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Abstract
Due to the isotropy of d-dimensional hyperbolic space, there exists a
spherically symmetric fundamental solution for its corresponding Laplace–
Beltrami operator. The R-radius hyperboloid model of hyperbolic geometry
with R > 0 represents a Riemannian manifold with negative-constant sectional
curvature. We obtain a spherically symmetric fundamental solution of Laplace’s
equation on this manifold in terms of its geodesic radius. We give several
matching expressions for this fundamental solution including a definite integral
over reciprocal powers of the hyperbolic sine, finite summation expressions
over hyperbolic functions, Gauss hypergeometric functions and in terms of
the associated Legendre function of the second kind with order and degree
given by d/2 − 1 with real argument greater than unity. We also demonstrate
uniqueness for a fundamental solution of Laplace’s equation on this manifold
in terms of a vanishing decay at infinity. In rotationally invariant coordinate
systems, we compute the azimuthal Fourier coefficients for a fundamental
solution of Laplace’s equation on the R-radius hyperboloid. For d � 2, we
compute the Gegenbauer polynomial expansion in geodesic polar coordinates
for a fundamental solution of Laplace’s equation on this negative-constant
curvature Riemannian manifold. In three dimensions, an addition theorem for
the azimuthal Fourier coefficients of a fundamental solution for Laplace’s
equation is obtained through comparison with its corresponding Gegenbauer
expansion.
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1. Introduction

In this paper, we discuss eigenfunction expansions for a fundamental solution of Laplace’s
equation in the hyperboloid model of d-dimensional hyperbolic geometry. In particular, for a
fixed R ∈ (0,∞) and d � 2, we derive and discuss Fourier cosine and Gegenbauer polynomial
expansions in rotationally invariant coordinate systems, for a spherically symmetric Green’s
function (fundamental solution) of the Laplacian (Laplace–Beltrami operator) on a Riemannian
manifold of negative-constant sectional curvature, namely the hyperboloid model of
hyperbolic geometry. Useful background material relevant for this paper can be found in
[42, 40, 28, 37].

This paper is organized as follows. In section 2, for the hyperboloid model of
d-dimensional hyperbolic geometry, we describe some of its global properties, such as its
geodesic distance function, geodesic polar coordinates, and Laplacian operator. In section 3,
for the hyperboloid model we show how to compute radial harmonics in a geodesic polar
coordinate system and derive several alternative expressions for a radial fundamental solution
of the Laplacian on the d-dimensional R-radius hyperboloid with R > 0, and that our derived
fundamental solution is unique in terms of a vanishing decay at infinity. In section 4, for d � 2,
we derive and discuss Fourier cosine series for a fundamental solution of Laplace’s equation
on the hyperboloid about an appropriate azimuthal angle in rotationally invariant coordinate
systems, and show how the resulting Fourier coefficients compare to those in Euclidean space.
In section 5, for d � 2, we compute Gegenbauer polynomial expansions in geodesic polar
coordinates and an addition theorem for the azimuthal Fourier coefficients in three dimensions
for a fundamental solution of Laplace’s equation on the hyperboloid. In section 6, we discuss
possible directions of research in this area.

Throughout this paper, we rely on the following definitions. For a1, a2, a3, . . . ∈ C,
if i, j ∈ Z and j < i then

∑ j
n=i an = 0 and

∏ j
n=i an = 1. The set of natural numbers

is given by N := {1, 2, 3, . . .}, the set N0 := {0, 1, 2, . . .} = N ∪ {0}, and the set Z :=
{0,±1,±2, . . .}. The set R represents the real numbers and the set C represents the complex
numbers.

2. Global analysis on the hyperboloid

2.1. The hyperboloid model of hyperbolic geometry

Hyperbolic space in d-dimensions is a fundamental example of a space exhibiting
hyperbolic geometry. It was developed independently by Lobachevsky and Bolyai around
1830 (see [41]), and most likely by Gauss and Schweikart (although they never
published this result), even earlier (see chapter 6 in [30]). It is a geometry analogous
to Euclidean geometry, but such that Euclid’s parallel postulate is no longer assumed to
hold.

There are several models of d-dimensional hyperbolic space including the Klein (see
figure 1), Poincaré (see figure 2), hyperboloid, upper-half space and hemisphere models (see
[40]). The hyperboloid model for d-dimensional hyperbolic geometry is closely related to
the Klein and Poincaré models: each can be obtained projectively from the others. The upper-
half space and hemisphere models can be obtained from one another by inversions with the
Poincaré model (see section 2.2 in [40]). The model we will be focusing on in this paper is the
hyperboloid model.

The hyperboloid model, also known as the Minkowski or Lorentz models, is a model
of d-dimensional hyperbolic geometry in which points are represented by the upper sheet
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Figure 1. This figure is a graphical depiction of stereographic projection from the hyperboloid
model to the Klein model of hyperbolic space.

(submanifold) S+ of a two-sheeted hyperboloid embedded in the Minkowski space Rd,1. The
Minkowski space is a (d +1)-dimensional pseudo-Riemannian manifold which is a real finite-
dimensional vector space, with coordinates given by x = (x0, x1, . . . , xd ). It is equipped with a
nondegenerate, symmetric bilinear form, the Minkowski bilinear form [·, ·] : Rd,1 ×Rd,1 → R
defined such that

[x, y] := x0y0 − x1y1 − · · · − xdyd .

The above bilinear form is symmetric, but not positive-definite, so it is not an inner
product. It is defined analogously with the Euclidean inner product (·, ·) : Rd+1 × Rd+1 → R
defined such that

(x, y) := x0y0 + x1y1 + · · · + xdyd .

The variety [x, x] = x2
0 − x2

1 − · · ·− x2
d = R2 for x ∈ Rd,1, using the language of Beltrami

[3] (see also p 504 in [42]), defines a pseudo-sphere of radius R. Points on the pseudo-sphere
with zero radius coincide with the cone. Points on the pseudo-sphere with radius greater
than zero lie within this cone, and points on the pseudo-sphere with purely imaginary radius
lie outside the cone. The upper sheets of the positive radii pseudo-spheres are maximally
symmetric, simply connected, negative-constant sectional curvature (given by −1/R2; see for
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Figure 2. This figure is a graphical depiction of stereographic projection from the hyperboloid
model to the Poincaré model of hyperbolic space.

instance p 148 in [28]), d-dimensional Riemannian submanifolds, embedded and with induced
metric from the ambient Minkowski space Rd,1. For R ∈ (0,∞), we refer to the upper sheet
of this variety [x, x] = R2, with x ∈ Rd,1, as the R-radius hyperboloid Hd

R. Similarly, we refer
to the variety (x, x) = R2 for R > 0 and x ∈ Rd+1, as the R-radius hypersphere Sd

R which
is a maximally symmetric, simply connected, positive-constant sectional curvature (given by
1/R2) d-dimensional Riemannian submanifold, embedded and with induced metric from the
ambient Euclidean space. The Euclidean space Rd equipped with the Pythagorean norm is a
space with zero sectional curvature. We denote the unit radius hyperboloid by Hd := Hd

1 and
the unit radius hypersphere by Sd := Sd

1.
In our discussion of a fundamental solution for the Laplacian in the hyperboloid model of

hyperbolic geometry, we focus on the positive radius pseudo-sphere which can be parametrized
through subgroup-type coordinates, i.e. those which correspond to a maximal subgroup chain
O(d, 1) ⊃ · · · (see, for instance, [37]). There exist separable coordinate systems which
parametrize points on positive radius pseudo-spheres which cannot be constructed using
maximal subgroup chains, e.g. such as those which are analogous to parabolic coordinates,
etc. We will no longer discuss these.

Geodesic polar coordinates are coordinates which correspond to the maximal subgroup
chain given by O(d, 1) ⊃ O(d) ⊃ · · · . What we will refer to as standard geodesic polar
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coordinates correspond to the subgroup chain given by O(d, 1) ⊃ O(d) ⊃ O(d − 1) ⊃ · · · ⊃
O(2). Standard geodesic polar coordinates (see [34, 22]), similar to standard hyperspherical
coordinates in Euclidean space, can be given by

x0 = R cosh r
x1 = R sinh r cos θ1

x2 = R sinh r sin θ1 cos θ2
...
xd−2 = R sinh r sin θ1 · · · cos θd−2

xd−1 = R sinh r sin θ1 · · · sin θd−2 cos φ

xd = R sinh r sin θ1 · · · sin θd−2 sin φ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (1)

where r ∈ [0,∞), φ ∈ [0, 2π) and θi ∈ [0, π ] for 1 � i � d − 2.
The isometry group of the space Hd

R is the pseudo-orthogonal group SO(d, 1), the Lorentz
group in (d + 1)-dimensions. Hyperbolic space Hd

R can be identified with the quotient space
SO(d, 1)/SO(d). The isometry group acts transitively on Hd

R. That is, any point on the
hyperboloid can be carried, with the help of a Euclidean rotation of SO(d − 1), to the point
(cosh α, sinh α, 0, . . . , 0), and a hyperbolic rotation

x′
0 = −x1 sinh α + x0 cosh α

x′
1 = −x1 cosh α − x0 sinh α

}
maps that point to the origin (1, 0, . . . , 0) of the space.

In order to perform analysis on a fundamental solution of Laplace’s equation on the
hyperboloid, we need to describe how one computes distances in this space. One may
naturally compare distances on the positive radius pseudo-sphere through analogy with the
R-radius hypersphere. Distances on the hypersphere are simply given by arc lengths, angles
between two arbitrary vectors, from the origin, in the ambient Euclidean space. We consider the
d-dimensional hypersphere embedded in Rd+1. Points on the hypersphere can be parametrized
using hyperspherical coordinate systems. Any parametrization of the hypersphere Sd

R must have
(x, x) = x2

0 + · · · + x2
d = R2 with R > 0. The geodesic distance between two points on the

hypersphere s : Sd
R × Sd

R → [0,∞) is given by

s(x, x′) := Rγ = R cos−1

(
(x, x′)

(x, x)(x′, x′)

)
= R cos−1

(
1

R2
(x, x′)

)
. (2)

This is evident from the fact that the geodesics on Sd
R are great circles (i.e. intersections of Sd

R
with planes through the origin) with constant speed parametrizations (see p 82 in [28]).

Accordingly, we now look at the geodesic distance function on the d-dimensional positive
radius pseudo-sphere Hd

R. Distances between two points on the positive radius pseudo-sphere
are given by the hyperangle between two arbitrary vectors, from the origin, in the ambient
Minkowski space. Any parametrization of the hyperboloid Hd

R must have [x, x] = R2. The
geodesic distance d : Hd

R × Hd
R → [0,∞) between any two points on the hyperboloid is given

by

d(x, x′) := R cosh−1

(
[x, x′]

[x, x][x′, x′]

)
= R cosh−1

(
1

R2
[x, x′]

)
, (3)

where the inverse hyperbolic cosine with argument x ∈ (1,∞) is given by (see (4.37.19) in
[36])

cosh−1 x = log(x +
√

x2 − 1).

