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ABSTRACT 
 
As the usage of 3D models increases, so does the importance of developing accurate 3D 
shape retrieval algorithms. A common approach is to calculate a shape descriptor for each 
object, which can then be compared to determine two objects’ similarity. Descriptors are 
split into two main categories – global and local. Because local descriptors are in general 
more invariant to rotation, translation, and scaling, and can additionally be applied to 
articulated models and partial matching problems, many have been proposed in recent years. 
However, these descriptors are often evaluated independently and on different datasets, 
making them difficult to compare. Using the SHREC 2011 Shape Retrieval Contest of Non-
rigid 3D Watertight Meshes dataset, we systematically evaluate a collection of local shape 
descriptors. We apply each descriptor to the bag-of-words paradigm, which represents each 
object as a histogram of designated visual words. We also assess the effects of varying the 
dictionary’s size and the number of sample points. In addition, several salient point detection 
methods are used to find sample points; these methods are compared to each other and to 
selecting random points. Finally, information from two local descriptors is combined in a 
number of ways and changes in performance are investigated. In this paper, we present 
results and observations from these experiments. 
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1. INTRODUCTION 

Collections of 3D models are becoming prominent in many fields. As the number and sizes 
of such databases grow, so does the need to accurately search for and retrieve 3D models. 
Thus, a standard 3D shape retrieval problem becomes returning all other objects in the 
database ordered in decreasing similarity to a given query.  
 
To approach this problem, a number of shape descriptors have been proposed. Global 
descriptors, such as area and volume [1], “shape distributions” [2], ratios derived from the 
object’s convex-hull [3], or the “LightField Descriptor” [4], return a feature vector, a single 
vector of values to represent an object. The distance between two feature vectors then 
quantitatively represents the dissimilarity between their corresponding objects; the more 
similar the objects are, the lower their dissimilarity value, and a value of 0 indicates they are 
identical. However, global descriptors are often not invariant to “unimportant” 
transformations, such as scaling, rotation, or translation, and can only discriminate between 
broad categories (for example, between buildings and people). Thus, researchers have begun 
to develop local descriptors. These kinds of descriptors are calculated at a number of sample 
points on an object, associating a vector with each, and describe a local surface region rather 
than the entire object.  
 
The bag-of-words paradigm offers one framework to compare two objects using local 
descriptors. Briefly, for each object, a selected set of sample points is each associated with a 
visual word, a local descriptor value from a pre-constructed dictionary. A feature vector for 
that object then has dimensionality equal to the size of the dictionary; its values are the 
histogram counts for the number of occurrences of each visual word. Objects can then be 
compared with dissimilarity just as in the case of global descriptors.  
 
This method has been successful in both text and image retrieval, and has shown promising 
results in 3D. However, while many local descriptors have been proposed, only a few have 
been incorporated into the bag-of-words framework. Many times, descriptors will be 
incorporated into different algorithms and tested on different datasets. This paper 
systematically surveys a set of local descriptors and compares their performances. It first 
analyzes their individual performances. In addition, parameters for the bag-of-words 
algorithm, four different salient point detection methods, and ways to combine information 
from two local descriptors are investigated.  
 
This paper will proceed as follows: Section 2 briefly discusses related work. Section 3 gives 
an overview of the bag-of-words approach, Section 4 describes our experiments, and Section 
6 outlines the evaluation methods. Section 7 presents our results, while Section 8 concludes 
the paper. 
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2. RELATED WORK 

Some works have already described methods using the bag-of-words approach. Ohbuchi et 
al. [5] devise a bag-of-features based on Scale-Invariant Feature Transform (SIFT) 
algorithm, where SIFT is used to extract salient local features from uniformly distributed 
depth-buffer views of a normalized object. The SIFT features from all views are used to 
construct a dictionary and create a histogram; dissimilarity is the Kullback-Leibler 
divergence between two histograms. Lian et al. [6] use a similar method, but instead of 
constructing one global histogram for each object, a separate histogram is built for each view 
of the object. They then compare objects with a method called “Clock Matching”. Shan et al. 
[7] and Liu et al. [8] both use spin images, 2D histograms proposed by Johnson and Herbert 
[9] that count the number of surface points at various locations, as local descriptors. Toldo et 
al. [10] segment a model into regions, calculate different sets of “region descriptors”, and 
apply a “multi-clustering approach”. Lavoué [11] propose choosing a random set of vertices 
as seeds and applying Lloyd relaxation iterations to create a uniform sampling. They then 
define a local descriptor to describe each sample point’s local surface patch.  
 
