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Image modeling establishes the relation between an object and its image when an optical microscope is
used to measure the dimensions of an object of size comparable to the illumination wavelength. It
accounts for the influence of all of the parameters that can affect the image and relates the apparent
feature width (FW) in the image to the true FW of the object. The values of these parameters, however,
have uncertainties, and these uncertainties propagate through the model and lead to parametric uncer-
tainty in the FW measurement, a key component of the combined measurement uncertainty. The com-
bined uncertainty is required in order to decide if the result is adequate for its intended purpose and to
ascertain if it is consistent with other results. The parametric uncertainty for optical photomask mea-
surements derived using an edge intensity threshold approach has been described previously; this paper
describes an image library approach to this issue and shows results for optical photomask metrology over
a FW range of 10 nm to 8 μm using light of wavelength 365 nm. The principles will be described; a
one-dimensional image library will be used; the method of comparing images, along with a simple inter-
polation method, will be explained; and results will be presented. This method is easily extended to any
kind of imaging microscope and to more dimensions in parameter space. It is more general than the edge
threshold method and leads to markedly different uncertainties for features smaller than the
wavelength.
OCIS codes: 120.0120, 120.3940, 180.0180, 180.5810, 110.0180, 290.3700.

1. Introduction

The work described here supports the calibration of
integrated circuit photomask feature width (FW)
standards at the National Institute of Standards
and Technology (NIST) [1]. In this context, a photo-
mask feature is a chrome line or space on the mask.
These standards are traceable to the definition of the
meter and are used to ensure the accuracy of photo-
mask measurements in the production of electronic
products around the world, improving their perfor-
mance and reducing their cost [2]. Potentially, an
atomic force microscope (AFM) is a good choice for
this purpose because its imaging model is simpler
than those for optical and electron microscopes and
does not depend on material properties, but the AFM
measurement process is far too labor intensive for
the batch calibration of photomask standards. In
practice, a transmission mode optical microscope is

used for photomask FW calibrations at NIST because
it is accurate, clean, automated, and relatively fast,
and it does not suffer from AFM tip wear issues.
Samples of the optical measurements on a control
photomask are checked against AFM measure-
ments to create a control chart and monitor system
performance.

With a microscope, we can only directly measure
the image of an object, not the object itself. An image
is not a measurement, and we must infer the object
size from the scaled image. For relatively large ob-
jects, the imaging process is nearly linear, in the
sense that

object size � scale factor × image size� offset:

Then two-point calibration can determine the scale
factor and offset for subsequent measurements.
When the object size becomes comparable to the
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illumination wavelength used in an optical micro-
scope, however, the imaging process becomes non-
linear with object size, resulting in measurement
error when the linear model is used. Figure 1 shows
simulated grayscale microscope images of isolated
chrome-on-quartz photomask lines and spaces
viewed in transmission at a 365 nm wavelength. The
measured image intensity, normalized to 1 through
clear quartz, is superimposed on each image.
Figure 2, based on modeling the optical imaging pro-
cess, shows the error incurred measuring the width
of such features at this wavelength if two-point cali-
bration is used; i.e., assuming that the image inten-
sity at the chrome line edges is constant. Note the
logarithmic feature width scale, which will be used
throughout this paper. The imaging wavelength is
indicated by the vertical dot-dash line.

Consequently, a more general procedure must be
used to measure small objects optically; that is, com-
pare the image of the object with the image of a
reference object of similar and known dimensions.
This reference object may be (1) a standard object
whose dimensions have been measured by some
other means, such as an AFM, with its own limita-
tions and uncertainties (2) or the simulated image
of an ideal object.

Since the perfect standard object does not exist, this
paper will concentrate on simulated images of ideal
objects that closely resemble real objects. A better
waytoextractdatafromanimagewouldbeinverse im-
age modeling, which calculates object topography
directly from the image. While relatively straightfor-
ward for AFMs, this approach is virtually impossible
for optical microscopes and scanning electron micro-
scopes (SEMs) because of the complexity of the ima-
ging process and possible uniqueness problems.

We have sought to determine the combined
parametric standard uncertainty using an image
library. After a brief discussion on optical image mod-
eling, the specific motivation for this work will be
described, followed by a description of the variable
threshold method of extracting FW information from
a microscope image and its parametric uncertainty
limitations, and then a description of the image
library method and its benefits. A few remarks
on model accuracy and completeness conclude the
paper.

