode is undepleted and is coupled to 

an external pump given by 
2

in

f fs P= . 

Ref [29]. presents the nonlinear source term, s
NL

, as an overlap integral between the 
interacting waves and the nonlinear tensor. A more intuitive picture is to cast the nonlinear 

source in terms of an effective gain time, 
g

τ , defined by 

 .
NL SH

g

a
s

τ
=   (55) 
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In analogy to the usual expression for photon lifetime [29], the gain time is related to the 
power gained by the resonator according to 

 
2

,
gain

i g i i

P

Wωτ ω
=   (56) 

where 
2

i i
W A=  is the stored energy in the resonator at frequency ωi. By introducing the 

power-gain coefficient 2αg, the power increase through one pass around the resonator (of 

length ℓ) is 

 2 .
gain g circ

P Pα= ℓ   (57) 

Combining Eqs. (48), (56) and (57), we obtain 

 
1

,g

g g
v

τ
α

=   (58) 

where vg is the group velocity in the microdisk (Eq. (49)). In terms of field amplitudes, 

 
1

,SH

g

SH

dA

A rd
α

θ
=   (59) 

where we abbreviate 
SH SH SHSH m p qA A=

  
. We can combine Eqs. (45), (49), (54) (55), (58) and 

(59) to find 

 
2

,
.

NL en

f FSR SH
s a Kδω ±=   (60) 

en enK K± +=  if ∆m = –2, and en enK K± −=  if ∆m = +2 since the dominant contribution to Eq. (45) 

is from the phasematched component. 
The circulating powers and SHG conversion efficiency can be calculated by looking for 

steady-state solutions to Eq. (53). Utilizing Eq. (50), we find 

 
2

, , 0 2

4 1
.

(1 / )

c

fcirc in

f f FSR f FSR f fc

f f c

Q
P a f f P

Q Q
δ δ

ω
= =

+
  (61) 

The second-harmonic generated is 

 

2

2

,0 2 0 2

2

44
2 .

(1 / ) (1 / )

out

SH SHc

SH

cc
f in enSH

f FSR SHc c

SH SH SH f f f

P a

QQ
P f K

Q Q Q Q

τ

πδ
ω ω ±

=

 
=   + + 

 

 (62) 

Equation (62) can be compared to results of the GWMT discussed in Section 2. If both the 

fundamental and SH are resonant with the cavity (with ∆m = 2 or −2) and the phase shift from 

the coupler can be neglected ( 0
f SH

ψ ψ= = ), then ( , ) 2 pow

f SH
K Kϕ ϕ π ±=ɶ , and Eq. (15) 

becomes 

 ( )
2 22 2 2

2
2

2 2

2 (1 | | )
(1 | | ) ,

(1 | |) (1 | |)

pow

SH f fout in

SH f SH

SH SH f f

K t
P P t

t t

π α α

α α
±  −

= −   − − 
  (63) 
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where 
2

1,

out

SH SHP C=  and 
2

1,

in

f fP B= . The parameters αi and ti can be written in terms of the 

quality factors using Eq. (19). 
Table 1 compares the SH conversion efficiency calculated using coupled-mode theory Eq. 

(62), and η calculated using the generalized waveguide-microresonator theory Eq. (63). The 
GaAs microdisk has R = 2.609 µm and h = 161 nm, and supports doubly resonant SHG with λf 
= 2λSH = 1998.7 nm with TE-polarized fundamental wave (mf = 13) and TM-polarized SH 
wave (mSH = 28) where ∆m = mSH – 2mf = 2 is satisfied (pf = pSH = qf = qSH = 1). The free-

spectral ranges for the waves are 
12

,
6.3 10

FSR f
fδ = × Hz and 

12

,
3.4 10

FSR SH
fδ = × Hz. We use 

d14 = 94 pm/V [31] for GaAs. CMT predicts a SH conversion efficiency of 1.23% while the 
GWMT predicts η = 1.16% for 1 mW of incident fundamental power. There is good 
agreement between the two theories. 

Table 1. Comparison between coupled-mode theory (CMT), which utilizes the energy 
normalization and Eq. (62), and on-resonance generalized waveguide-microresonator 

theory (GWMT) discussed in Section 2, which utilizes the power normalization and Eq. 
(63). The incident fundamental power Pf

in = 1 mW. 

 CMT GWMT 

Coupling parameter (λf) 
c
f

Q = 10
4
 3104.71 −×=− ft  

Loss parameter (λf) 
0
f

Q = 10
4
 3

104.71
−×=− fα  

Coupling parameter (λSH) c
SHQ = 10

4
 

2107.21 −×=− SHt  

Loss parameter (λSH) 0
SHQ = 10

4
 2107.21 −×=− SHα  

+K  -1/23 s)W(1032.3 ⋅×=+
enK  -1/24  W1066.9 −

+ ×=pow
K  

−K  -1/23 s)W(1067.6 ⋅×−=−
enK  -1/23  W1094.1 −

− ×−=powK  

in
f

out
SH PP /=η  1.23 % 1.16 % 
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