Additionally, a number of local descriptors have been proposed independent of the bag-of-
words framework. Curvature based descriptors include mean and Gaussian curvature, shape 
index [12], and curvedness [12]. Sun et al. [13] introduce the popular Heat Kernel Signature 
(HKS). Gal et al. [14] create a global 2D histogram that combines two local descriptors – the 
local-diameter function, which describes local shape well, and the centricity function, which 
gives spatial information.  
 
With these local descriptors comes the challenge of selecting appropriate and repeatable 
sample points. Some successful 2D salient point detection methods have been extended to 
3D, such as with Sipiran and Bustos’s 3D-Harris [15]. Multi-scale approaches are also 
common; for example, [16] and [17] calculate saliency measures for each vertex using 
Gaussian filters with different standard deviations and choose certain maximum values. [18] 
define an “integral volume descriptor”, which calculates the volume of the object’s interior 
contained by the intersection between its surface and a ball centered on one of its vertices. 
The Heat Kernel Signature proposed by Sun et al. [13] can also be used to find salient points. 
  
A number of surveys have been conducted to compare these methods under one framework.  
Tangelder and Veltkamp [19] review content-based 3D shape retrieval methods. Heider et al. 
[20] assess local descriptors for stability and discrimination ability, while Dutagaci et al. [21] 
examine salient point detection methods based on human-established ground truth. Li and 
Godil [22] evaluate the bag-of-words method in context of different shape retrieval tasks, 
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choosing spin images as the local descriptor. This evaluation aims to contribute by exploring 
the performance of different local shape descriptors, specially applied to the bag-of-words 
method.  
 
 

3. BAG-OF-WORDS 

The bag-of-words approach involves two stages: building a visual dictionary and computing 
a corresponding histogram for each object. Fig. 1 illustrates the algorithm.  
 

Fig. 1 Bag-of-words algorithm 

Cluster all values into D clusters  

Assign each descriptor value to nearest visual word and construct histograms 

 

Cluster centers become words 
in visual dictionary  

Calculate descriptor at each sample point 

Choose sample points from each object 

Database 
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To construct a visual dictionary, we choose {n1, n2, n3…nM} sample points from a collection 

of M models. A local descriptor is evaluated at each point, resulting in a total of ∑  

vectors. We then cluster these vectors into D clusters, where D is the desired size of the 
dictionary, and the cluster centers are designated as the visual words.  

=

M

i
in

1

 
For an object i, we choose ni sample points and evaluate the local descriptor at these points. 
Each resulting vector is associated with the nearest word in the visual dictionary, and a 
histogram counting the number of occurrences of each visual word is constructed.  
 
In our implementation, we choose to base the visual dictionary and the histograms off the 
same set of sample points. We use code by Vedaldi and Fulkerson [23] to implement k-
means clustering. Since we do not always choose the same number of sample points for each 
object, we divide counts by the total number of sample points to normalize histograms to [0, 
1]. We choose Euclidian distance as a distance measure. For a dataset containing M meshes, 
we create an MxM distance matrix, where the value at entry (i, j) is the distance between the 
histograms of objects i and j and consequently, their dissimilarity value. 
 
 

4. EXPERIMENTS 

For our experiments, we assume that all objects are modeled as triangle meshes. In this 
representation, the surface of an object is approximated as a set of edge-connected triangles 
defined by a set of vertices and edges. 
 
4.1  LOCAL DESCRIPTORS 

We adopt the method of Heider et al. [20] to evaluate local descriptors for our dataset. The 
procedure is outlined as follows: 
 
4.1.1 Calculation method 

Descriptors are sampled across a small area surrounding each vertex P.  Sample points Q are 
taken in intervals of 2πr/20 along each of R rings formed by the intersections of R spheres, 
with center P and varying radius r, with the object’s surface. Sampling is done with what 
[20] denote as histogram sampling – within each ring, the sampled values are sorted and the 
ones at 0 %, 10 %, 30 %, 50 %, 70 %, 90 %, and 100 % are taken as sample points. Thus, 
each point P is associated with a vector of size RS, where R is the number of spheres and 
consequently, the number of rings and S is the number of samples kept per ring (in this case, 
S = 7).  
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For all descriptors, R = 5 and r is determined with the equation 
r = B0.0375/R,      (1) 

where B is the diagonal of the surface’s bounding box. Descriptors are sampled at all 
vertices, associating an object containing V vertices with V vectors, each with dimensionality 
RS. 
 