Geodesics on Hd
R are great hyperbolas (i.e. intersections of Hd

R with planes through the origin)
with constant speed parametrizations (see p 84 in [28]). We also define a global function
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ρ : Hd × Hd → [0,∞) which represents the projection of the global geodesic distance
function (3) on Hd

R onto the corresponding unit radius hyperboloid Hd , namely

ρ(̂x, x̂ ′) := d(x, x′)/R, (4)

where x̂ = x/R and x̂′ = x′/R. Note that when we refer to d (̂x, x̂ ′) below, we specifically
mean that projected distance given by (4).

2.2. Laplace’s equation and harmonics on the hyperboloid

Parametrizations of a submanifold embedded in either a Euclidean or Minkowski space are
given in terms of coordinate systems whose coordinates are curvilinear. These are coordinates
based on some transformation that converts the standard Cartesian coordinates in the ambient
space to a coordinate system with the same number of coordinates as the dimension of the
submanifold in which the coordinate lines are curved.

On a d-dimensional Riemannian manifold M (a manifold together with a Riemannian
metric g), the Laplace–Beltrami operator (Laplacian) � : Cp(M) → Cp−2(M), p � 2, in
curvilinear coordinates ξ = (ξ 1, . . . , ξ d ) is given by

� =
d∑

i, j=1

1√|g|
∂

∂ξ i

(√
|g|gi j ∂

∂ξ j

)
, (5)

where |g| = | det(gi j)|, the Riemannian structure is given by

ds2 =
d∑

i, j=1

gi j dξ i dξ j (6)

and
d∑

i=1

gkig
i j = δ

j
k,

where δ
j
i ∈ {0, 1} is the Kronecker delta defined for all i, j ∈ Z such that

δ
j
i :=

{
1 if i = j,
0 if i 	= j.

(7)

For a Riemannian submanifold, the relation between the metric tensor in the ambient space
and gi j of (5) and (6) is

gi j(ξ ) =
d∑

k,l=0

Gkl
∂xk

∂ξ i

∂xl

∂ξ j
.

On Hd
R, the ambient space is Minkowski, and therefore Gkl = diag(1,−1, . . . ,−1).

The set of all geodesic polar coordinate systems on the hyperboloid correspond to the many
ways one can put coordinates on a hyperbolic hypersphere, i.e. the Riemannian submanifold
U ⊂ Hd

R defined for a fixed x′ ∈ Hd
R such that d(x, x′) = b = const, where b ∈ (0,∞).

These are coordinate systems which correspond to maximal subgroup chains starting with
O(d, 1) ⊃ O(d) ⊃ · · ·, with standard geodesic polar coordinates given by (1) being only one
of them. (For a thorough description of these, see section X.5 in Vilenkin (1968) [42].) They
all share the property that they are described by d-variables: r ∈ [0,∞) plus (d − 1)-angles
each being given by the values [0, 2π), [0, π ], [−π/2, π/2] or [0, π/2] (see [25, 26]).

In any of the geodesic polar coordinate systems, the global geodesic distance between
any two points on the hyperboloid is given by (cf (3))

d(x, x′) = R cosh−1(cosh r cosh r′ − sinh r sinh r′ cos γ ), (8)

6
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where γ is the unique separation angle given in each hyperspherical coordinate system. For
instance, the separation angle in standard geodesic polar coordinates (1) is given by the formula

cos γ = cos(φ − φ′)
d−2∏
i=1

sin θi sin θi
′ +

d−2∑
i=1

cos θi cos θi
′

i−1∏
j=1

sin θ j sin θ j
′. (9)

Corresponding separation angle formulas for any geodesic polar coordinate system can be
computed using (2), (3), and the associated formulas for the appropriate inner-products. Note
that by making use of the isometry group SO(d, 1) to map x′ to the origin, then ρ = Rr for Hd

R
and in particular ρ = r for Hd . Hence, for the unit radius hyperboloid, there is no distinction
between the global geodesic distance and the radial parameter in a geodesic polar coordinate
system.

The Riemannian structure in a geodesic polar coordinate system on this submanifold is
given by

ds2 = R2(dr2 + sinh2 r dγ 2), (10)

where an appropriate expression for γ in a curvilinear coordinate system is given. If one
combines (1), (5), (9) and (10), then in a particular geodesic polar coordinate system, Laplace’s
equation on Hd

R is given by

� f = 1

R2

[
∂2 f

∂r2
+ (d − 1) coth r

∂ f

∂r
+ 1

sinh2 r
�Sd−1 f

]
= 0, (11)

where �Sd−1 is the corresponding Laplace–Beltrami operator on the unit radius hypersphere
Sd−1.

3. Green’s function in the hyperboloid model

3.1. Harmonics in geodesic polar coordinates

Geodesic polar coordinate systems partition Hd
R into a family of (d−1)-dimensional hyperbolic

hyperspheres, each with a geodesic radius Rr with r ∈ (0,∞) on which all possible
hyperspherical coordinate systems for Sd−1 may be used (see, for instance, [42]). One then
must also consider the limiting case for r = 0 to fill out all of Hd

R. In subgroup-type coordinate
systems, one can compute the normalized hyperspherical harmonics in that space by solving
the Laplace equation using separation of variables. This results in a general procedure which
is given explicitly in [25, 26]. These angular harmonics are given as general expressions
involving trigonometric functions, Gegenbauer polynomials and Jacobi polynomials.

The harmonics in geodesic polar coordinate systems are given in terms of a radial solution
multiplied by the angular harmonics. The angular harmonics are eigenfunctions of the Laplace–
Beltrami operator on Sd−1 which satisfy the following eigenvalue problem:

�Sd−1Y K
l (̂x) = −l(l + d − 2)Y K

l (̂x), (12)

where x̂ ∈ Sd−1, Y K
l (̂x) are normalized hyperspherical harmonics, l ∈ N0 is the angular

momentum quantum number, and K stands for the set of (d −2)-quantum numbers identifying
degenerate harmonics for each l. The degeneracy

(2l + d − 2)
(d − 3 + l)!

l!(d − 2)!
(see (9.2.11) in [42]) tells us how many linearly independent solutions exist for a particular l
value and dimension d. The hyperspherical harmonics are normalized such that∫

Sd−1
Y K

l (̂x)Y K′
l′ (̂x)dω = δl′

l δK′
K ,

7
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where dω is the Riemannian (volume) measure (see, for instance, section 3.4 in [21]) on
Sd−1 which is invariant under the isometry group SO(d) (cf (19)), and for x + iy = z ∈ C,
z = x − iy, represents complex conjugation. The generalized Kronecker delta δK′

K ∈ {0, 1}
(cf (7)) is defined such that it equals 1 if all of the (d − 2)-quantum numbers identifying
degenerate harmonics for each l coincide, and equals zero otherwise.

Since the angular solutions (hyperspherical harmonics) are well known (see, for instance,
chapter IX in [42] and chapter 11 in [15]), we will now focus on the radial solutions on Hd

R
in geodesic polar coordinates, which satisfy the following ordinary differential equation (cf
(11)) for all R ∈ (0,∞), namely

d2u

dr2
+ (d − 1) coth r

du

dr
− l(l + d − 2)

sinh2 r
u = 0.

Four solutions to this ordinary differential equation ud,l
1±, ud,l

2± : (1,∞) → C are given by

ud,l
1±(cosh r) = 1

sinhd/2−1 r
P±(d/2−1+l)

d/2−1 (cosh r)

and

ud,l
2±(cosh r) = 1

sinhd/2−1 r
Q±(d/2−1+l)

d/2−1 (cosh r),

where Pμ
ν , Qμ

ν : C \ (∞, 1] → C are associated Legendre functions of the first and second
kind, respectively (see, for instance, chapter 14 in [36]), namely ((8.1.2) in [1])

Pμ
ν (z) := 1

�(1 − μ)

[
z + 1

z − 1

]μ/2

2F1

(
−ν, ν + 1; 1 − μ; 1 − z

2

)
, (13)

where |1 − z| < 2 and ((8.1.3) in [1])

Qμ
ν (z) :=

√
πeiπμ�(ν + μ + 1)(z2 − 1)μ/2

2ν+1�(ν + 3
2 )zν+μ+1 2F1

(
ν + μ + 2

2
,
ν + μ + 1

2
; ν + 3

2
; 1

z2

)
, (14)

where |z| > 1. The Gauss hypergeometric function 2F1 : C2 × (C \ −N0) × {z ∈ C : |z| <

1} → C can be defined in terms of the following infinite series:

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n

n!(c)n
zn (15)

(see (2.1.5) in [2]), and (·)n : C → C is the Pochhammer symbol (rising factorial) defined by

(z)n :=
n∏

i=1

(z + i − 1),

where n ∈ N0. Note that

(z)n = �(z + n)

�(z)
for all z ∈ C \ −N0. The gamma function � : C \ −N0 → C (see chapter 5 in [36]), which is
ubiquitous in special function theory, and satisfies the following recurrence formula

�(z + 1) = z�(z), (16)

is an important combinatoric function which generalizes the factorial function over the natural
numbers (i.e. �(n + 1) = n! for n ∈ N0). It is naturally defined over the right-half complex
plane through Euler’s integral (see (5.2.1) in [36])

�(z) :=
∫ ∞

0
tz−1e−tdt,

8
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where Re z > 0. An important formula which the gamma function satisfies is the duplication
formula (i.e. (5.5.5) in [36])

�(2z) = 22z−1

√
π

�(z)�

(
z + 1

2

)
, (17)

provided 2z 	∈ −N0.

3.2. A fundamental solution of Laplace’s equation on the hyperboloid4

Due to the fact that the space Hd
R is homogeneous with respect to its isometry group, the

pseudo-orthogonal group SO(d, 1) and therefore an isotropic manifold, we expect that there
exists a fundamental solution of Laplace’s equation on this space with spherically symmetric
(pure radial and constant angular) dependence. We specifically expect these solutions be given
in terms of the associated Legendre function of the second kind with an argument given by
cosh r. This associated Legendre function naturally fits our requirements because it is singular
at r = 0 and vanishes at infinity, whereas the associated Legendre function of the first kind,
with the same argument, is regular at r = 0 and singular at infinity.