2. Image Modeling

Figure 2 exemplifies the benefit of image modeling.
Since we wished tomeasure the object, but could only
directly measure its image in a microscope, image
modeling (or simulation) was needed to relate the
image to the object. Optical images were simulated
by solving Maxwell’s equations for the object and
optical system used [3]; scanning electron microscope
images are usually simulated by modeling electron-
material scattering mechanisms in a Monte Carlo
framework [4], and AFM images are simulated by de-
convolving the tip shape from the raw image [5]. The
object and the microscope are represented in these
models by parameterized descriptions, reducing the
amount of information the model has to process and
the corresponding accuracy of the results. In each
case, the microscope scale must be calibrated in a se-
parate process [6].

Maxwell’s equations can be difficult to solve for a
real microscope image; analytic solutions exist for
only a few simple cases. Several numerical ap-
proaches can be used: the rigorous coupledwaveguide
analysis method (RCWA) [7] treats the object as one
line of an infinite diffraction grating; other methods
include the finite elementmethod (FEM) [8], the finite
difference time domain (FDTD) [10], and the integral
equation method [11]. Each method involves a differ-
ent set of assumptions and compromises. RCWA,
FEM, and FDTD packages are available commer-
cially and are usually optimized for speed of execu-
tion. While the resulting accuracy may be adequate
for many purposes, the compromises made for speed

Fig. 1. Simulated microscope grayscale images of isolated
0.125 μm and 1.000 μm lines and 0.125 μm and 1.000 μm spaces
viewed in transmission. Image intensity is overlaid as a graph.

Fig. 2. FW error as function of FW. Traditional two-point (linear)
calibration works well for measuring isolated features larger than
the wavelength, but generates large errors for smaller objects.
Note the logarithmic FW scale used throughout this paper.
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are often not well documented, and for the present
purpose, the accuracy of the results was paramount.
Consequently, an integral equation method was de-
veloped atNIST. Thismethod treats only isolated fea-
tures and finite arrays; RCWA treats only infinite
arrays.

3. The Integral Equation Method for Simulating
Microscope Images

To find the fields scattered by an object in an optical
microscope for an incident plane monochromatic
wave of circular frequency ω, we transformed Max-
well’s equations into a set of two two-dimensional
(2-D) Helmholtz equations for two scalar functions.
We then reduced these equations to integral equa-
tions for unknown functions defined on the bound-
aries between homogeneous regions. We used a
method designed to minimize the number of such
functions, which resulted in savings of memory
requirements and execution time. We solved these
integral equations by the point-matching method
and then computed the field components by integra-
tion. A plane wave has a propagation vector whose
magnitude, k, is given by k2 � εμω2 in terms of the
permittivity ε and the permeability μ of the medium
where it propagates.

We modeled the image created by an optical micro-
scope in the transmission mode of an infinite Cr line
of finite width on a quartz substrate of finite thick-
ness and of a space in a Cr layer on the same quartz
substrate. To use the same model for lines and
spaces, we approximate the two chrome regions by
lines of a width that is large compared to the
wavelength, with the space in between. Chrome
has a large but finite conductivity, and we assumed
that the quartz layer was transparent.

As described in this Section and in the Appendix,
we chose the z-axis along the line and the y axis per-
pendicular to the substrate. This coordinate system
was originally chosen to describe the scattering of
electromagnetic fields by cylindrical objects, where
the z axis is parallel to the generator of the cylinders.
When the geometry of the problem is invariant under
translations in the z-direction, we can show that the
electromagnetic fields can be expressed in terms of
the longitudinal components of the fields, Ez and Hz,
as detailed in Eqs. (A1) to (A7) in [12]. These fields
satisfy the 2-D Helmholtz equation,

�∇2
⊥
�k2

⊥
�Ez�x;y�� 0; �∇2

⊥
�k2

⊥
�Hz�x;y��0; (1)

where the perpendicular parts of the gradient opera-
tor and of the propagation vector are defined by

∇⊥ � êx∂∕ ∂x� êy∂∕ ∂y; k⃗⊥ � êxkx � êyky; (2)

where êx and êy are the unit vectors along the x-axis
and the y-axis, respectively. The two longitudinal
components of the fields, Ez and Hz, are required
if the incident wave has arbitrary polarization and
direction of propagation.

We approximated the illumination of the micro-
scope by a set of incident plane waves that scatter
independently. To apply the general solutions of the
Helmholtz equation that satisfy the radiation condi-
tion, we decomposed the fields into homogeneous
fields and scattered fields, indicated by superscripts
h and sc, respectively. Homogeneous fields are plane
waves such as the incident, reflected, and refracted
fields. Other than the incident field, they are intro-
duced by a substrate and a layer of finite thickness
in the absence of a scatterer. The equations that al-
lowed us to determine the amplitudes of the longitu-
dinal components of the homogeneous fields in terms
of the incident fields are given by Eqs. (A12) to (A19)
in [12].