PCA is applied across vectors from all vertices on all objects in the dataset to keep data 
comparable after reduction. After the eigenvalues drop below 10 % of the largest value, 
remaining coefficients are dropped. All vectors are re-projected onto this new coordinate 
system and values in each dimension are normalized to [0, 1]. 
 
4.1.2 Descriptors 

We test the six local descriptors that yielded the best performance in the evaluation by 
Heider et al. [20]. They are as follows:  
 

• Distance to plane [DTP]: the descriptor is the signed distance from each sample point 
on the ring, Q, to the best-fit plane of that ring  

• Normal distribution [ND]: the descriptor contains two values – one is the angle 
between the vertex P’s normal and the projection of the sample point Q’s normal onto 
the best-fit plane to P, P’s normal, and Q, the other is the projection of Q’s normal 
onto the best-fit plane of jacent sample point  Q, Q’s normal, and an ad

• Mean curvature [Mean]: , wh

• Gaussian curvature [Gauss]: , where κ1 and κ2 are the principal curvatures at 
point P 

ere κ1 and κ2 are the principal curvatures at point P 

• Shape index [SI]: calcu al ted with  
 tan ,        (2) 

where κ1 and κ2 are the principal curvatures at point P and  κ κ   
• Curvature index [CI]: calculated with  

 ,          (3) 

where κ1 and κ2 are the principal curvatures at point P 
 

Local descriptors are calculated with code provided by the authors [24].  
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4.2 CHOICE OF SAMPLE POINTS 

We compare different sampling methods – choosing a uniform random sampling of vertices 
and four different salient point detection methods. We wonder if by sampling local 
descriptors only at important points, we can either improve performance or maintain 
performance while choosing fewer sample points. The point detection methods tested are: 
 
4.2.1 Mesh saliency 

Proposed by Lee et al. [16], points are chosen according to their “total saliency” values. 
“Saliency maps”, denoted γi, are created by calculating a saliency value for each vertex. For a 
chosen scale i, the Gaussian-weighted averages of the mean curvature using two Gaussian 
filters, with standard deviations σi and 2σi, are calculated. The absolute difference between 
the two averages is the saliency. “Saliency maps” are calculated at five scales, with σi = {2ε, 
3ε, 4ε, 5ε, 6ε}, where ε is 0.3 % of the diagonal of the model’s bounding box. Each “saliency 
map” is normalized, and the five are combined with a non-linear suppression operator S(x) to 
find the “total saliency” γ using the equation 

γ = ΣiS(γi).       (4) 
 
Vertices whose “total saliency” values are local maxima, higher than all its neighboring 
vertices’ values, are identified as candidate points. All candidate points whose “total 
saliency” is higher than the average “total saliency” of all local maxima values become 
salient points. Code implemented by Dutagaci et al. [21] is used for our experiment.  
 
4.2.2 Salient points 

Proposed by Castellani et al. [17], salient points are determined using a “joint multi-scale” 
paradigm. The algorithm is split into an intra-octave and an inter-octave phase. To find intra-
octave salient points for the object re-meshed at decimation d, denoted Md and chosen scale i, 
the Difference-of-Gaussians operator,  calculated for a vertex P by finding the 
difference between Gaussian operators with standard deviations σi and 2σi.  is 
projected onto the normal of P to obtain a “scale map”, . “Scale maps” are 
normalized, and an “inhibited scale map”,   – where for each vertex,  
only if its value is higher than 85 % of values in its neighborhood, otherwise, 0 – 
is formed and added to  to get an “inhibited saliency map.” This is done at six scales, 
with σi = {ε, 2ε, 3ε, 4ε, 5ε, 6ε}, where ε of 0.1 % the main diagonal of the model’s bounding 
box. A “non-maximum suppression” scheme detects salient points for the mesh at 
decimation Md. 
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This intra-octave phase is carried out on meshes Md with d = {0, h, 2h, 3h, 4h}, where h = 
0.20. Points common to three of these meshes become final salient points. The “Mesh Tool” 
program is used for point detection [25].  
 