In computing a fundamental solution of the Laplacian on Hd
R, we know that

−�Hd
R(x, x′) = δg(x, x′), (18)

where g is the Riemannian metric on Hd
R and δg(x, x′) is the Dirac delta function on the

manifold Hd
R. The Dirac delta function is defined for an open set U ⊂ Hd

R with x, x′ ∈ Hd
R

such that ∫
U

δg(x, x′)dvolg =
{

1 if x′ ∈ U,

0 if x′ /∈ U,

where dvolg is the Riemannian (volume) measure, invariant under the isometry group SO(d, 1)

of the Riemannian manifold Hd
R, given in standard geodesic polar coordinates by

dvolg = Rd sinhd−1 r dr dω := Rd sinhd−1 r dr sind−2 θd−1 · · · sin θ2 dθ1 · · · dθd−1. (19)

Note that as r → 0+, dvolg goes to the Euclidean measure, invariant under the
Euclidean motion group E(d), in standard hyperspherical coordinates. Therefore, in standard
hyperspherical coordinates, we have the following:

δg(x, x′) = δ(r − r′)
Rd sinhd−1 r′

δ(θ1 − θ ′
1) · · · δ(θd−1 − θ ′

d−1)

sin θ ′
2 · · · sind−2 θ ′

d−1

. (20)

In general, since we can add any harmonic function to a fundamental solution of the
Laplacian and still have a fundamental solution, we will use this freedom to make our
fundamental solution as simple as possible. It is reasonable to expect that there exists a
particular spherically symmetric fundamental solution Hd

R(x, x′) on the hyperboloid with
pure radial ρ(̂x, x̂′) = d(x, x′)/R (cf (4)) and constant angular dependence (invariant under
rotations centered about the origin), due to the influence of the point-like nature of the Dirac
delta function. For a spherically symmetric solution to the Laplace equation, the corresponding
�Sd−1 term vanishes since only the l = 0 term survives. In other words, we expect that there
exists a fundamental solution of Laplace’s equation such that, aside from a multiplicative
constant which depends on R and d, Hd

R(x, x′) = f (ρ).
We have proven that on the R-radius hyperboloid Hd

R, a Green’s function for the Laplace
operator (fundamental solution for the Laplacian) can be given as follows.

4 An interesting history for this problem in low dimensions can be found in [39].
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Theorem 3.1. Let d ∈ {2, 3, . . .}. Define Id : (0,∞) → R as

Id(ρ) :=
∫ ∞

ρ

dx

sinhd−1 x
,

x, x′ ∈ Hd
R and Hd

R : (Hd
R × Hd

R) \ {(x, x) : x ∈ Hd
R} → R defined such that

Hd
R(x, x′) := � (d/2)

2πd/2Rd−2
Id(ρ),

where ρ := cosh−1 ([̂x, x̂′]
)

is the geodesic distance between x̂ and x̂′ on the pseudo-sphere of
unit radius Hd, with x̂ = x/R, x̂′ = x′/R; then, Hd

R is a fundamental solution for −� where
� is the Laplace–Beltrami operator on Hd

R. Moreover,

Id(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)d/2−1 (d − 3)!!

(d − 2)!!

[
log coth

ρ

2
+ cosh ρ

d/2−1∑
k=1

(2k − 2)!!(−1)k

(2k − 1)!! sinh2k ρ

]
if d even,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(d−1)/2

[
(d − 3)!!

(d − 2)!!

+
(

d − 3

2

)
!

(d−1)/2∑
k=1

(−1)k coth2k−1 ρ

(2k − 1)(k − 1)!((d − 2k − 1)/2)!

]
or

(−1)(d−1)/2 (d − 3)!!

(d − 2)!!

[
1 + cosh ρ

(d−1)/2∑
k=1

(2k − 3)!!(−1)k

(2k − 2)!! sinh2k−1 ρ

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
if d odd,

= 1

(d − 1) coshd−1 ρ
2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
,

= 1

(d − 1) cosh ρ sinhd−2 ρ
2F1

(
1

2
, 1; d + 1

2
; 1

cosh2 ρ

)
,

= e−iπ(d/2−1)

2d/2−1� (d/2) sinhd/2−1 ρ
Qd/2−1

d/2−1(cosh ρ),

where !! is the double factorial, 2F1 is the Gauss hypergeometric function and Qμ
ν is the

associated Legendre function of the second kind.

In the rest of this section, we develop the material in order to prove this theorem.
Due to the fact that the space Hd

R is homogeneous with respect to its isometry group
SO(d, 1), and therefore an isotropic manifold, without loss of generality, we are free to map
the point x′ ∈ Hd

R to the origin. In this case, the global distance function ρ coincides with the
radial parameter r in geodesic polar coordinates, and we may interchange r with ρ accordingly
(cf (8) with r′ = 0) in our representation of a fundamental solution for Laplace’s equation on
this manifold. Since a spherically symmetric choice for a fundamental solution of Laplace’s
equation is harmonic everywhere except at the origin, we may first set g = f ′ in (11) and solve
the first-order equation

g′ + (d − 1) coth ρ g = 0,

which is integrable and clearly has the general solution

g(ρ) = d f

dρ
= c0 sinh1−d ρ, (21)

where c0 ∈ R is a constant. Now we integrate (21) to obtain a fundamental solution for the
Laplacian on Hd

R

Hd
R(x, x′) = c0Id(ρ) + c1, (22)

10
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where

Id(ρ) :=
∫ ∞

ρ

dx

sinhd−1 x
, (23)

and c0, c1 ∈ R are constants which depend on d and R. This definite integral result is mentioned
in section II.5 of [23] as well as in [31] (see also example 4 in [13]). Note that we can add
any harmonic function to (22) and still have a fundamental solution of the Laplacian since a
fundamental solution of the Laplacian must satisfy∫

Hd
R

(−�ϕ)(x′)Hd
R(x, x′) dvol′g = ϕ(x)

for all ϕ ∈ D(Hd
R), where D is the space of test functions, and dvol′g is the Riemannian

(volume) measure on Hd
R in the primed coordinates. In particular, we note from our definition

of Id (23) that

lim
ρ→∞ Id(ρ) = 0.

Therefore, it is convenient to set c1 = 0 leaving us with

Hd
R(x, x′) = c0Id(ρ). (24)

On Euclidean space Rd , a Green’s function for Laplace’s equation (fundamental solution
for the Laplacian) is well known and is given in the following theorem (see for instance [16]
p 94; [18] p 17; [4] p 211).

Theorem 3.2. Let d ∈ N. Define

Gd(x, x′) =

⎧⎪⎪⎨⎪⎪⎩
�(d/2)

2πd/2(d − 2)
‖x − x′‖2−d if d = 1 or d � 3,

1

2π
log ‖x − x′‖−1 if d = 2;

then, Gd is a fundamental solution for −� on the Euclidean space Rd, where � is the Laplace
operator on Rd.

Note most authors only present the above theorem for the case d � 2 but it is easily
verified to also be valid for the case d = 1.

The hyperboloid Hd
R, being a manifold, must behave locally like Euclidean space Rd .

Therefore, for small ρ we have eρ � 1 + ρ and e−ρ � 1 − ρ and in that limiting regime

Id(ρ) ≈
∫ 1

ρ

dx

xd−1
�

⎧⎪⎨⎪⎩
− log ρ if d = 2,

1

ρd−2
if d � 3,

which has exactly the same singularity as a Euclidean fundamental solution for Laplace’s
equation. Therefore, the proportionality constant c0 is obtained by matching locally to a
Euclidean fundamental solution of Laplace’s equation

Hd
R = c0Id � Gd,

near the singularity located at x = x′.
We have shown how to compute a fundamental solution of the Laplace–Beltrami operator

on the hyperboloid in terms of an improper integral (23). We would now like to express this
integral in terms of well-known special functions. In low dimensions, a fundamental solution
Id can be straightforwardly computed using elementary methods through (23). In d = 2, we
have

I2(ρ) =
∫ ∞

ρ

dx

sinh x
= 1

2
log

cosh ρ + 1

cosh ρ − 1
= log coth

ρ

2
,

11
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and in d = 3 we have

I3(ρ) =
∫ ∞

ρ

dx

sinh2 x
= e−ρ

sinh ρ
= coth ρ − 1.

This exactly matches up to that given by (3.27) in [24]. In d ∈ {4, 5, 6, 7}, we have

I4(ρ) = − 1

2
log coth

ρ

2
+ cosh ρ

2 sinh2 ρ
,

I5(ρ) = 1

3
(coth3 ρ − 1) − (coth ρ − 1),

I6(ρ) = 3

8
log coth

ρ

2
+ cosh ρ

4 sinh4 ρ
− 3 cosh ρ

8 sinh2 ρ
and

I7(ρ) = 1

5
(coth5 ρ − 1) − 2

3
(coth3 ρ − 1) + coth ρ − 1.

Now we prove several equivalent finite summation expressions for Id(ρ). We wish to
compute the antiderivative Im : (0,∞) → R, which is defined as

Im(x) :=
∫

dx

sinhm x
,

where m ∈ N. This antiderivative satisfies the following recurrence relation:

Im(x) = − cosh x

(m − 1) sinhm−1 x
− (m − 2)

(m − 1)
Im−2(x), (25)

which follows from the identity
1

sinhm x
= cosh x

sinhm x
cosh x − 1

sinhm−2 x
and integration by parts. The antiderivative Im(x) naturally breaks into two separate classes,
namely∫

dx

sinh2n+1 x
= (−1)n+1 (2n − 1)!!

(2n)!!

[
log coth

x

2
+ cosh x

n∑
k=1

(2k − 2)!!(−1)k

(2k − 1)!! sinh2k x

]
+ C (26)

and

∫
dx

sinh2n x
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)n+1 (2n − 2)!!

(2n − 1)!!
cosh x

n∑
k=1

(2k − 3)!!(−1)k

(2k − 2)!! sinh2k−1 x
+ C or

(−1)n+1(n − 1)!
n∑

k=1

(−1)k coth2k−1 x

(2k − 1)(k − 1)!(n − k)!
+ C,

(27)

where C is a constant and the double factorial (·)!! : {−1, 0, 1, . . .} → N is defined by

n!! :=

⎧⎪⎨⎪⎩
n · (n − 2) · · · 2 if n even � 2,

n · (n − 2) · · · 1 if n odd � 1,

1 if n ∈ {−1, 0}.
Note that (2n)!! = 2nn! for n ∈ N0. The finite summation formulas for Im(x) all follow
trivially by induction using (25) and the binomial expansion (cf (1.2.2) in [36]):

(1 − coth2 x)n = n!
n∑

k=0

(−1)k coth2k x

k!(n − k)!
.

12
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Formulas (26) and (27) are essentially equivalent to (2.416.2–3) in [45], except (2.416.3)
which is not defined for the integrand 1/ sinh x. By applying the limits of integration from
the definition of Id(ρ) in (23) to (26) and (27) we obtain the following finite summation
expressions for Id(ρ) :

Id(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)d/2−1 (d − 3)!!

(d − 2)!!

[
log coth

ρ

2
+ cosh ρ

d/2−1∑
k=1

(2k − 2)!!(−1)k

(2k − 1)!! sinh2k ρ

]
if d even,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)(d−1)/2

[
(d − 3)!!