To determine the scattered fields in all of space, we
derived integral equations for functions defined on
the interfaces between the homogeneous regions, as
described in the Appendix. We reduced these integral
equations to linear algebraic equations by the point-
matching method. Once these approximate solutions
were found, we determined the fields on a plane par-
allel to the substrate at a height y0 above the layer by
the integrals in Eqs. (A49) to (A54) in [13]. For a
wavelength of 365 nm and a height of 5 μm, we found
that the evanescent fields and the induction fields
were negligible compared to the radiation fields.
The contribution to the image from a plane wave
was then obtained by representing the collection lens
by its aperture and magnification, which were used
to modify Fourier components of the scattered fields.
This process is described in Subsection 6 of the
Appendix in [12].

4. The Objects and the Microscope

Figure 3 shows the idealized cross section of an iso-
lated chrome-on-quartz photomask line. This struc-
ture, along with values for the related parameters,
constitutes the “object model” in the sense of [13].
“Isolated” here means the nearest chrome edge adja-
cent to this feature on the photomask is sufficiently
remote that moving it farther away would not change
its FW measurement by an amount more than some
tolerance. For our microscope, this means more than
about 10 wavelengths for a tolerance of less than
1 nm, and our photomask standards were designed
to meet this criterion. All of the image model
examples here are for variants of this 2-D (FW, Cr
thickness) object.

Fig. 3. Cross section of a typical chrome-on-quartz photomask
line feature.
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Themicroscope is a full-field optical microscope op-
erating at 365 nm wavelength in the transmission
mode with Köhler illumination. Transmission mode
is preferred for photomaskmetrology because the im-
age is simpler than in reflection mode, the contrast is
higher, and the substrate baseline intensity (through
the clear quartz) is stable and repeatable. The inten-
sity I in the image plane is measured with an on-axis
sampling aperture and photomultiplier tube while
the object stage is scanned in the x direction, perpen-
dicular to the line being measured (here the z-axis is
the microscope optical axis, and the x- and y-axes lie
in the object plane or the conjugate image plane).
Intensity I and stage position x are sampled synchro-
nously, and the resulting image is an array of inten-
sity I and an array of position x data points, which
together form the image curve I�x�. The intensity
was scaled so that the dark current (illumination
shutter closed) is represented by I � 0, and the in-
tensity through the clear quartz by I � 1. Intensity
calibration was not required as long as the intensity
detector was linear; the microscope x-scale was cali-
brated using a pitch standard (SRM 2800 [6]) that
had been calibrated separately on the NIST Line-
scale Interferometer.

5. Focus

In a real microscope, it can be difficult to determine if
an object is “in focus,” and in fact, if the object is a
wavelength or thicker, then there may be no single
“best focus.” In addition, it is difficult to instrument
a microscope to accurately measure the physical
distance from the objective lens to the object or sub-
strate, so the focus criterion usually applies to the
image itself. The focus criterion adopted here was
based on the acutance ∇I in the image, or dI∕ dx
where a chrome line lies along the y-axis and the
x-axis is perpendicular to the edge. Images were ta-
ken over a range of focal distances z; the image with
the highest acutance was the one with the best focus,
or the best focus could be found more accurately by
polynomial interpolation of ∇I�z� between images.

In addition, the images were modeled over a
range of 21 focal steps spaced 50 nm apart in the
z-direction, with the z-axis origin at the substrate
surface. The maximum acutance was found for each
image, and the best focus was found by interpolation.
Since the chrome thickness was only about one-third
of the wavelength, there was only one maximum
acutance in this range. Results are shown in Fig. 4
for isolated chrome lines and spaces, where the hor-
izontal dashed line is the top of the chrome. It is par-
ticularly important to use the same focus criterion for
the real microscope and for the image simulations.

An alternative approach uses this stack of
through-focus images as “the image” for both real
microscope images and simulated images [14]. This
obviates the need for a definition of “best focus,” but
aligning the focus steps between real and simulated
images may be difficult.

6. Variable Threshold Method

By modeling the microscope images of isolated
chrome lines and spaces over a range of FWs, we can
calculate the image intensity at the chrome’s edge at
best focus as a function of FW, shown in Fig. 5 for the
365 nm wavelength. For features significantly larger
than the wavelength, the edge threshold intensity is
nearly independent of the FW and is the same for
both lines and spaces because the right and left edges
of a feature are separated sufficiently to nearly re-
move the optical proximity effects.