4.2.3 3D-Harris adaptive 

Sipiran and Bustos detect salient points by extending 2D corner detection to 3D models [15]. 
The neighborhood Nk(P) of vertex P is defined as the k rings around P. The centroid of Nr(P) 
becomes the origin of the 3D coordinate system. PCA is applied to P and its neighborhood to 
compute a best-fit plane, and points are re-oriented such that P becomes the origin and the 
best-fit plane becomes the xy-plane of a transformed coordinate system. A quadratic surface 
is fit to the transformed points and its derivatives, fx and fy, are calculated. A matrix E is 
computer with: 

√
· ,

√
· , · ,

√
· , · ,

√
· ,

. 

(5)  
 
The Harris operator H(V) is calculated with  

det . ,     (6) 
where E is the matrix defined in (5), and k is a chosen constant referred to as the Harris 
parameter. Points are considered salient if they are local maxima for its neighborhood of r 
rings. In addition, a specified fraction of points with the overall highest Harris response 
values are also chosen.  
 
C++ code provided by the authors is used for evaluation [26]. In the default implementation, 
an adaptive sampling scheme finds an appropriate neighborhood n for each vertex P 
depending on P’s surrounding tessellation, selecting a different neighborhood for different 
points. 1 % of the diagonal of the object’s bounding box is used as a parameter to find this 
neighborhood. The Harris parameter k is 0.04, the neighborhood size for determining 
saliency r is 1, and 1 % of vertices are selected as salient points. We refer to this method as 
“3D-Harris adaptive”.  
 
4.2.4 3D-Harris rings 

In addition to the default implementation of 3D-Harris, sample points chosen with different 
parameter values are tested with our bag-of-words approach. The parameters altered are, as 
outlined at the author’s website [26]: 
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• Neighborhood type: the method used – adaptive or rings – to find each vertex’s 
neighborhood. 3D-Harris adaptive uses the adaptive scheme. With the rings option, 
the neighborhood is simply a constant number of rings around a vertex.  

• Parameter-neighborhood: the fraction of the diagonal of the object’s bounding box if 
neighborhood type is adaptive; the number of rings used if neighborhood type is rings 

•  k: constant in (6)  
• Ring-maxima-detection: number of rings considered as the neighborhood when 

finding local maxima 
• Parameter-selection: the fraction of the total number of vertices selected as salient 

points  
 
The salient point selection method can alternatively be a clustering technique, where points 
are sorted in order of descending Harris operator values and clustered before salient points 
are selected. Because this technique intends to get an even distribution of interest points, it 
yields sample points visually similar to a random distribution. Thus, we choose to always 
select a fraction of points. When varying a parameter does not affect performance, the lowest 
value is chosen. The parameters returning points giving the best performance is used for the 
“3D-Harris rings” method. 
 
4.3 MULTIPLE LOCAL DESCRIPTORS 

Finally, we determine whether using two local descriptors would cause improved 
performance. Two methods are tested: 
 
4.3.1 Concatenating vectors 

Given two local descriptors that return vectors of sizes RS1 and RS2, at each point P, the 
second descriptor’s vector is concatenated to the end of the first to create a vector of size 
R(S1+S2). With this new set of vectors, clustering and histogram construction is performed as 
before.  
 
4.3.2 Concatenating histograms 

Two local descriptors are calculated at each point P. Clustering is performed independently 
on both sets of vectors, creating two dictionaries, each of size D, and corresponding 
histograms are independently constructed and normalized. Thus, each point P is associated 
with two histograms; these histograms are then concatenated to yield a histogram of 2D 
elements, and dissimilarity is the distance between the concatenated histograms. 
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5. EVALUATION 

5.1 DATABASE 

We test our algorithms on the SHREC 2011 Shape Retrieval Contest of Non-rigid 3D 
Watertight Meshes dataset [27].  The collection contains 600 non-rigid 3D triangle meshes, 
classified into 30 different categories each containing 20 objects. Given these models, our 
algorithm computes a 600x600 distance matrix, where the value at entry (i, j) is the 
computed dissimilarity between objects i and j. From this, the ranked list of similar objects 
can be derived for any query.   
 
5.2 PERFORMANCE MEASURES 

For each distance matrix output, six statistics, as described in [28], are calculated to evaluate 
the method. For any query object M, let C be the number of objects in M’s class (including 
itself) and K the number of closest matches examined. The statistics calculated are: 
 

• Precision-recall plot: Precision represents the portion of the K closest matches 
returned that are in the correct class. Recall represents the portion of objects in M’s 
class that are in the top K matches. Recall is plotted on the horizontal axis, while 
precision is plotted on the vertical axis; results closer to the horizontal line y = 1 are 
desirable.   