(d − 2)!!

+
(

d − 3

2

)
!

(d−1)/2∑
k=1

(−1)k coth2k−1 ρ

(2k − 1)(k − 1)!((d − 2k − 1)/2)!

]
or

(−1)(d−1)/2 (d − 3)!!

(d − 2)!!

[
1 + cosh ρ

(d−1)/2∑
k=1

(2k − 3)!!(−1)k

(2k − 2)!! sinh2k−1 ρ

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
if d odd.

(28)

Moreover, the antiderivative (indefinite integral) can be given in terms of the Gauss
hypergeometric function (15) as∫

dρ

sinhd−1 ρ
= −1

(d − 1) coshd−1 ρ
2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
+ C, (29)

where the constant C ∈ R. The antiderivative (29) is verified as follows. By using
d

dz
2F1(a, b; c; z) = ab

c
2F1(a + 1, b + 1; c + 1; z)

(see (15.5.1) in [36]), and the chain rule, we can show that
d

dρ

−1

(d − 1) coshd−1 ρ
2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
= sinh ρ

coshd ρ
2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
+ d sinh ρ

(d + 1) coshd+2 ρ
2F1

(
d + 1

2
,

d + 2

2
; d + 3

2
; 1

cosh2 ρ

)
.

The second hypergeometric function can be simplified using Gauss’ relations for contiguous
hypergeometric functions, namely

z 2F1(a + 1, b + 1; c + 1; z) = c

a − b
[2F1(a, b + 1; c; z) − 2F1(a + 1, b; c; z)]

(see p 58 in [14]) and

2F1(a, b + 1; c; z) = b − a

b
2F1(a, b; c; z) + a

b
2F1(a + 1, b; c; z)

(see (15.5.12) in [36]). By doing this, the term with the hypergeometric function cancels
leaving only a term which is proportional to a binomial through

2F1(a, b; b; z) = (1 − z)−a

(see (15.4.6) in [36]), which reduces to 1/ sinhd−1 ρ. By applying the limits of integration
from the definition of Id(ρ) in (23) to (29) we obtain the following Gauss hypergeometric
representation:

Id(ρ) = 1

(d − 1) coshd−1 ρ
2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
. (30)

13
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Using (30), we can write another expression for Id(ρ). Applying Euler’s transformation

2F1(a, b; c; z) = (1 − z)c−a−b
2F1 (c − a, c − b; c; z)

(see (2.2.7) in [2]) to (30) produces

Id(ρ) = 1

(d − 1) cosh ρ sinhd−2 ρ
2F1

(
1

2
, 1; d + 1

2
; 1

cosh2 ρ

)
.

Our derivation for a fundamental solution of Laplace’s equation on the R-radius
hyperboloid Hd

R in terms of the associated Legendre function of the second kind is as follows.
By starting with (30) and the definition of the associated Legendre function of the second kind
(14), we derive

2F1

(
d − 1

2
,

d

2
; d + 1

2
; 1

cosh2 ρ

)
= 2d/2�

(
d+1

2

)
coshd−1 ρ√

πeiπ(d/2−1)(d − 2)! sinhd/2−1 ρ
Qd/2−1

d/2−1(cosh ρ). (31)

We have therefore verified that the harmonics computed in section 3.1, namely ud,0
2+ , give

an alternate form of a fundamental solution for the Laplacian on the hyperboloid. Using the
duplication formula for gamma functions (17), (30) and (31), we derive

Id(ρ) = e−iπ(d/2−1)

2d/2−1� (d/2) sinhd/2−1 ρ
Qd/2−1

d/2−1(cosh ρ).

Note that our chosen fundamental solutions of the Laplacian on the hyperboloid have the
property that they tend toward zero at infinity (even for the d = 2 case, unlike a Euclidean
fundamental solution of the Laplacian). Therefore, these Green’s functions are positive (see
[19, 20]) and therefore Hd

R is not parabolic. Note that as a result of our proof, we see that
the relevant associated Legendre functions of the second kind for d ∈ {2, 3, 4, 5, 6, 7} are
(cf (28))

Q0(cosh ρ) = log coth
ρ

2
,

1

sinh1/2 ρ
Q1/2

1/2(cosh ρ) = i

√
π

2
(coth ρ − 1),

1

sinh ρ
Q1

1(cosh ρ) = log coth
ρ

2
− cosh ρ

sinh2 ρ
,

1

sinh3/2 ρ
Q3/2

3/2(cosh ρ) = 3i

√
π

2

(
−1

3
coth3 ρ + coth ρ − 2

3

)
,

1

sinh2 ρ
Q2

2(cosh ρ) = 3 log coth
ρ

2
− 2

cosh ρ

sinh4 ρ
− 3

cosh ρ

sinh2 ρ
, and

1

sinh5/2 ρ
Q5/2

5/2(cosh ρ) = 15i

√
π

2

(
1

15
coth5 ρ − 2

3
coth3 ρ + coth ρ − 8

15

)
.

The constant c0 in a fundamental solution for the Laplace operator on the hyperboloid
(24) is computed by locally matching up the singularity to a fundamental solution for the
Laplace operator in Euclidean space, theorem 3.2. The coefficient c0 depends on d and R.
It is determined as follows. For d � 3 we take the asymptotic expansion for c0Id(ρ) as ρ

approaches zero and match this to a fundamental solution of Laplace’s equation for Euclidean
space given in theorem 3.2. This yields

c0 = � (d/2)

2πd/2
. (32)

14
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For d = 2 we take the asymptotic expansion for

c0I2(ρ) = c0 log coth
ρ

2
� c0 log ‖x − x′‖−1,

where x, x′ ∈ Rd, as ρ approaches zero, and match this to G2(x, x′) = (2π)−1 log ‖x − x′‖−1;
therefore, c0 = (2π)−1. This exactly matches (32) for d = 2. The derivation that Id(ρ) is
a fundamental solution of the Laplace operator on the hyperboloid Hd and the functions for
Id(ρ) are computed above.

As mentioned earlier, the sectional curvature of a pseudo-sphere of radius R > 0 is
−1/R2. Hence, using results in [31], all equivalent expressions in theorem 3.1 can be used for
a fundamental solution of the Laplace–Beltrami operator on the R-radius hyperboloid Hd

R (cf
section 2.1), namely

Hd
R(x, x′) := � (d/2)

2πd/2Rd−2
Id (ρ).

The proof of theorem 3.1 is complete.
Furthermore, due to a theorem proved in [31], all equivalent expressions for Id(ρ) in

theorem 3.1 represent upper bounds for a fundamental solution of the Laplace–Beltrami
operator on non-compact Riemannian manifolds with negative sectional curvature not
exceeding −1/R2 with R > 0.

We would also like to mention that a similar computation for a fundamental solution of
Laplace’s equation on the positive-constant sectional curvature compact manifold, the R-radius
hypersphere, has recently been computed in [7].

3.3. Uniqueness of fundamental solution in terms of decay at infinity

It is clear that in general a fundamental solution of Laplace’s equation in the hyperboloid
model of hyperbolic geometry Hd

R is not unique since one can add any harmonic function
h : Hd

R → R to Hd
R and still obtain a solution to (18), since h is in the kernel of −�.

Note. It has been pointed out by an anonymous referee that the following result, the
existence of unique minimal Green’s function on Hd

R, is not new and has been proven in [29]
using compact exhaustions and maximum principles as in this paper. See also [38].

Proposition 3.3. There exists precisely one C∞-function H : (Hd
R ×Hd

R)\{(x, x) : x ∈ Hd
R} →

R such that for all x′ ∈ Hd
R the function Hx′ : Hd

R \ {x′} → R defined by Hx′ (x) := H(x, x′) is
a distribution on Hd

R with

−�Hx′ = δg(·, x′)

and

lim
d(x,x′ )→∞

Hx′ (x) = 0, (33)

where d(x, x′) is the geodesic distance between two points x, x′ ∈ Hd
R.

Proof. Existence: clear. Uniqueness. Suppose H and H̃ are two such functions. Let x′ ∈ Hd
R.

Define the C∞-function h : Hd
R \ {x′} → R by h = Hx′ − H̃x′ . Then, h is a distribution on Hd

R
with −�h = 0. Since Hd

R is locally Euclidean, one has by local elliptic regularity that h can
be extended to a C∞-function ĥ : Hd

R → R. It follows from (33) for H and H̃ that

lim
d(x,x′ )→∞

ĥ(x) = 0. (34)

15
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The strong elliptic maximum/minimum principle on a Riemannian manifold for a bounded
domain � states that if u is harmonic, then the supremum/infimum of u in � coincides with
the supremum/infimum of u on the boundary ∂�. By using a compact exhaustion sequence
�k in a non-compact connected Riemannian manifold and passing to a subsequence xk ∈ ∂�k

such that xk → ∞, the strong elliptic maximum/minimum principle can be extended to
non-compact connected Riemannian manifolds with boundary conditions at infinity (see, for
instance, section 8.3.2 in [21]). Taking �k ⊂ Hd

R, the strong elliptic maximum/minimum
principle for non-compact connected Riemannian manifolds implies using (34) that ĥ = 0.
Therefore, h = 0 and H(x, x′) = H̃(x, x′) for all x ∈ Hd

R \ {x′}. �
By proposition 3.3, for d � 2, the function Hd

R is the unique normalized fundamental
solution of Laplace’s equation which satisfies the vanishing decay (33).

4. Fourier expansions for Green’s function on the hyperboloid

Now we compute the Fourier expansions for a fundamental solution of the Laplace–Beltrami
operator on Hd

R.

