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Abstract Superconducting microcalorimeters based on transition-edge sensors
(TESs) are being successfully used in applications ranging from optical photon
counting to gamma-ray and alpha particle spectroscopy. Practical instruments of-
ten require a complex optimization among speed, linearity and energy resolution.
However, a lack of understanding of the superconducting transition limits our ability
to predict the behavior of a new TES design. Specifically, there is an unmet need for
a model that predicts the current and temperature dependent resistance surface that
describes the transition: R(I,T ). This paper describes the predictions of a two-fluid
model for the resistance of a TES based on a Ginzburg-Landau form of the critical
current. We compare the predictions of the model for the logarithmic derivatives of
resistance with temperature and current (α and β) to measurements of TESs used in
x-ray and gamma spectrometers. The model shows excellent qualitative agreement
that provides useful insight into the dependence of α and β on the current density and
bias point of the TES.
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1 Introduction

Transition-edge sensors (TES) have been successfully implemented in a number of
applications despite our lack of understanding of the fundamental shape of the super-
conducting transition as a function of temperature and current [1]. The inability to
predict the resistance of a TES under different operating conditions and with chang-
ing device parameters limits our ability to further optimize TES based instruments.
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Furthermore, it is difficult to predict the behavior of TESs outside a small-signal ap-
proximation without an understanding of how the resistance changes with operating
conditions.

An empirical form for R(I,T ) was proposed by Cabrera [2]. Also, predictions
based on a Ginzburg-Landau theory for the relationship between the logarithmic par-
tial derivative of resistance with respect to temperature, α, and current, β , have been
proposed [3] and compared with data [4, 5]. Although these models predict some fea-
tures of the data, they do not predict the general dependence of β on the bias point,
R(I,T )/Rn, in the transition or as a function of the current at a constant bias point. In
this manuscript, we compare the results of a two-fluid model of the resistance surface
to measured values and demonstrate that it reproduces the general trends observed in
the data.

2 Two-Fluid Model for the Resistance of a TES

Irwin et al. proposed using a simple two-fluid model to describe the total current
through a TES biased in the resistive transition [6]

I (T ) = cI Ic(T ) + V

cRRn

, (1)

where V is the voltage across the TES, Ic is the temperature dependent critical current
and Rn is the normal resistance of the device. The model separates the super current,
which is some fraction (cI ) of the critical current, and a quasiparticle current, which
is equal to V divided by some fraction (cR) of the normal resistance. This model is
equivalent to the Skocpol-Beasley-Tinkham (SBT) model [7] of a resistive transition
for a superconductor with phase slip lines (PSL) assuming a constant ratio of the time-
averaged critical current to the critical current, Ic/Ic. In the SBT model, cI = Ic/Ic

and cR = 2NρλΛQ∗/Rn, where ρλ is the normal resistance per unit length, ΛQ∗ is
the charge imbalance relaxation length, and N is the number of phase-slip lines. In
this manuscript, we will start with the simplified form suggested by Irwin et al., in
which we ignore the weak temperature dependence of ΛQ∗ and assume cI and cR are
constants. In a more detailed model the constants would be a function of temperature
and current and would include a mechanism for adding increasing numbers of phase-
slip lines with increasing current.

With the assumption that cI and cR are constant, all the temperature dependence
comes from Ic. In this regime a logical choice for Ic(T ) is the Ginzburg-Landau (GL)
form for the critical current that describes Ic near the critical temperature, Tc. The GL
critical current is given by

Ic(T ) = Ic0

(
1 − T

Tc

)3/2

, (2)

where Ic0 is the zero temperature critical current of the film.
We can use (1) to write the resistance of the film in a more suggestive form:

R(V,T ) =
(

cI Ic(T )

V
+ 1

cRRn

)−1

, (3)
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Fig. 1 (Color online) (a) Resistance surface in units of Rn as a function of T and I calculated by use of
(3) for cI = 0.5 and cR = 1 and TES parameters for our typical x-ray device. The solid red line shows the
(IV) trajectory for a TES, (4). (b) A schematic representation of a TES and (c) a photograph of the x-ray
TES that was used to test the model

which is just the sum of two parallel resistance paths. Equation (3) can also be viewed
as the resistance of two noninteracting fluids: a super-current fluid and a normal fluid.
Figure 1a shows the model’s prediction for the R(I,T ) surface in units of Rn for cI =
0.5 and cR = 1 and parameters for the TES described in detail in the next section.
Unlike the R(I,T ) surface proposed by Cabrera [2], increasing the current both shifts
and widens the transition.