• Nearest neighbor (NN): the mean percentage of objects in the query object’s class 
that are also in  results; results closer to 1.0 are desirable.   the top K = 1

• First tier (1-tier): the mean percentage of objects in the query object’s class that are 
also in the top  s; results closer to 1.0 are desirable. | | 1 result

• Second tier (2-tier): the mean percentage of objects in the query object’s class that are 
also in the top 2 | | 1   results; results closer to 1.0 are desirable. 

• E-measure: E-measure is defined as  
1 ,       (7) 

where P is the precision and R is the recall over the top K = 32 objects. Results closer 
to 1.0 are desirable.  

• Discounted Cumulative Gain (DCG): DCG reflects the performance of the algorithm 
when correct results that are retrieved earlier are weighted higher than those retrieved 
later, and is calculated as: 

∑| | ,      (8) 
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where k is the total num Gi is calculated as: ber of models in the database and DC

 
, 1
, .    (9) 

    
Gi has a value 1 if the object that is the ith closest match to the query object is in the 
query object’s class, and is 0 otherwise. Results closer to 1.0 are desirable.  

 
Code provided by Shilane et. al [29] is used for evaluation.  
 

6. RESULTS AND DISCUSSION 

6.1 SHAPE DESCRIPTORS 

To compare individual shape descriptors, we chose 500 uniform random points from each of 
the 600 meshes in the SHREC 2011 dataset. We clustered the 300,000 resulting vectors into 
a dictionary of 500 words. Each descriptor was evaluated at the same points on each mesh.   
 
Table 1 shows statistics for all shape descriptors, and Fig. 2 presents their precision-recall 
graphs.  
 
Table 1 Retrieval statistics for local shape descriptors. 500 random points were sampled on 
each object and the visual dictionary had 500 words. 
 NN 1-tier 2-tier E-measure DCG 
Mean curvature 0.9833   0.7448       0.8450      0.6178         0.9288 
Curvature index 0.9733   0.7405       0.8475      0.6173         0.9231 
Shape index 0.9700   0.7441       0.8733      0.6335         0.9336 
Normal distribution 0.9650   0.7360       0.8461      0.6155         0.9176 
Gaussian curvature 0.9367   0.6474       0.7732      0.5580         0.8840 
Distance to plane 0.9000   0.6073       0.7616      0.5422         0.8629 
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Fig. 2 Precision vs. recall curves for local shape descriptors. 500 random points were 
sampled on each object and the visual dictionary had 500 words.  

 
It was clear that distance to plane performed the worst, with Gaussian curvature the second 
worst. However, no descriptor consistently performed better than the others. Mean curvature 
had the highest statistics, however, never had the highest precision. On the other hand, while 
shape index had the highest precision for most recall values, it had the lowest precision at 
high recall and only the third highest statistics. Overall, the best descriptors were mean 
curvature, shape index, and curvature index.  
 
Heider et al. [20] test sampling methods in addition to local descriptors. Looking only at their 
overall sensitivity results for histogram sampling, their local descriptor ranking is similar to 
Table 1 – mean curvature, curvature index, shape index, Gaussian curvature, normal 
distribution, and distance to plane. However, the overall conclusions of [20] are slightly 
different. For example, [20] reported mean curvature and normal distribution, followed by 
distance to plane and Gaussian curvature, as the most discriminative descriptors. While mean 
curvature performed well within the bag-of-words method as well, the other three actually 
performed the worst. Overall, [20] found normal distribution, being one of the most 
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discriminative and stable, to be the best overall descriptor,  yet in the bag-of-words 
paradigm, it did not perform as well as mean curvature, shape index, or curvature index. This 
suggests that the performance of a descriptor under other evaluations is not necessarily 
indicative of its performance within the bag-of-words framework. 
 
6.2 ALGORITHM PARAMETERS 

We tested two important parameters of the bag-of-words method. First, we evaluated the 
effect of dictionary size. Choosing mean curvature as the local descriptor, we sampled 500 
random points from each object. Using this same set of sample points for all tests, we created 
dictionaries of various sizes.  
 
Clustering was the most time consuming step in our algorithm. It took longer for larger 
dictionaries, taking about 30 minutes for 1000 words.   
 