Now a feature’s edges can be identified in a real
image by finding the positions of the appropriate
intensity from Fig. 5. This is an iterative process
because the edge threshold intensity is a function
of FW, and the apparent FW depends on the thresh-
old intensity; this process converges rapidly in prac-
tice, however.

Figure 6(b) shows the measurement error using
the variable threshold method; the errors shown
result from the fact that the edge threshold lies
between samples in a digitized image, and linear
interpolation was used for this example. Figure 6(a)
shows the two-point calibration error from Fig. 2 at
the same scale for comparison. Clearly the use of im-
age modeling permits optical measurements of object
dimensions well below the wavelength of light used.

Fig. 4. Image best focus as function of FW for the photomask fea-
tures in Fig. 5. Best focus is defined here as maximum acutance.

Fig. 5. Image intensity at the edge of an isolated line or space
as function of FW. Lines and spaces behave differently for FWs
smaller than the wavelength.

3710 APPLIED OPTICS / Vol. 51, No. 17 / 10 June 2012



7. Parametric Measurement Uncertainty

Every measurement has a purpose, and every mea-
surement has an uncertainty. The purpose of the
measurement can help establish a measurement tol-
erance or the uncertainty confidence interval that
can be tolerated. Evaluating the measurement un-
certainty will establish whether it is in tolerance
or not; i.e., sufficiently accurate to meet the purpose
of the measurement [2].

The image model used must accurately reflect the
microscope imaging process. Several parameters
that describe the instrument and the object can affect
the microscope image, and their values are inputs to
the modeling program. These values are subject to
measurement uncertainty, and these uncertainties
propagate through the model, resulting in uncer-
tainty in the simulated image and in the inferred
FW. The best estimate of the value for each param-
eter was used in the model. The error in this esti-
mate, by its nature, was not known; only the error
probability distribution or the uncertainty of the
estimate was known [15].

NIST’s length calibrationmeasurements are trace-
able to the definition of the meter, so the errors from
all significant sources were estimated. The para-
meters included in this study are listed in Table 1.

In Table 1, NA refers to numerical aperture, and n
and k are the real and imaginary parts of the index of
refraction.

If fPig is the set of all parameters affecting the im-
age and the error in the ith parameter is δPi, the cor-
responding FW error component δFWi is [15]

δFWi � ∂FW∕ ∂PiδPi (3)

for small parameter errors. The corresponding stan-
dard parametric uncertainty component of FW is

upi�FW� � u�Pi�j∂FW∕ ∂Pij; (4)

where u�Pi� is the standard uncertainty of the value
of parameter Pi. The combined standard parametric
uncertainty of FW is

uparam�FW� � pX
i

�u�Pi�∂FW∕ ∂Pi�2; (5)

summed over all of the relevant parameters Pi.
The combined standard uncertainty for FW mea-

surements u�FW� can be stated as

u�FW� � p�σ2 � u2
param � u2

other�; (6)

where σ is the measurement repeatability and uother
includes the microscope scale calibration, model cal-
culation inaccuracies, differences between the real
object and its parametric description, and other sys-
tematic effects. Room temperature and humidity
fluctuations, vibration, etc., were included in the
repeatability because each feature was measured
multiple times at time intervals long enough to ran-
domize these environmental fluctuations.

This concept can be generalized. Any parameter
could be the measurand, and the FW could be treated
as another parameter. The optical imaging model

Fig. 6. Calibration FW errors (a) replotted from Fig. 2 for comparison with Figs. 6(b) and 6(c), (b) using the variable threshold method of
image edge identification (errors are largely due to interpolation of sampled data), and (c) using the image library method of extracting
data from a microscope image. All plotted to the same scale.
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relates the parameters to the image intensity I�x; y�
and can be expressed as I � F�fPig�. Any one of these
parameters, Pk, may be the apparent value of a mea-
surand, and its parametric uncertainty depends on
the others. Specifically,

uparam�Pk� � pX
i

�∂Pk ∕ ∂Pi�2u2�Pi�; i ≠ k: (7)

In most cases, the quantities ∂Pk ∕ ∂Pi can be deter-
mined only through image modeling.

The u�Pi� were determined from independent
measurements of the Pi or from other data such as
manufacturing tolerances, and the ∂FW∕ ∂Pi was
determined by modeling the microscope image with
perturbations of Pi and calculating the slope
ΔFW∕ΔPi at the nominal value of Pi and over a re-
presentative range of FWs for both lines and spaces.
Second-order effects and correlations among the
parameters ∂2FW∕ ∂Pi∂Pj were not included because
of the magnitude of computation time required, but
the treatment was straightforward [15–19].