To compute the trajectory of current versus voltage (IV) on this surface, we need
additional information about the thermal power flowing from the TES into the heat
bath. The steady-state TES temperature (T0) is determined by the power balance be-
tween the Joule heating of the bias, the incident power to be measured (Papp) and the
power flowing though the TES thermal conductance, given by

V 2

R(V,T )
+ Papp = k(T n − T n

b ), (4)

where k is the thermal conductivity, n is the thermal conductance exponent and Tb

is the bath temperature. At a given voltage bias, this equation can be solved for T

to find T0, which then determines the steady-state resistance R0 and current I0. The
red solid line in Fig. 1a shows the trajectory of this solution superimposed on the
resistance surface for Papp = 0, k = 11.7 nW/Kn, n = 2.45, and Tb = 70 mK.

When a photon strikes a microcalorimeter, the instantaneous current and tempera-
ture are described by a set of coupled differential equations that describe the TES in
the small-signal limit [1, 8]. I0, T0 and R0 are the initial conditions for these equa-
tions. When modeling the response of the TES, only the linear terms are kept in the
expansion of the resistance, so that changes in current in the small-signal limit are
described by the logarithmic derivatives of the resistance with respect to temperature
at constant current, αI = (T0/R0)(δR/δT )|I0 and with respect to current at constant
temperature, βI = (I0/R0)(δR/δI)|T0 . These derivatives are shown in Fig. 1a for a
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bias point near 50% Rn by a blue (αI ) and a purple (βI ) arrow. Understanding TES
behavior in the large-signal limit is reduced to understanding how αI and βI vary
over the resistance surface.

Using (3), we can solve for αI and βI at any point on the surface. At constant
current, (δR/δT )|I0 = (1/I0)(δV /δT ), so that

αI = T0

R0I0

δV

δT
. (5)

We can then take the partial derivative of (3) with respect to V , assuming cI and cR

are constant, and substitute into the expression for αI to get

αI = 3

2
cI cR

Rn

R0

Ic0

I0

T0

Tc

(
1 − T0

Tc

)1/2

. (6)

For βI we can rearrange the derivatives of resistance at constant temperature as
(δV /δI ) = R0 + I0(δR/δI), which when written in terms of βI gives

βI = 1

R0

δV

δI
− 1. (7)

At constant cR , we arrive at a very simple form for βI :

βI = cR

Rn

R0
− 1, (8)

which depends only on cR and the bias point. Specifically, at a given bias point, βI

does not depend on the current.

3 Comparison with Data

This simple model of the transition takes no consideration of the geometry of actual
devices, such as the superconducting leads or normal metal bars [1], and can not pos-
sibly predict subtle differences in the transition that are observed for small changes
in the geometry. However, it is interesting to explore whether this model can describe
some of the general trends that are observed in TESs. In this section, we compare the
predictions for the IVs, αI and βI to measurements of one of our standard TESs used
for x-ray microcalorimeters.