4.1. Fourier expansion for a fundamental solution of the Laplacian on H2
R

A generating function for Chebyshev polynomials of the first kind ([17], p 51) is given by

1 − z2

1 + z2 − 2xz
=

∞∑
n=0

εnTn(x)zn, (35)

where |z| < 1, Tn : [−1, 1] → R is the Chebyshev polynomial of the first kind defined as

Tn(x) := 2F1

(
−n, n; 1

2
; 1 − x

2

)
(36)

(see for instance section 5.7.2 in [32]: note that Tn(cos ψ) = cos(nψ)) and εn := 2 − δ0
n is

the Neumann factor (see p 744 in [33]), commonly occurring in Fourier cosine series. If one
substitutes z = e−η with η ∈ (0,∞) in (35), then we obtain

sinh η

cosh η − cos ψ
=

∞∑
n=0

εn cos(nψ) e−nη. (37)

Integrating both sides of (37) with respect to η, we obtain the following generating function
(cf [32], p 259):

log(1 + z2 − 2z cos ψ) = −2
∞∑

n=1

cos(nψ)

n
zn. (38)

If we take z = r</r> in (38), where r≶ := min
max {r, r′} with r, r′ ∈ [0,∞), then using polar

coordinates, we can derive the Fourier expansion for a fundamental solution of the Laplacian
in Euclidean space for d = 2 (cf theorem 3.2), namely

g2 := log ‖x − x′‖ = log r> −
∞∑

n=1

cos(n(φ − φ′))
n

(
r<

r>

)n

, (39)

where g2 = −2πG2 (cf theorem 3.2). On the hyperboloid for d = 2, we have a fundamental
solution of Laplace’s equation given by

h2 := log coth
1

2
d (̂x, x̂ ′) = 1

2
log

cosh d (̂x, x̂ ′) + 1

cosh d (̂x, x̂ ′) − 1
,

16
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where h2 = 2πH2
R (cf theorem 3.1 and (52) below). Note that because of the Rd−2 dependence

for a fundamental solution of Laplace’s equation for d = 2 in theorem 3.1, there is no strict
dependence on R for H2

R or h2, but will retain the notation nonetheless. In standard geodesic
polar coordinates on H2

R (cf (1)), using (8) and cos γ = cos(φ − φ′) (cf (9)) produces

cosh d (̂x, x̂′) = cosh r cosh r′ − sinh r sinh r′ cos(φ − φ′);
therefore,

h2 = 1

2
log

cosh r cosh r′ + 1 − sinh r sinh r′ cos(φ − φ′)
cosh r cosh r′ − 1 − sinh r sinh r′ cos(φ − φ′)

.

Replacing ψ = φ − φ′ and rearranging the logarithms yield

h2 = 1

2
log

cosh r cosh r′ + 1

cosh r cosh r′ − 1
+ 1

2
log (1 − z+ cos ψ) − 1

2
log (1 − z− cos ψ),

where

z± := sinh r sinh r′

cosh r cosh r′ ± 1
.

Note that z± ∈ (0, 1) for r, r′ ∈ (0,∞). We have the following MacLaurin series:

log(1 − x) = −
∞∑

n=1

xn

n
,

where x ∈ [−1, 1). Therefore, away from the singularity at x = x′ we have

λ± := log (1 − z± cos ψ) = −
∞∑

k=1

zk
±
k

cosk ψ. (40)

We can expand powers of the cosine function using the following trigonometric identity:

cosk ψ = 1

2k

k∑
n=0

(
k
n

)
cos[(2n − k)ψ],

which is the standard expansion for powers using Chebyshev polynomials of the first kind
(see, for instance, p 52 in [17]). Inserting this expression in (40), we obtain the following
double-summation expression:

λ± = −
∞∑

k=1

k∑
n=0

zk
±

2kk

(
k
n

)
cos[(2n − k)ψ]. (41)

Now we perform a double-index replacement in (41). We break this sum into two separate
sums, one for k � 2n and another for k � 2n. There is an overlap when both sums satisfy the
equality, and in that situation, we must halve after we sum over both sums. If k � 2n, make
the substitution k′ = k − n and n′ = 2n − k. It follows that k = 2k′ + n′ and n = n′ + k′;
therefore, (

k
n

)
=
(

2k′ + n′

n′ + k′

)
=
(

2k′ + n′

n′ + k′

)
.

If k � 2n make the substitution k′ = n and n′ = k − 2n. Then, k = 2k′ + n′ and n = k′;
therefore, (

k
n

)
=
(

2k′ + n′

n

)
=
(

2k′ + n′

k′ + n′

)
,

where the equalities of the binomial coefficients are confirmed using the following identity:(
n
k

)
=
(

n
n − k

)
,
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where n, k ∈ Z, except where k < 0 or n − k < 0. To take into account the double-counting
which occurs when k = 2n (which occurs when n′ = 0), we introduce a factor of εn′/2 into
the expression (and relabel k′ �→ k and n′ �→ n). We are left with

λ± = −1

2

∞∑
k=1

z2k
±

2kk

(
2k
k

)
− 2

∞∑
n=1

cos(nψ)

∞∑
k=0

z2k+n
±

22k+n(2k + n)

(
2k + n

k

)
. (42)

If we substitute(
2k
k

)
= 22k

(
1
2

)
k

k!
,

into the first term of (42), then we obtain

I± := −1

2

∞∑
k=1

(
1
2

)
k

z2k
±

k!k
= −

∫ z±

0

dz′
±

z′±

∞∑
k=1

(
1
2

)
k

z′
±

2k

k!
= −

∫ z±

0

dz′
±

z′±

⎡⎣ 1√
1 − z′±

2
− 1

⎤⎦ .

We are left with

I± = − log 2 + log

(
1 +

√
1 − z2±

)
= − log 2 + log

(
(cosh r> ± 1)(cosh r< + 1)

cosh r cosh r′ ± 1

)
.

If we substitute(
2k + n

k

)
= 22k

(
n+1

2

)
k

(
n+2

2

)
k

k!(n + 1)k
,

into the second term of (42), then the Fourier coefficient reduces to

J± := 1

2n−1

∞∑
k=0

(
n+1

2

)
k

(
n+2

2

)
k

k!(n + 1)k

z2k+n
±

2k + n

= 1

2n−1

∫ z±

0
dz′

±z′
±

n−1
∞∑

k=0

(
n+1

2

)
k

(
n+2

2

)
k

k!(n + 1)k
z′
±

2k
.

The series in the integrand is a Gauss hypergeometric function which can be given as
∞∑

k=0

(
n+1

2

)
k

(
n+2

2

)
k

k!(n + 1)k
z2k = 2nn!

zn
√

1 − z2
P−n

0

(√
1 − z2

)
,

where P−n
0 is the associated Legendre function of the first kind with vanishing degree and

order given by −n (cf (13) and (8.3.2) in [1]). The above formula is also a consequence of

2F1

(
a, b; a + b − 1

2
; x

)
= 22+b−3/2�

(
a + b − 1

2

)
x(3−2a−2b)/4

√
1 − x

P3/2−a−b
b−a−1/2

(√
1 − x

)
,

where x ∈ (0, 1) (see, for instance, [32], p 53), and the Legendre function of the first kind is
evaluated using (cf (8.1.2) in [1])

P−n
0 (x) = 1

n!

(
1 − x

1 + x

)n/2

,

where n ∈ N0. Therefore, the Fourier coefficient is given by

J± = 2
∫ 1

√
1−z2±

dz′
±

1 − z′±
2

(
1 − z′

±
1 + z′±

)n/2

= 2

n

⎡⎣1 −
√

1 − z2±

1 +
√

1 − z2±

⎤⎦n/2

.
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Finally we have

λ± = − log 2 + log

(
(cosh r> ± 1)(cosh r< + 1)

cosh r cosh r′ ± 1

)
−2

∞∑
n=1

cos(nψ)

n

[
(cosh r> ∓ 1)(cosh r< − 1)

(cosh r> ± 1)(cosh r< + 1)

]n/2

,

and the Fourier expansion for a fundamental solution of Laplace’s equation for the d = 2
hyperboloid is given by

h2 = 1

2
log

cosh r> + 1

cosh r> − 1
+

∞∑
n=1

cos(n(φ − φ′))
n

[
cosh r< − 1

cosh r< + 1

]n/2

×
{[

cosh r> + 1

cosh r> − 1

]n/2

−
[

cosh r> − 1

cosh r> + 1

]n/2
}

. (43)

This exactly matches up to the Euclidean Fourier expansion g2 (39) as r, r′ → 0+.

4.2. Fourier expansion for a fundamental solution of the Laplacian on H3
R

The Fourier expansion for a fundamental solution of the Laplacian in three-
dimensional Euclidean space (here given in standard spherical coordinates x =
(r sin θ cos φ, r sin θ sin φ, r cos θ )) is given by (cf theorem 3.2, and see (1.3) in [9])

g3 := 1

‖x − x′‖

= 1

π
√

rr′ sin θ sin θ ′

∞∑
m=−∞

eim(φ−φ′ )Qm−1/2

(
r2 + r′2 − 2rr′ cos θ cos θ ′

2rr′ sin θ sin θ ′

)
,

where g3 = 4πG3. These associated Legendre functions, toroidal harmonics, are given in
terms of complete elliptic integrals of the first and second kind (cf (22–26) in [10]). Since
Q−1/2(z) is given through (cf (8.13.3) in [1])

Q−1/2(z) =
√

2

z + 1
K

(√
2

z + 1

)
,

the m = 0 component for g3 is given by

g3
∣∣
m=0 = 2

π
√

r2 + r′2 − 2rr′ cos(θ + θ ′)
K

(√
4rr′ sin θ sin θ ′

r2 + r′2 − 2rr′ cos(θ + θ ′)

)
(44)

(see (51) for the definition of the complete elliptic integral of the first kind K). A fundamental
solution of the Laplacian in standard geodesic polar coordinates on H3

R is given by (cf theorem
3.1 and (52) below)

h3 (̂x, x̂′) := coth d (̂x, x̂′) − 1 = cosh d (̂x, x̂′)√
cosh2 d (̂x, x̂′) − 1

− 1

= cosh r cosh r′ − sinh r sinh r′ cos γ√
(cosh r cosh r′ − sinh r sinh r′ cos γ )2 − 1

− 1,

where h3 = 4πRH3
R and x, x′ ∈ H3

R, such that x̂ = x/R and x̂′ = x′/R. In standard geodesic
polar coordinates (cf (9)), we have

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (45)
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Replacing ψ = φ − φ′ and defining

A := cosh r cosh r′ − sinh r sinh r′ cos θ cos θ ′

and

B := sinh r sinh r′ sin θ sin θ ′,

we have in the standard manner, the Fourier coefficients H1/2
m : [0,∞)2 × [0, π ]2 → R of the

expansion (cf (53))

h3 (̂x, x̂′) =
∞∑

m=0

cos(m(φ − φ′))H1/2
m (r, r′, θ, θ ′), (46)

defined by

H1/2
m (r, r′, θ, θ ′) := −δ0

n + εm

π

∫ π

0

(A/B − cos ψ) cos(mψ) dψ√(
cos ψ − A+1

B

) (
cos ψ − A−1

B

) . (47)

If we make the substitution x = cos ψ , this integral can be converted into

H1/2
m (r, r′, θ, θ ′) = −δ0

n + εm

π

∫ 1

−1

(A/B − x) Tm(x) dx√
(1 − x)(1 + x)

(
x − A+1

B

) (
x − A−1

B

) , (48)

where Tm(x) is the Chebyshev polynomial of the first kind (cf (36)). Since Tm(x) is expressible
as a finite sum over powers of x, (48) involves the square root of a quartic multiplied by a
rational function of x, which by definition is an elliptic integral (see, for instance, [5]). We can
directly compute (48) using [5] (253.11). If we define

d := −1, y := −1, c := 1, b := A − 1

B
, a := A + 1

B
, (49)

(clearly d � y < c < b < a), then we can express the Fourier coefficient (48), as a linear
combination of integrals, each of the form (see [5], (253.11))∫ c

y

xp dx√
(a − x)(b − x)(c − x)(x − d)

= cpg
∫ u1

0

[
1 − α2

1sn2u

1 − α2sn2u

]p

du, (50)

where p ∈ {0, . . . , m + 1}. In this expression, sn is a Jacobi elliptic function (see for instance,
chapter 22 in [36]).