Results of these calculations of uparam�FW� for the
variable threshold method of image interpreta-
tion and using the values in Table 1 are shown in
Fig. 6(b) [20]. Standard uncertainties were less than
10 nm for FWs greater than the wavelength, but then
rose to grandiose levels for smaller features. The rea-
son is that parameter errors gave rise to edge thresh-
old errors δThresh; then δFW � 2 δThresh∕ �dI∕ dx�
and dI∕ dx diminished at smaller feature sizes (Fig. 7).
The factor 2 arose from the fact that the edges are
displaced in opposite directions when the threshold
was displaced.

Feature sizes on production photomasks can be
smaller than 100 nm. While the variable threshold
method is capable of producing accurate FW mea-
surements [Fig. 6(b)], for small but important feature
sizes, it cannot gracefully tolerate the parameter
uncertainties typically encountered, leading to unac-
ceptable measurement uncertainties (Fig. 8).

8. Image Library Method

A 2-D image I�x; y� or a three-dimensional through-
focus image I�x; y; z�, even if not digitized, contains a

finite amount of information about the object by
virtue of the finite spatial frequency passband of
the microscope. According to §0.1 of [21], this is insuf-
ficient information to entirely reconstruct the object.
The image may contain sufficient information to
synthesize a parametric description of the object if
the parameter space can be made sufficiently small
by reducing the number of parameters, by assigning
tolerances to the parameters, and by adding prior
knowledge about the object.

A tractable way of implementing this feedback loop
is to create, prior to the measurement, a multidimen-
sional library of simulated images covering the rele-
vant range of parameter space, where FW can be
considered one of the parameters [22]. The object
then has the parameter values of the simulated
image that most closely matches its real image (or
interpolated, if necessary). Prior knowledge about
the values and probability distributions of some of
the parameters can be used to narrow the search
volume and reduce the probability of nonunique
matches. This method moves the time-consuming
computations offline; the library can be reused for
new measurements as appropriate and will grow
as more objects are simulated.

To use this approach, an image difference metric is
required, and the one chosen for this purpose was

Qjk �
����������������������������������������������
1
n

Xn
i�1

�Ij�xi� − Ik�xi��2
s

; (8)

where Ij�x� and Ik�x� are two photomask line feature
images to be compared and n is the number of image
samples compared. These are digitized (sampled)
images; usually one will be a real microscope image
and the other a simulated image. They must be
aligned in the x-axis and have the same sampling
interval Δx; some resampling may be required to
accomplish this. In addition, the image intensities
must be normalized in the same way, e.g., I � 1
through the clear quartz substrate for both. When
Ij�x� � Ik�x� the two images are identical and Qjk �
0. Other metrics could be used, but Qjk is probably
the simplest.

Table 1. Imaging Parameters Used Here and Their Uncertainties

Parameter
Nominal
Value

Standard
Uncertainty

Wavelength 365 nm 3 nm
Microscope

parameters
Illumination NA 0.6 0.1
Objective NA 0.9 0.05
Defocus 0 100 nm
Sampling aperture

(pixel size) in the
object plane

100 nm 50 nm

Cr thickness 103.5 nm 3 nm
Object

parameters
Cr n 1.843 0.5
Cr k 2.195 0.5
Quartz n 1.475 0
Quartz k 0 0

Fig. 7. Image acutance at feature edge of isolated lines and
spaces.
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For this study, a one-dimensional (1-D) image
library was constructed for 19 lines and 19 spaces
with the nominal parameters in Table 1 and FWs
of (0.0078, 0.0156, 0.0313, 0.0625, 0.0884, 0.1250,
0.1768, 0.1825, 0.2500, 0.3536, 0.3650, 0.5000,
0.7071, 0.7300, 1.0000, 1.4142, 2.0000, 4.0000, and
8.0000 μm). In order to determine ∂FW∕ ∂Pi, each
of these was surrounded with 16 satellite images
at 2.6 nm FW intervals. This 1-D library has a total
of 632 simulated images with nominal parameters,
each with 21 focus levels, with x � 0 at the feature
center and Δx � 6 nm.

Ignoring for themoment the effect of parameter un-
certainties, Fig. 6(c) shows FW errors using this li-
brary of images. These errors can be reduced by
using a more sophisticated method of finding the
minimum Qjk (or simply Q). Figure 9 shows the
Qs found when matching each nominal FW to its
satellites.