Figure 1b shows a schematic of our voltage biased TES and the SQUID amplifier
used to measure the TES current. The device measured in this comparison, shown
in Fig. 1c, is a MoCu bilayer TES that is 350 µm by 350 µm on a silicon nitride
membrane with seven copper bars. Various characterization measurements were per-
formed to determine the parameters relevant to the model. Rsh = 0.3 m� was mea-
sured from its Johnson noise as a function of temperature and verified by four-point
resistance measurements of other chips from the same wafer. Rn = 9.0 m� and a
parasitic resistance of less than 1 µ� are then extracted from the normal and super-
conducting parts of the IV curves. Tc = 94.1 mK and G(T = Tc) = 124 pW/K were
extracted from power-law fits to measured IVs at different Tb . Fitting the power at a
constant % Rn to extract G assumes βI = 0 and should be performed at biases near
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Fig. 2 (Color online) (a) IVs for the device shown in Fig. 1b measured at successive bath tempera-
tures; 55 mK (black squares) to 90 mK (yellow hexagons) in steps of 5 mK. The lines are the predictions
of the model at each temperature by use of the measured device parameters and cR = 1, cI = 0.5 and
Ic0 = 55 mA. (b) The measured αI (black circles, left axis) and βI (red squares, right axis) at 20%, 30%,
and 40% Rn along with the calculations from the model for the same parameters except at two different
values of cR , cR = 1 (αI black dash dot line, βI red dotted line) and cR = 0.55 (αI black solid line, βI

red dashed line)

the top of the transition where βI is small, and extrapolated via the temperature de-
pendence to values lower in the transition. The measured βI were extracted from fits
to complex impedance data at high frequencies, and the values of αI were extracted
from fits to thermal pulses created by photons incident from a diode laser. The heat
capacity (C) was extracted from fits to pulses at a bath temperature close to Tc and a
bias point around 99% Rn where the electrothermal feedback is small and the decay
time of the pulse is dominated by G and C.

Figure 2 shows the measured IV at eight different temperatures from 55 mK to
90 mK. Each temperature has a corresponding fit to the numerical solution of (4) with
the model parameters cR = 1, cI = 0.5 and Ic0 = 55 mA. The model agrees well with
the data over the whole temperature range. This agreement does not necessarily imply
a good fit to αI and βI individually, because the IV curves move on a trajectory that is
a combination of both of these parameters. Figure 2b shows the measured αI (black
circles, left axis) and βI (red squares, right axis) at three different bias points; 20%,
30% and 40% Rn. The lines are predictions of the model for αI using (6), cR = 1
(black dash dotted line) and cR = 0.55 (black solid line), and βI using (8), cR = 1
(red dotted line) and cR = 0.55 (red dashed line). At cR = 1, the model over-predicts
βI by almost a factor of two. However, at cR = 0.55, the model is consistent with
the measured values, and the general trend is consistent with similar data from other
groups [4, 5].

Figure 3 shows the measured αI and βI for the same device, but as a function of
the current at two constant bias points, 20% Rn (blue circles) and 30% Rn (green
triangles). The current was varied while keeping the bias point constant by chang-
ing Tb . Equations (6) and (8) are plotted at 20% Rn (blue solid line) and 30% Rn

(green dashed line) for cR = 0.55. The model reproduces the general trend of the
data, except for the bumps in the data at 25 µA for 20% Rn and 14 µA for 30% Rn.
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Fig. 3 (Color online) The measured and calculated values of (a) αI and (b) βI as a function of TES
current for one of our standard x-ray devices. The data measured at 20% Rn are shown as blue circles,
while the data at 30% Rn are as green triangles. The blue solid lines and the green dashed lines are the
predictions of the model at cR = 0.55 and cI = 0.5

This fine structure is likely due to physics not included in this simple version of the
model using constant values of cR and cI . In general, βI shows no general trend with
current, and αI is roughly inversely proportional to Ic0/Ic.

4 Conclusions

An accurate model of the superconducting transition in TESs is important in under-
standing devices operating in the large-signal limit and will be a useful tool for TES
design and characterization. In an effort to evaluate one possible model, we have cal-
culated αI and βI for a simple two-fluid model of the transition in order to compare
the predictions with measurements of practical devices. The model accurately pre-
dicts the shape of IV curves along with the general dependencies of αI and βI with
changes in current and temperature. Future work will focus on techniques for pre-
dicting the parameters cR and cI , as well as on understanding the detailed effects of
different device geometries.
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