Table 2 Time consumed for k-means clustering for various sized dictionaries. Timing 
studies done on an 2.66GHz desktop computer with 4GB of RAM running Windows XP. 
Vocabulary Time for k-means clustering (seconds) 
 10  8.52  
 50  42.09  
 100  68.85  
 200  172.24  
 300  317.23  
 400  439.61  
 500  625.92  
 1000  1864.45  
 
However, as displayed in Fig. 3, while performance improved dramatically when the sizes of 
smaller dictionaries were increased, the effect eventually reached a plateau. The optimum 
dictionary size seems to be around 200 words.  

We also tested the effect of the number of random samples, again using mean curvature and 
a dictionary size of 500. Sample points were uniformly re-sampled when the number of 
desired samples changed. Like with dictionary size, again, we saw performance improvement 
reach a plateau as the number of sample points increased; a choice of around 600 sample 
points seems to be the best. 
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Fig. 3 Effect of dictionary size on retrieval. 
Mean curvature was used as a local 
descriptor and 500 random points were found 
on each object. 

Fig. 4 Effect of number of sample points on 
retrieval. Mean curvature was used as the 
local descriptor and the visual dictionary had 
500 words. 

 
6.3 SALIENT POINT DETECTORS 

6.3.1 Determination of parameters for 3D-Harris rings 

Only two parameters improved the performance of points detected by 3D-Harris when 
returned – changing the neighborhood sampling to rings and increasing the fraction of points 
selected. We used mean curvature as the local descriptor, with a dictionary of 500 words. 
Fig. 5 and Fig. 6 display the effect of the relevant parameters.   
 

Fig. 5 Precision vs. recall curves using 
sample points returned by the 3D-Harris 
algorithm using different methods to find 

Fig. 6 Effect of selecting different fractions 
of points to be returned by the 3D-Harris 
algorithm as sample points on retrieval. 
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vertex neighborhoods. Mean curvature was 
the local descriptor and the visual dictionary 
had 500 words. 

Neighborhoods were selected using the rings 
method, mean curvature was the local 
descriptor, and the visual dictionary had 500 
words.   

 
It can be seen that using rings to find neighborhoods outperformed the adaptive scheme. In 
addition, selecting a larger fraction of points also improved performance. The final 
parameters used for 3D-Harris rings were ring neighborhoods with a size of one ring, k = 
0.01, where k is the constant in (6), r = 1, where r is the number of rings considered a part of 
a vertex’s neighborhood when determining local maxima, and 5 % of points selected as 
salient points.  
 
6.3.2 Comparing salient point detectors 

The different points detected by each salient point detection method on the armadillo model 
– file T261.off in the SHREC 2011 Non-Rigid 3D Watertight Meshes Dataset – are shown in 
Fig. 7. 
 

Fig. 7 Salient point detected. Top row (left to right): 500 random points, mesh saliency, 
salient points. Bottom row (left to right): 3D-Harris adaptive, 3D-Harris rings 
 
All methods detected salient points in similar areas of the model – toes, fingers, ears, and 
creases. Especially notable differences were seen in the number of points on smoother areas 
of the mesh; mesh saliency and 3D-Harris rings returned more points on the chest, arms, and 
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legs than salient points and 3D-Harris adaptive. 3D-Harris rings returned a similar density of 
points to 500 random points; however, these points were clearly clustered more towards the 
creases of the mesh.  
 
To test performance with the bag-of-words algorithm, we sampled the mean curvature at the 
vertices returned by each salient point detector. We used a dictionary of 500 words. Table 3 
and Fig. 8 show our results.  
 
For most recall values, using 500 random points still had the highest precision. 3D-Harris 
rings was a close second, followed by mesh saliency. However, at high recall values (greater 
than 0.8), mesh saliency performed the best. Salient points and 3D-Harris adaptive 
performed the worst.  
 

Fig. 8 Precision vs. recall curves for sample point selection methods. Mean curvature 
was the local descriptor and the visual dictionary had 500 words. 
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From Table 3, we see that methods returning more points generally performed better, 
suggesting that the effectiveness of a salient point detector was determined at least in part by 
the number of points it returned.  
 
When the number of sample points chosen was small, sampling salient points instead of 
random ones was able to improve performance. Both salient points and 3D-Harris adaptive 
clearly gave better results than sampling 100 random points, while both methods involved 
fewer sample points. It is also interesting to note that while 3D-Harris adaptive returned 
more points on average and in total, it still did not perform as well as salient points. Looking 
at Fig. 7, one explanation might be that 3D-Harris adaptive returned more points on the right 
of the armadillo than the left, while salient points returned a more symmetrical distribution of 
points. 3D-Harris adaptive also returned virtually no points on the armadillo’s body, arms, or 
legs, while salient points has sample points representing features like the chest and the knees. 
In this case, calculating a local descriptor at salient points was able to provide more 
information and improve performance.   
 