9. Parametric Uncertainty with the Image Library
Method

In order todetermine∂FW∕ ∂P imageswere calculated
with parameter values differing from their nominal

values one parameter at a time and each at best focus
(because themicroscope is always focusedby the same
criterion). The resulting imageswere compared to the
library of images (all withnominal parameters) over a
range of nearby FWs, and theQswere calculated. The
putative parameter error was δP, and the correspond-
ing apparent FWerror δFW was found by finding the
library image having the bestmatch (that for whichQ
was minimum). This process was refined by fitting
Q�δFW� to a polynomial to interpolate Q between
library images and finding that the δFW that mini-
mizes Q. ∂FW∕ ∂P is the slope of the polynomial fit
for δFW�δP� evaluated at δP � 0.

Figure 10 shows Qs for variations in illumination
NA for 125 nm lines and spaces. The image of a
125 nm line with parameter error δP looks like the
image of a �125� δFW� nm line with no parameter
error. This process was repeated for a range of values
of each parameter in Table 1 (except wavelength).
The Qs were calculated over an x range of FW �
5λ (0.9125 μm outside of each feature edge).

Then each parametric uncertainty component
of the FW was calculated from uparam;i�FW� �
u�Pi�j∂FW∕ ∂Pij and the combined parametric uncer-
tainty from uparam�FW� �pP �u�Pi�∂FW∕ ∂Pi�2. This
result is shown in Fig. 11(a), and the corresponding
edge threshold result is replotted to the same scale in
Fig. 11(b) for comparison. Parametric uncertainty for
the image library method is slightly greater than for
the edge threshold method for FWs greater than the
wavelength, peaks still higher around the wave-
length, but then diminishes for smaller features in
dramatic contrast to the threshold method. For fea-
tures larger than the wavelength, the image width
scales directly with the FW, and the edge threshold
method measures only that part of the image most
directly related to its width.

The parametric uncertainty peaks at the wave-
length are attributed to the fact that the nature of
the images changes at FWs near the wavelength.
For larger features, the width of the image is

Fig. 8. Combined parametric standard uncertainty using the
variable edge threshold method and the parameter values and
their uncertainties listed in Table 1.

Fig. 9. Shape of image-matching metricQ surface for identifying the FW in an image; minimumQ points to the best library imagematch.
(a) Isolated lines, (b) isolated spaces. Q is small at small spacewidths because the image intensity is small; see Fig. 11(b).
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proportional to the width of the feature, and the con-
trast �Imax − Imin�∕ �Imax � Imin� ≈ 1 ; for smaller fea-
tures, the width of the image does not change
much, but the contrast is a monotonic function of
FW (Fig. 12). The transition region between these
is where the parametric uncertainty is largest. The
good news is that this uncertainty component is tol-
erable for smaller FW and even appears to decline.

Contrary to dense arrays, there appears to be no the-
oretical lower limit to the isolated feature size that
can be measured optically (signal-to-noise ratio
may be a practical limiting factor). For comparison,
the measurement repeatability σ in our laboratory
(pooled standard deviation of the mean of over 4,000
linewidth and spacewidth measurements ranging
from 150 nm to 32 μm) was less than 3 nm.

The overall uncertainty can be reduced by redu-
cing the parameter uncertainties in Table 1 (e.g.,
by better measurements of the parameters). The
leading contributors to the parametric uncertainty
can be identified from the u�Pi�j∂FW∕ ∂Pij at the
FWs of interest (Fig. 13).

10. Model Accuracy

No imaging model is perfect; errors can arise from
the discretization of Maxwell’s equations for digital
computation, programming assumptions, program-
ming errors, etc. In principle, the accuracy of the
model at a point in parameter space can be assessed
by acquiring the image of a real object with the same
object parameters with a real microscope with the
same microscope parameters, then comparing that
image with the modeled image. This would require

Fig. 11. Combined parametric standard uncertainty for linewidths and spacewidths using the parameter values and uncertainties in
Table 1 and (a) the library-matching method of finding the best match feature width; (b) the variable edge threshold method of extracting
feature width data (the same data as Fig. 8, rescaled for comparison).

Fig. 10. Shape of image-matchingmetricQ surface for finding the apparent FW in an image when the illumination NA is in error by δNA;
minimum Q points to the best library image match. (a) 125 nm line and (b) 125 nm space.

Fig. 12. Image contrast for photomask lines and spaces. The con-
trast is nearly independent of feature width for features larger
than the wavelength but variesmonotonically for smaller features.
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that the object and microscope be completely de-
scribed by finite sets of parameters whose values
are accurately known. Even if a real object and a real
microscope could be adequately described by a finite
number,N, of parameters, the values of those param-
eters would occupy an N-dimensional region whose
cross sections are Gaussian probability distributions,
not discrete points [23]. Alternatively, perhaps one
could find an ideal object for which an analytic solu-
tion exists and compare that with the model result.