Byrd and Friedman [5] gave a procedure for computing (50) for all m ∈ N0. These
integrals will be given in terms of complete elliptic integrals of the first three kinds (see the
discussion in [5], p 201, 204 and 205). To this effect, we have the following definitions from
(253.11) in [5]:

α2 = c − d

b − d
< 1,

α2
1 = b(c − d)

c(b − d)
,

g = 2√
(a − c)(b − d)

,

ϕ = sin−1

√
(b − d)(c − y)

(c − d)(b − y)
,

u1 = F(ϕ, k),

k2 = (a − b)(c − d)

(a − c)(b − d)
,

20



J. Phys. A: Math. Theor. 45 (2012) 145206 H S Cohl and E G Kalnins

where k2 < α2, and F : [0, π/2] × [0, 1) → R is Legendre’s incomplete elliptic integral of
the first kind which can be defined through the following definite integral (see for instance
section 19.2(ii) in [36]):

F(ϕ, k) :=
∫ ϕ

0

dθ√
1 − k2 sin2 θ

.

For our specific choices in (49), these reduce to

α2 = 2B

A + B − 1
,

α2
1 = 2(A − 1)

A + B − 1
,

g = 2B√
(A + B − 1)(A − B + 1)

,

k2 = 4B

(A + B − 1)(A − B + 1)
,

ϕ = π

2
and

u1 = K(k),

where K : [0, 1) → [1,∞) is Legendre’s complete elliptic integral of the first kind which is
given by

K(k) := F
(π

2
, k
)

(51)

(see, for instance, section 19.2(ii) in [36]). Specific cases include∫ c

y

dx√
(a − x)(b − x)(c − x)(x − d)

= gK(k)

([5], (340.00)) and∫ c

y

x dx√
(a − x)(b − x)(c − x)(x − d)

= cg

α2

[
α2

1K(k) + (α2 − α2
1 )�(α2, k)

]
([5], (340.01)), where � : [0,∞)\{1}×[0, 1) → R is Legendre’s complete elliptic integral of
the third kind which can be defined by the following definite integral (see for instance section
19.2(ii) in [36]):

�(α2, k) :=
∫ π/2

0

dθ√
1 − k2 sin2 θ (1 − α2 sin2 θ )

.

In general, we have∫ c

y

xpdx√
(a − x)(b − x)(c − x)(x − d)

= cpgα2p
1 p!

α2p

p∑
j=0

(α2 − α2
1 ) j

α
2 j
1 j!(p − j)!

Vj

([5], (340.04)), where

V0 = K(k),

V1 = �(α2, k),

V2 = 1

2(α2−1)(k2−α2)

[
(k2 − α2)K(k) + α2E(k) + (2α2k2 + 2α2 − α4 − 3k2)�(α2, k)

]
,
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and larger values of Vj can be computed using the following recurrence relation:

Vm+3 = 1

2(m + 2)(1 − α2)(k2 − α2)

[
(2m + 1)k2Vm + 2(m + 1)(α2k2 + α2 − 3k2)Vm+1

+ (2m + 3)(α4 − 2α2k2 − 2α2 + 3k2)Vm+2
]

(see [5], (336.00–03)), where E : [0, 1] → [1, π
2 ] is Legendre’s complete elliptic of the second

kind which can be defined by the following definite integral (see for instance section 19.2(ii)
in [36]):

E(k) :=
∫ π/2

0

√
1 − k2 sin2 θ dθ.

For one particular example (p = 2), we have∫ c

y

x2 dx√
(a − x)(b − x)(c − x)(x − d)

= c2g

α4

[
α4

1K(k) + 2α2
1 (α2 − α2

1 )�(α2, k) + (α2 − α2
1 )2V2

]
(see [5], (340.02)).

In general, the Fourier coefficients for h3 will be given in terms of complete elliptic
integrals of the first three kinds. Let us directly compute the m = 0 component, in which (48)
reduces to

H1/2
0 (r, r′, θ, θ ′) = −1 + 1

π

∫ 1

−1

(A/B − x) dx√
(1 − x)(1 + x)

(
x − A+1

B

) (
x − A−1

B

) .
Therefore, using the above formulas, we have

h3|m=0 = H1/2
0 (r, r′, θ, θ ′)

= −1 + 2K(k)

π
√

(A − B + 1)(A + B − 1)
+ 2(A − B − 1)�(α2, k)

π
√

(A − B + 1)(A + B − 1)

= −1 + 2

π

{
K(k) + [

cosh r cosh r′ − sinh r sinh r′ cos(θ − θ ′) − 1
]
�(α2, k)

}
× [cosh r cosh r′ − sinh r sinh r′ cos(θ − θ ′) + 1]−1/2

× [cosh r cosh r′ − sinh r sinh r′ cos(θ + θ ′) − 1]−1/2.

Note that the Fourier coefficients

h3|m=0 → g3|m=0,

in the limit as r, r′ → 0+, where g3|m=0 is given in (44). This is expected since H3
R is a

manifold.

4.3. Fourier expansion for a fundamental solution of the Laplacian on Hd
R

For the d-dimensional Riemannian manifold Hd
R, with d � 2, one can expand a fundamental

solution of the Laplace–Beltrami operator in an azimuthal Fourier series. One may Fourier
expand, in terms of the azimuthal coordinate, a fundamental solution of the Laplace–Beltrami
operator in any rotationally invariant coordinate system which admits solutions via separation
of variables. All separable coordinate systems for Laplace’s equation on d-dimensional
Euclidean space Rd are known. In fact, this is also true for separable coordinate systems
on Hd

R (see [27]). There has been considerable work in two and three dimensions; however,
there still remains a lot of work to be done for a detailed analysis of fundamental solutions.
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We define an unnormalized fundamental solution of Laplace’s equation on the unit radius
hyperboloid hd : (Hd × Hd ) \ {(x, x) : x ∈ Hd} → R such that

hd (̂x, x̂ ′) := Id(ρ(̂x, x̂ ′)) = 2πd/2Rd−2

�(d/2)
Hd

R(x, x′). (52)

In our current azimuthal Fourier analysis, we therefore will focus on the relatively easier case
of separable subgroup-type coordinate systems on Hd

R, and specifically for geodesic polar
coordinates. In these coordinates, the Riemannian metric is given by (10) and we further
restrict our attention by adopting standard geodesic polar coordinates (1).

In these coordinates, one would like to expand a fundamental solution of Laplace’s
equation on the hyperboloid in an azimuthal Fourier series, namely

hd (̂x, x̂′) =
∞∑

m=0

cos(m(φ − φ′))Hd/2−1
m (r, r′, θ1, . . . , θd−2, θ

′
1, . . . , θ

′
d−2), (53)

where Hd/2−1
m : [0,∞)2 × [0, π ]2d−4 → R is defined such that

Hd/2−1
m (r, r′, θ1, . . . , θd−2, θ

′
1, . . . , θ

′
d−2) := εm

π

∫ π

0
hd (̂x, x̂′) cos(m(φ − φ′))d(φ − φ′) (54)

(see, for instance, [10]). According to theorem 3.1 and (52), we may write hd (̂x, x̂′) in terms
of the associated Legendre function of the second kind (14) as follows:

hd (̂x, x̂′) = e−iπ(d/2−1)

2d/2−1�(d/2) (sinh d (̂x, x̂′))d/2−1
Qd/2−1

d/2−1

(
cosh d (̂x, x̂′)

)
. (55)

By (3) we know that in any geodesic polar coordinate system

cosh d (̂x, x̂′) = cosh r cosh r′ − sinh r sinh r′ cos γ , (56)

and therefore through (54), (55) and (56), in standard geodesic polar coordinates, the azimuthal
Fourier coefficient can be given by

Hd/2−1
m (r, r′, θ1, . . . , θd−2, θ

′
1, . . . , θ

′
d−2)

= εme−iπ(d/2−1)

2d/2−1π�(d/2)

∫ π

0

Qd/2−1
d/2−1 (A − B cos ψ) cos(mψ)[
(A − B cos ψ)2 − 1

](d−2)/4 dψ,
(57)

where ψ = φ − φ′, A, B : [0,∞)2 × [0, π ]2d−4 → R are defined through (9) and (56) as

A(r, r′, θ1, . . . , θd−2, θ
′
1, . . . , θ

′
d−2) := cosh r cosh r′

d−2∑
i=1

cos θi cos θi
′

i−1∏
j=1

sin θ j sin θ j
′

and

B(r, r′, θ1, . . . , θd−2, θ
′
1, . . . , θ

′
d−2) := sinh r sinh r′

d−2∏
i=1

sin θi sin θi
′.

Even though (56) is a compact expression for the Fourier coefficient of a fundamental
solution of Laplace’s equation on Hd

R for d ∈ {2, 3, 4, . . .}, it may be informative to use any
of the representations of a fundamental solution of the Laplacian on Hd

R from theorem 3.1 to
express the Fourier coefficients. For instance, if one uses the finite-summation expression in
the odd dimensions, one can write the Fourier coefficients as a linear combination of integrals
of the form ∫ 1

−1

[(a + b)/2 − x]2k−1 xp dx

(a − x)k−1(b − x)k−1
√

(a − x)(b − x)(c − x)(x − d)
,
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where x = cos ψ , k ∈ {1, . . . , (d −1)/2}, p ∈ {0, . . . , m}, and we have used the nomenclature
of section 4.2. This integral is a rational function of x multiplied by a reciprocal square root of a
quartic in x. Because of this and due to the limits of integration, we see that by definition, these
are all given in terms of complete elliptic integrals. The special functions which represent
the azimuthal Fourier coefficients on Hd

R are unlike the odd-half-integer degree, integer-
order, associated Legendre functions of the second kind (toroidal harmonics) which appear
on Euclidean space Rd for d odd (see [6, 8]) in that they include complete elliptic integrals
of the third kind (in addition to complete elliptic integrals of the first and second kind) (cf
section 4.2) in their basis functions. For d � 2, through (4.1) in [8] and that Hd

R is a manifold
(and therefore must locally represent Euclidean space), the functions Hd/2−1

m are hyperbolic
generalizations of associated Legendre functions of the second kind with odd-half-integer
degree and order given by either an odd-half-integer or an integer.