As the number of sample points increased however, a continued performance improvement  
did not occur. For example, mesh saliency gave approximately the same statistics as using 
300 or 400 random points. 3D-Harris rings and 500 random points, while they had different 
visual distributions of points, were also fairly equal in performance. This suggests that the 
benefit of detecting salient points also reaches a plateau, similar to what we saw with the 
dictionary’s size and number of random sample points. At a larger number of sample points, 
sampling a local descriptor at salient points can slightly decrease the number of sample 
points needed to achieve a similar level of performance (as with 500 random points and 3D-
Harris rings), but this advantage is not much. 
 
Table 3 Retrieval statistics for sample point selection methods. Mean curvature was the local 
descriptor and the visual dictionary had 500 words. 
 NN 1-tier 2-tier E-measure DCG Average 

points per 
mesh 

Total 
points 
sampled 

500 random  0.9850   0.7432    0.8480    0.6190        0.9281 500 300000 
3D-Harris 
rings 

0.9817   0.7389    0.8355    0.6104        0.9235 461 276891 

400 random 0.9583   0.7272    0.8427    0.6127        0.9194 400 240000 
300 random 0.9533   0.6922    0.8205    0.5938        0.9038 300 180000 
Mesh 
saliency 

0.9500   0.7254    0.8444    0.6129        0.9128 354 212185 

200 random 0.9050   0.6404    0.7822    0.5601        0.8761 200 120000 
Salient 
points 

0.8900   0.5861    0.7445    0.5302        0.8452 75 44884 
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3D-Harris 
adaptive 

0.8767   0.5595    0.7073    0.5016        0.8287 93 55585 

100 random 0.7967   0.5131    0.6584    0.4659        0.7920 100 60000 
 
6.4 COMBINING DESCRIPTORS 

First, 500 sample points were chosen for each object. Each descriptor was evaluated at these 
sample points and tested using a dictionary of 500 words as reference. We combined 
descriptors in four different ways. First, two descriptors were combined by concatenating the 
vectors returned when they were sampled at the same points on each object. Data from two 
descriptors combined this way are labeled with format descriptor1+descriptor2 – VS. 
Alternatively, two descriptors’ histograms were concatenated, again using the same sample 
points; this data is labeled with the format descriptor1+descriptor2 – HistS.  
 
We also tried to not only sample two different descriptors, but also different points as well. 
Thus, we calculated the performance of two descriptors separately, choosing different sample 
points for each descriptor. The histograms were directly concatenated, and performance data 
is labeled with the format descriptor1+descriptor2 – HistD. Then, the vectors from each 
descriptor were concatenated and these combined vectors were tested as well; results are 
labeled with the format descriptor1+descriptor2 – VD. In addition, to see how well each 
descriptor corresponded with itself, we also sampled each descriptor at two sets of 500 
sample points each and concatenated the resulting vectors (labeling results with format 
descirptorVD) and histograms (labeling results with format descirptorHistD).  
 
As shown in Table 4, concatenating the vectors from calculating normal distribution and 
shape index at the same sample points performed the best. In general, some descriptors 
clearly corresponded better with each other, and only some of the combined descriptors 
performed better than mean curvature, the single local descriptor with the highest statistics. It 
is also interesting to note that neither normal distribution nor shape index performed the best 
as an individual descriptor, but together was the best combination. On the other hand, 
combining the mean curvature with some descriptors actually made performance worse than 
just mean curvature alone, including combining the descriptor with itself.  
 