Both methods require objects that do not exist.
Perhaps the best that can be done is to compare dif-
ferent models with each other when modeling the
same ideal object and ideal microscope. Differences
in the results should be compared on a meaningful
basis, such as apparent parameter differences, to
assess their significance, and should then be used to
help track down the sources of discrepancies and per-
haps place a lower limit on model uncertainty.

Because of their complexity, the imaging models
described above are evaluated numerically, necessi-
tating decisions about calculation intervals Δx
(andΔt for the FDTDmethod), grid resolution for the
FEM methods, number of incident illumination an-
gles, number of terms to carry in an infinite series,
etc. These computation parameters can be used to
establish the tradeoff between execution speed and
accuracy, but their effects on model accuracy must
be evaluated by modeling the same object with differ-
ent values of computation parameters [24]. Then
these parameters can be chosen so that the resulting
computation errors are less than a tolerance, which
can be included in the measurement uncertainty.

11. Real Photomasks, True Value, Definitional
Uncertainty

Real binary (containing only nominally opaque and
clear areas) chrome photomasks are fabricated by de-
positing a proprietary gradient index inhomoge-
neous thin film of Cr, Cr2O3, and other compounds
on a fused quartz substrate and then etching this
film to form the desired features. As a consequence
of this composition, the etching rate is not constant

with Cr depth, and feature sidewalls are not straight
and vertical like those in Fig. 3, as confirmed by AFM
measurements. The question arises, “What is the
true value of the linewidth of such a feature?” The
term “true value” is defined in [21, §2.11] as “a
quantity value consistent with the definition of a
quantity,” along with a discussion of definitional un-
certainty. That discussion is beyond the scope of this
paper but must be considered when making mea-
surements of the kind described here. Further dis-
cussion regarding photomasks and definitional
uncertainty can be found in [2].

The chrome n and k values cited in Table 1 are
equivalent values for homogeneous chrome derived
from spectroscopic ellipsometry measurements on
NIST photomasks. The parametric error resulting
from the assumption of homogeneous chrome was
assessed by modeling the gradient index case and
comparing the results with the homogeneous case.
Computation time was significantly longer, but the
modeled image differences were small.

12. Conclusion

Modeling of the image-forming process is a key ingre-
dient in the dimensional measurements of small ob-
jects in a microscope. The approach described here
can be applied to optical microscopes — yielding
accurate measurements well below the illumination
wavelength — scanning electron microscopes [22],
and perhaps to scanning probe microscopes. Despite
their limited image resolution, optical microscopes
can measure nanoscale objects and have practical
advantages of speed, noncontact imaging, and cost
over SEMs and AFM.

The same procedures can be used for transmission
and reflection mode optical images, other objects
such as nanospheres, contact holes on photomasks,
etc., by using the appropriate model; the numerical
results will, of course, be different. Uncertainties
may be improved by more accurate measurements
of the parameters, using a shorter wavelength, using
confocal imaging, etc.

Fig. 13. Separate parametric uncertainty components contributing to the combined parametric feature width uncertainty in Fig. 11(a).
(a) Isolated lines; the major components appear to be microscope illumination and objective NA. (b) Isolated spaces; the major component
appears to be microscope illumination NA.
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A final caveat, second-order effects and their
possible covariance, is not included here. Treatment
of higher order effects is described in [16].

Appendix A

For the configurations shown in Fig. 14, we defined
eight auxiliary fields, U1, U2, U3, U7, U 0

1, U
0
2, U

0
3,

and U 0
7. The fields U1 and U 0

1 equal Esc
z and Hsc

z in
V1; satisfy the same Helmholtz equation in V2, V3,
and V7 as in V1; are continuous everywhere; have
discontinuous normal derivatives with jumps η11
and η 0

11 across C1, jumps η12 and η 0
12 across C2, and

zero jumps across C3; and satisfy the radiation con-
dition as y → −∞. They also satisfy the radiation con-
dition as y → �∞ because in that region they are
equal to scattered fields. The fields U2 and U 0

2 equal
Esc

z and Hsc
z in V2; satisfy the same Helmholtz equa-

tion in V1, V3, and V7 as in V1; are continuous every-
where; have a discontinuous normal derivative with
jumps η21 and η 0

21 across C1, jumps η23 and η 0
23 across

C3, and a zero jump across C2; and satisfy the radia-
tion condition as y → �∞. The fieldsU3 andU 0