5. Gegenbauer expansion in geodesic polar coordinates

We begin this section by deriving a Gegenbauer polynomial expansion for a fundamental
solution of Laplace’s equation on the hyperboloid in geodesic polar coordinates for d � 3.
Since the spherical harmonics for d = 2 are just trigonometric functions with argument given
in terms of the azimuthal angle, this case has already been covered in section 4.1. Through the
limiting process from zero order Gegenbauer polynomials to Chebyshev polynomials of the
first kind, we will show that our Gegenbauer polynomial expansion for d � 3 is consistent
with our Fourier expansion for d = 2. As an interesting consequence of this connection,
we then show how our Gegenbauer polynomial result is just a special case of a complex-
valued addition formula given in [12] for Gegenbauer functions of the second kind (which are
intimately related to associated Legendre functions of the second kind, cf (76) below).

In geodesic polar coordinates, Laplace’s equation is given by (cf (11))

� f = 1

R2

[
∂2 f

∂r2
+ (d − 1) coth r

∂ f

∂r
+ 1

sinh2 r
�Sd−1

]
f = 0, (58)

where f : Hd
R → R and �Sd−1 is the corresponding Laplace–Beltrami operator on the

(d − 1)-dimensional unit radius hypersphere Sd−1. Eigenfunctions Y K
l : Sd−1 → C of

the Laplace–Beltrami operator �Sd−1 , where l ∈ N0 and K is a set of quantum numbers
which label representations for l in separable subgroup-type coordinate systems on Sd−1 (i.e.
angular momentum-type quantum numbers; see [26]), are given by solutions to the eigenvalue
problem (12).

In standard geodesic polar coordinates (1), K = (k1, . . . , kd−3, kd−2) ∈ Nd−3
0 × Z with

k0 = l � k1 � · · · � kd−3 � |kd−2| � 0, and in particular −kd−3 � kd−2 � kd−3. A
positive fundamental solution Hd

R : (Hd
R × Hd

R) \ {(x, x) : x ∈ Hd
R} → R on the R-radius

hyperboloid satisfies (18). The completeness relation for hyperspherical harmonics in standard
hyperspherical coordinates is given by

∞∑
l=0

∑
K

Y K
l (θ1, . . . , θd−1)Y K

l (θ ′
1, . . . , θ

′
d−1) = δ(θ1 − θ ′

1) . . . δ(θd−1 − θ ′
d−1)

sind−2 θ ′
d−1 . . . sin θ ′

2

.

Therefore, through (20), we can write

δg(x, x′) = δ(r − r′)
Rd sinhd−1 r′

∞∑
l=0

∑
K

Y K
l (θ1, . . . , θd−1)Y K

l (θ ′
1, . . . , θ

′
d−1). (59)
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For fixed r, r′ ∈ [0,∞) and θ ′
1, . . . , θ

′
d−1 ∈ [0, π ], since Hd

R is harmonic on its domain, its
restriction is in C2(Sd−1), and therefore has a unique expansion in hyperspherical harmonics,
namely

Hd
R(x, x′) =

∞∑
l=0

∑
K

uK
l (r, r′, θ ′

1, . . . , θ
′
d−1)Y

K
l (θ1, . . . , θd−1), (60)

where uK
l : [0,∞)2 × [0, π ]d−1 → C. If we substitute (59) and (60) into (18) and use (12)

and (58), we obtain
∞∑

l=0

∑
K

Y K
l (θ1, . . . , θd−1)

[
d2

dr2
+ (d − 1) coth r

d

dr
− l(l + d − 2)

sinh2 r

]
uK

l (r, r′, θ ′
1, . . . , θ

′
d−1)

=
∞∑

l=0

∑
K

Y K
l (θ1, . . . , θd−1)Y K

l (θ ′
1, . . . , θ

′
d−1)

δ(r − r′)
Rd−2 sinhd−1 r′ . (61)

This indicates that for ul : [0,∞)2 → R,

uK
l (r, r′, θ ′

1, . . . , θ
′
d−1) = ul(r, r′)Y K

l (θ ′
1, . . . , θ

′
d−1), (62)

and from (60), the expression for a fundamental of the Laplace–Beltrami operator in standard
hyperspherical coordinates on the hyperboloid is given by

Hd
R(x, x′) =

∞∑
l=0

ul(r, r′)
∑

K

Y K
l (θ1, . . . , θd−1)Y K

l (θ ′
1, . . . , θ

′
d−1). (63)

The above expression can be simplified using the addition theorem for hyperspherical
harmonics (see, for instance, [43], section 10.2.1 in [44], chapter 9 in [2] and especially
chapter XI in [15]), which is given by∑

K

Y K
l (̂x)Y K

l (̂x′) = �(d/2)

2πd/2(d − 2)
(2l + d − 2)Cd/2−1

l (cos γ ), (64)

where γ is the angle between two arbitrary vectors x̂, x̂′ ∈ Sd−1 given in terms of (2). The
Gegenbauer polynomial Cμ

l : [−1, 1] → C, l ∈ N0, Re μ > −1/2, can be defined in terms of
the Gauss hypergeometric function as

Cμ

l (x) := (2μ)l

l!
2F1

(
−l, 2μ + l;μ + 1

2
; 1 − x

2

)
.

The above expression (63) can be simplified using (64); therefore,

Hd
R(x, x′) = �(d/2)

2πd/2(d − 2)

∞∑
l=0

ul(r, r′)(2l + d − 2)Cd/2−1
l (cos γ ). (65)

Now we compute the exact expression for ul(r, r′). By separating the angular dependence
in (61) and using (62), we obtain the differential equation

d2ul

dr2
+ (d − 1) coth r

dul

dr
− l(l + d − 2)ul

sinh2 r
= − δ(r − r′)

Rd−2 sinhd−1 r′ . (66)

Away from r = r′, solutions to the differential equation (66) must be given by solutions to the
homogeneous equation, which are given in section 2.2. Therefore, the solution to (66) is given
by

ul(r, r′) = A

(sinh r sinh r′)d/2−1
P−(d/2−1+l)

d/2−1 (cosh r<)Qd/2−1+l
d/2−1 (cosh r>), (67)

such that ul(r, r′) is continuous at r = r′, and A ∈ R.
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In order to determine the constant A, we first make the substitution

vl(r, r′) = (sinh r sinh r′)(d−1)/2ul(r, r′). (68)

This converts (66) into the following differential equation:

∂2vl(r, r′)
∂r2

− 1

4

[
(d − 1 + 2l)(d − 3 + 2l)

sinh2 r
+ (d − 1)2

]
vl(r, r′) = −δ(r − r′)

Rd−2
,

which we then integrate over r from r′ − ε to r′ + ε, and take the limit as ε → 0+. We are
left with a discontinuity condition for the derivative of vl(r, r′) with respect to r evaluated at
r = r′, namely

lim
ε→0+

dvl(r, r′)
dr

∣∣∣∣r′+ε

r′−ε

= −1

Rd−2
. (69)

After inserting (67) with (68) into (69), substituting z = cosh r′, evaluating at r = r′, and
making use of the Wronskian relation (e.g. p 165 in [32])

W
{
P−μ

ν (z), Qμ
ν (z)

} = − eiπμ

z2 − 1
,

which is equivalent to

W
{
P−μ

ν (cosh r′), Qμ
ν (cosh r′)

} = − eiπμ

sinh2 r′ ,

we obtain

A = e−iπ(d/2−1+l)

Rd−2
,

and therefore

ul(r, r′) = e−iπ(d/2−1+l)

Rd−2(sinh r sinh r′)d/2−1
P−(d/2−1+l)

d/2−1 (cosh r<)Qd/2−1+l
d/2−1 (cosh r>).

Finally, through (65) we have

Hd
R(x, x′) = �(d/2)

2πd/2Rd−2(d − 2)

e−iπ(d/2−1)

(sinh r sinh r′)d/2−1

∞∑
l=0

(−1)l(2l + d − 2)

× P−(d/2−1+l)
d/2−1 (cosh r<)Qd/2−1+l

d/2−1 (cosh r>)Cd/2−1
l (cos γ ). (70)

As an alternative check of our derivation, we can do the asymptotics for the product of
associated Legendre functions P−(d/2−1+l)

d/2−1 (cosh r<)Qd/2−1+l
d/2−1 (cosh r>) in (70) as r, r′ → 0+.

The appropriate asymptotic expressions for P and Q respectively can be found on p 171 and
p 173 in [35]. For the associated Legendre function of the first kind there is

P−μ
ν (z) ∼ [(z − 1)/2]μ/2

�(μ + 1)
,

as z → 1, μ 	= −1,−2, . . ., and for the associated Legendre function of the second kind there
is

Qμ
ν (z) ∼ eiπμ�(μ)

2 [(z − 1)/2]μ/2 ,

as z → 1+, Re μ > 0, and ν + μ 	= −1,−2,−3, . . . . To second order, the hyperbolic cosine
is given by cosh r � 1 + r2/2. Therefore, to lowest order we can insert cosh r< � 1 + r2

</2
and cosh r> � 1 + r2

>/2 into the above expressions yielding

P−(d/2−1+l)
d/2−1 (cosh r<) ∼ (r</2)d/2−1+l

�(d/2 + l)
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and

Qd/2−1+l
d/2−1 (cosh r>) ∼ eiπ(d/2−1+l)�(d/2 − 1 + l)

2(r>/2)d/2−1+l
,

as r, r′ → 0+. Therefore, the asymptotics for the product of associated Legendre functions in
(70) is given by

P−(d/2−1+l)
d/2−1 (cosh r<)Qd/2−1+l

d/2−1 (cosh r>) ∼ eiπ(d/2−1+l)

2l + d − 2

(
r<

r>

)l+d/2−1

(71)

(the factor 2l +d −2 is a term which one encounters regularly with hyperspherical harmonics).
Gegenbauer polynomials obey the following generating function:

1(
1 + z2 − 2zx

)μ =
∞∑

l=0

Cμ

l (x)zl, (72)

where x ∈ [−1, 1] and |z| < 1 (see, for instance, p 222 in [32]). The generating function
for Gegenbauer polynomials (72) can be used to expand a fundamental solution of Laplace’s
equation on Euclidean space Rd (for d � 3, cf theorem 3.2) in geodesic polar coordinates,
namely

1

‖x − x′‖d−2
=

∞∑
l=0

rl
<

rl+d−2
>

Cd/2−1
l (cos γ ), (73)

where γ was defined in (64). Using (73) and theorem 3.2, sinceHd
R →Gd , sinh r, sinh r′ → r, r′

and (71) is satisfied to lowest order as r, r′ → 0+, we see that (70) obeys the correct asymptotics
and our fundamental solution expansion locally reduces to the appropriate expansion for
Euclidean space, as it should since Hd

R is a manifold.
Note that (70) can be further expanded over the remaining (d −2)-quantum numbers in K

in terms of a simply separable product of normalized hyperspherical harmonics Y K
l (̂x)Y K

l (̂x′),
where x̂, x̂′ ∈ Sd−1, using the addition theorem for hyperspherical harmonics (64) (see [6] for
several examples).