3 equal
the longitudinal components of the total fields, Ez
andHz, inV3 and vanish inV1,V2, and V7. The fields
U7 and U 0

7 equal Esc
z and Hsc

z in V7; satisfy the same
Helmholtz equation in V1, V2, and V3 as in V7; are
continuous everywhere; have discontinuous normal
derivatives with jumps η71 and η 0

71 across C1, jumps
η73 and η 0

73 acrossC3, jumps η70 and η 0
70 acrossC0, and

a zero jump across C2; and satisfy the radiation con-
dition as y → �∞ and as y → −∞ by definition. These
auxiliary fields are given by

U1�ξ⃗� � G11fη11g�ξ⃗� �G12fη12g�ξ⃗�; (A1)

U2�ξ⃗� � G21fη21g�ξ⃗� �G23fη23g�ξ⃗�; (A2)

U3�ξ⃗��G32fΔ2�∂U3 ∕ ∂n�g�ξ⃗��N32fΔ2U3g�ξ⃗�
�G33fΔ3�∂U3 ∕ ∂n�g�ξ⃗��N33fΔ3U3g�ξ⃗�; (A3)

U7�ξ⃗� � G71fη71g�ξ⃗� �G73fη73g�ξ⃗� �G70fη70g�ξ⃗�;

in terms of the functionals Gfηg and Nfφg defined
by

Gfηg�ξ⃗� � −
i
4

Z
C
ds 0η�s 0�H�1�

0 �k⊥R�; (A4)

Nfϕg�ξ⃗� � i
4

Z
C
ds 0ϕ�s 0�H�1�

1 �k⊥R�k⊥n̂ 0 · R̂; (A5)

where the H�1�
n are Hankel functions, ξ⃗ 0 � X⃗�s 0�,

R⃗ � ξ⃗ − ξ⃗ 0, R � jR⃗j, R̂ � R⃗∕R, and n̂ 0 � n̂�s 0�, with
similar expressions for the other four auxiliary fields.
Related functionals are the normal and tangential
derivatives of G, N 0, and N 0 0.

From the continuity conditions, we can express U3
and U 0

3 in terms of the homogeneous fields and the
unknown boundary functions. We then use the con-
tinuity conditions on the tangential components of
the fields and the definitions of the auxiliary fields
to derive 12 integral equations for the 12 unknown
boundary functions, η11, η12, η20, η71, η73, η70, η 0

11,
η 0
12, η

0
20, η

0
71, η

0
73, and η 0

70; for instance,

G1
11fη11g �G1

12fη12g −G1
71fη71g −G1

73fη73g
−G1

70fη70g � 0; (A6)

1
2
η11 �N 01

12fη12g �
1
2
b1η71 − b1N 01

70fη70g
− β1N 0 01

11 fη 0
11g − β1N 0 01

12 fη 0
12g � 0; (A7)

��1∕ 2�N2
32�G2

11 � b2G2
32N

02
11�fη11g

� ��1∕ 2�N2
32�G2

12 � b2G2
32�1∕ 2�N 02

12��fη12g
−N2

33G
3
71fη71g � �1∕ 2b3G2

33 −N2
33G

3
73�fη73g

− �b3G2
33N

03
70 �N2

33G
3
70�fη70g � β2G2

32N
0 02
11 fη 0

11g
� β2G2

32N
0 02
12 fη 0

12g − β3G2
33N

0 03
71 fη 0

71g − β3G2
33N

0 03
73 fη 0

73g
− β3G2

33N
0 03
70 fη 0

70g
� −�1∕ 2�N2

32�fEh1
z g − b2G2

32f∂Eh1
z ∕ ∂ng �N2

33fEh7
z g

� b3G2
33f∂Eh7

z ∕ ∂ng − β2G2
32f∂Hh1

z ∕ ∂sg
� β3G2

33f∂Hh7
z ∕ ∂sg; �A8�

where coefficients such as b2 and β2 are functions of
the constants of the wave and of the media. The func-
tionals N 01

11, N
01
71, N

00
20, N

00
70, N

03
71, N

03
73, N

01
73, and N3

33
vanish, and they have been eliminated from the
equations. We can solve for η71, η20, η 0

71, and η 0
20 from

four of the integral equations and substitute them
into the other eight equations that can then be solved
for the eight remaining variables.

Fig. 14. Scattering by a Cr strip on a quartz layer on a substrate,
incidence from below the layer. Unknown boundary functions ηij
and η 0

ij are jumps in the normal derivatives of the fields inVi across
the boundary Cj.
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