It is intriguing to observe how one might obtain the Fourier expansion for d = 2 (43) from
the expansion (70), which is strictly valid for d � 3. If one makes the substitution μ = d/2−1
in (70), then we obtain the following proposition (which matches up to the generating function
for Gegenbauer polynomials in the Euclidean limit r, r′ → 0+).

Proposition 5.1. For all μ ∈ C such that Re μ > −1/2, one has
1

sinhμ ρ
Qμ

μ(cosh ρ) = 2μ�(μ + 1)

(sinh r sinh r′)μ

×
∞∑

n=0

(−1)n n + μ

μ
P−(μ+n)

μ (cosh r<)Qμ+n
μ (cosh r>)Cμ

n (cos γ ), (74)

where cosh ρ = cosh r cosh r′ − sinh r sinh r′ cos γ .

Proof. If we start with (8.6) in [12], namely

Dα
λ (ζ ) = �(2α − 1)

[�(α)]2

∞∑
n=0

(−1)n22n(2α + 2n − 1)
�(λ − n + 1)[�(α + n)]2

�(λ + 2α + n)

×(x2
1 − 1)n/2(x2

2 − 1)n/2Dα+n
λ−n (x1)C

α+n
λ−n (x2)C

α−1/2
n (z), (75)

where

ζ = x1x2 − z
√

x2
1 − 1

√
x2

2 − 1,
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whereCα+n
λ−n (x2) vanishes when λ−n ∈ −N, so that the apparent singularities due to �(λ−n+1)

are not present. This series converges such that ζ ∈ C lies in the region interior to the
two ellipses with foci at ±1 which pass through x1 and x2, respectively. In this formula
x1, x2 ∈ C \ (−∞, 1] and z ∈ C. The Gegenbauer function of the first kind Cα

λ : C → C with
general degree λ and order α is defined as (see (2.5) in [12])

Cα
λ (z) := �(2α + λ)

�(λ + 1)�(2α)
2F1

(
−λ, 2α + λ;α + 1

2
; 1 − z

2

)
,

where |1 − z| < 2 and elsewhere by analytic continuation. The Gegenbauer function of the
second kind Dα

λ : C \ (−∞, 1] → C is defined as (see (2.3) in [12])

Dα
λ (z) := eiπα�(2α + λ)

�(α)�(λ + α + 1)(2z)2α+λ 2F1

(
λ + 2α

2
,
λ + 2α + 1

2
; λ + α + 1; 1

z2

)
for |z| > 1 and elsewhere by analytic continuation. The Gegenbauer functions of the first
and second kind are linearly independent solutions to the Gegenbauer differential equation
(see, for instance, section 4.10 in [32]) and can be expressed in terms of associated Legendre
functions of the first and second kind ((13) and (14)), respectively, by ((2.8) in [12])

Cα
λ (z) =

√
π�(λ + 2α)

2α−1/2�(α)�(λ + 1)(z2 − 1)α/2−1/4
P−α+1/2

λ+α−1/2(z), (76)

and ((2.4) in [12])

Dα
λ (z) = e2π i(α−1/4)�(λ + 2α)√

π2α−1/2�(α)�(λ + 1)(z2 − 1)α/2−1/4
Q−α+1/2

λ+α−1/2(z). (77)

If we make the substitutions λ = 2μ and α = 1/2 − μ, use (77), and the negative-order
condition for associated Legendre functions of the second kind, cf (8.2.6) in [1],

Q−μ
ν (z) = e−2iμπ �(ν − μ + 1)

�(ν + μ + 1)
Qμ

ν (z), (78)

this converts the Gegenbauer function of the second kind on the left-hand side of (75) to the
associated Legendre function of the second kind with degree and order equal to μ, namely

1

(ζ 2 − 1)μ/2
Qμ

μ(ζ ) =
√

π2μ+1�(2μ)

i�(μ + 1
2 )

∞∑
n=0

(−1)n22n(n + μ)
�(1 − n)[�(μ + 1

2 + n)]2

�(2μ + 1 + n)

×(x2
1 − 1)n/2(x2

2 − 1)n/2Dμ+1/2+n
−n (x1)C

μ+1/2+n
−n (x2)C

μ
n (z).

We can now express the first two Gegenbauer functions on the right-hand side in terms of the
associated Legendre functions. Using (76) and (77), with (16) and the duplication formula for
gamma functions (17), we obtain

1

(ζ 2 − 1)μ/2
Qμ

μ(ζ ) = 2μ�(μ + 1)

[(x2
1 − 1)(x2

2 − 1)]μ/2

∞∑
n=0

(−1)n n + μ

μ
P−(μ+n)

μ (x2)Q
μ+n
μ (x1)C

μ
n (z).

By taking ζ = cosh ρ, x1 = cosh r>, x2 = cosh r< and z = cos γ , by (4) and (8) we have the
desired result. �

If we take the limit as μ → 0 in (74) and use

lim
μ→0

n + μ

μ
Cμ

n (x) = εnTn(x)

(see, for instance, (6.4.13) in [2]), where Tn is the Chebyshev polynomial of the first kind
defined by (36), then we obtain the following formula:

1

2
log

cosh ρ + 1

cosh ρ − 1
=

∞∑
n=0

εn(−1)nP−n
0 (cosh r<)Qn

0(cosh r>) cos(n(φ − φ′)).
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By taking advantage of the following formulas:

P−n
0 (z) = 1

n!

[
z − 1

z + 1

]n/2

(79)

for n � 0,

Q0(z) = 1

2
log

z + 1

z − 1

(see (8.4.2) in [1]), and

Qn
0(z) = 1

2
(−1)n(n − 1)!

{[
z + 1

z − 1

]n/2

−
[

z − 1

z + 1

]n/2
}

(80)

for n � 1, then (43) is reproduced. The representation (79) follows easily from the Gauss
hypergeometric representation of the associated Legendre function of the first kind (13). One
way to derive the representation of the associated Legendre function of the second kind (80)
is to use Whipple’s formula for associated Legendre functions (cf (8.2.7) in [1])

Qμ
ν (z) = √

π2�(ν + μ + 1)(z2 − 1)−1/4eiπμP−ν−1/2
−μ−1/2

(
z√

z2 − 1

)
,

where Re z > 0 and (8.6.9) in [1], namely

P−1/2
ν (z) =

√
2

π

(z2 − 1)−1/4

2ν + 1

{[
z +

√
z2 − 1

]ν+1/2 − [
z +

√
z2 − 1

]−ν−1/2}
for ν 	= −1/2.

5.1. Addition theorem for the azimuthal Fourier coefficient on H3
R

One can compute addition theorems for the azimuthal Fourier coefficients of a fundamental
solution for Laplace’s equation on Hd

R for d � 3 by relating directly obtained Fourier
coefficients to the expansion over hyperspherical harmonics for the same fundamental
solution. By using the expansion of Hd

R(x, x′) in terms of Gegenbauer polynomials (70)
in combination with the addition theorem for hyperspherical harmonics (64) expressed
in, for instance, one of Vilenkin’s polyspherical coordinates (see section IX.5.2 in [42],
[25, 26]), one can obtain through series rearrangement a multi-summation expression for
the azimuthal Fourier coefficients. Vilenkin’s polyspherical coordinates are simply subgroup-
type coordinate systems which parametrize points on Sd−1 (for a detailed discussion of these
coordinate systems, see chapter 4 in [6]). In this section, we will give an explicit example of
just such an addition theorem on H3

R.
The azimuthal Fourier coefficients on H3

R expressed in standard hyperspherical coordinates
(1) are given by the function H1/2

m : [0,∞)2 × [0, π ]2 → R which is defined by (47). By
expressing (70) in d = 3, we obtain

H3
R(x, x′) = −i

4πR
√

sinh r sinh r′

×
∞∑

l=0

(−1)l(2l + 1)P−(1/2+l)
1/2 (cosh r<)Q1/2+l

1/2 (cosh r>)Pl(cos γ ), (81)

where Pl : [−1, 1] → R is the Legendre polynomial defined by Pl(x) = C1/2
l (x), or through

(13) with μ = 0 and ν ∈ N0. By using the addition theorem for hyperspherical harmonics (64)
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with d = 3 using standard spherical coordinates (cos θ, sin θ cos φ, sin θ sin φ) to parametrize
points on S2, we have, since the normalized spherical harmonics are

Yl,m(θ, φ) = (−1)m

√
2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ )eimφ,

the addition theorem for spherical harmonics ((63) with d = 3), namely

Pl(cos γ ) =
l∑

m=−l

(l − m)!

(l + m)!
Pm

l (cos θ )Pm
l (cos θ ′)eim(φ−φ′ ), (82)

where cos γ is given by (45). By combining (81) and (82), reversing the order of the two
summation symbols and comparing the result with (46), we obtain the following single
summation addition theorem for the azimuthal Fourier coefficients of a fundamental solution
of Laplace’s equation on H3

R, namely since h3 = 4πRH3
R,

H1/2
m (r, r′, θ, θ ′) = −iεm√

sinh r sinh r′

∞∑
l=|m|

(−1)l(2l + 1)
(l − m)!

(l + m)!

×Pm
l (cos θ )Pm

l (cos θ ′)P−(1/2+l)
1/2 (cosh r<)Q1/2+l

1/2 (cosh r>).

This addition theorem reduces to the corresponding result ((2.4) in [9]) in the Euclidean R3

limit as r, r′ → 0+.

6. Discussion

Re-arrangement of the multi-summation expressions in section 5 is possible through
modification of the order in which the countably infinite space of quantum numbers is summed
over in a standard hyperspherical coordinate system, namely
∞∑

l=0

∑
K

=
∞∑

l=0

l∑
k1=0

k1∑
k2=0

· · ·
kd−5∑

kd−4=0

kd−4∑
kd−3=0

kd−3∑
kd−2=−kd−3

=
∞∑

kd−2=−∞

∞∑
kd−3=|kd−2|

∞∑
kd−4=kd−2

· · ·
∞∑

k2=k3

∞∑
k1=k2

∞∑
k0=k1

.

Similar multi-summation re-arrangements have been accomplished previously for azimuthal
Fourier coefficients of fundamental solutions for the Laplacian in Euclidean space (see, for
instance, [11, 9]). A comparison of the azimuthal Fourier expansions in section 4 (and in
particular (56)) with re-arranged Gegenbauer expansions in section 5 (and in particular (70))
will yield new addition theorems for the special functions representing the azimuthal Fourier
coefficients of a fundamental solution for the Laplacian on the hyperboloid. These implied
addition theorems will provide new special function identities for the azimuthal Fourier
coefficients, which are hyperbolic generalizations of particular associated Legendre functions
of the second kind.
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