Concatenating vectors from different sample points clearly gave the lowest results. The top 
four results used two descriptors at the same sample points rather than different ones. In 
terms of vectors concatenation, using the same points consistently gave much better results. 
However, though the best combination came from concatenating vectors, concatenating 
histograms gave better performance overall. It is unclear whether using the same or different 
sample points is better when concatenating histograms – for example,  using the same sample 
points performs better when combining mean curvature without another descriptor, yet using 
difference points is more preferable when combining normal distribution with others. 
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Table 4 Retrieval statistics for combinations of local descriptors 
 NN 1-Tier 2-Tier e-Measure DCG 
ND+SI – VS 0.9950   0.7978       0.8910      0.6513         0.9484 
Mean+SI – HistS 0.9933   0.8106       0.9053      0.6603         0.9579 
Mean+CI – VS 0.9917   0.7773       0.8724      0.6376         0.9419 
Mean+Gauss – HistS 0.9917   0.7605       0.8487      0.6187         0.9344 
ND+SI – HistD 0.9900   0.8240       0.9171      0.6701         0.9591 
Mean+SI – VS 0.9900   0.7791       0.8793      0.6424         0.9447 
CI+SI – HistS 0.9900   0.8253       0.9125      0.6680         0.9580 
ND+Gauss – HistD 0.9900   0.7649       0.8500      0.6224         0.9312 
SI+Gauss – Hist D 0.9900   0.7973       0.8922      0.6520         0.9512 
Mean+Gauss – HistD 0.9900   0.7655       0.8515      0.6220         0.9354 
SIHistD 0.9900   0.7884       0.8989      0.6550         0.9519 
CI+SI – VS 0.9883   0.8065       0.8963      0.6558         0.9526 
SI+DTP – HistD 0.9883   0.7861       0.8980      0.6537         0.9489 
Mean+CI – HistS 0.9867   0.7746       0.8637      0.6323         0.9385 
CI+SI – HistD 0.9867   0.8215       0.9120      0.6656         0.9574 
CI+Gauss – HistD 0.9867   0.7639       0.8502      0.6208         0.9330 
ND+SI – HistS 0.9850   0.8241       0.9146      0.6682         0.9581 
Mean+SI – HistD 0.9850   0.8161       0.9093      0.6637         0.9581 
Mean+CI – HistD 0.9850   0.7777       0.8629      0.6324         0.9386 
Mean+ND – HistS  0.9850   0.7816       0.8647      0.6344         0.9379 
ND+CI – HistD 0.9850   0.7748       0.8585      0.6292         0.9347 
ND+CI – HistS 0.9850   0.7704       0.8590      0.6291         0.9327 
CIHistD 0.9850   0.7587       0.8529      0.6240         0.9300 
ND+Gauss – VS 0.9833   0.7552       0.8487      0.6186         0.9295 
CI+Gauss – VS 0.9833   0.7544       0.8533      0.6208         0.9291 
Mean+ND – HistD 0.9833   0.7839       0.8661      0.6345         0.9394 
CI+DTP – HistS   0.9833   0.7500       0.8588      0.6254         0.9302 
Mean 0.9833   0.7448       0.8450      0.6178         0.9288 
SI+Gauss – VS 0.9817   0.7740       0.8685      0.6351         0.9377 
Mean+Gauss – VS 0.9817   0.7833       0.8716      0.6367         0.9407 
ND+CI – VS 0.9817   0.7582       0.8538      0.6252         0.9296 
CI+DTP – HistD 0.9817   0.7476       0.8544      0.6224         0.9292 
Mean+DTP – HistD 0.9817   0.7573       0.8644      0.6307         0.9356 
NDHistD 0.9817   0.7632       0.8517      0.6247         0.9292 
SI+DTP – HistS 0.9800   0.7858       0.9016      0.6566         0.9477 
Mean+DTP – HistS 0.9800   0.7593       0.8632      0.6307         0.9346 
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MeanHistD 0.9800   0.7395       0.8477      0.6173         0.9269 
SI+DTP – VS 0.9783   0.7468       0.8756      0.6342         0.9344 
CI+Gauss – HistS 0.9783   0.7640       0.8508      0.6204         0.9318 
Mean+DTP – VS 0.9783   0.7335       0.8531      0.6173         0.9269 
SI+Gauss – VD 0.9767   0.7818       0.8767      0.6398         0.9421 
Mean+ND – VS 0.9767   0.7734       0.8634      0.6321         0.9350 
ND+DTP – HistD 0.9733   0.7452       0.8543      0.6226         0.9278 
CI 0.9733   0.7405       0.8475      0.6173         0.9231 
Mean+ND – VD 0.9717   0.7091       0.8333      0.6057         0.9125 
Gauss+DTP – HistD 0.9717   0.7210       0.8320      0.6041         0.9192 
GaussHistD 0.9717   0.6922       0.8016      0.5805         0.9069 
SI 0.9700   0.7441       0.8733      0.6335         0.9336 
Mean+CI – VD 0.9667   0.7180       0.8415      0.6104         0.9148 
CI+DTP – VS 0.9667   0.7225      0.8382      0.6097         0.9184 
Gauss+DTP – HistS 0.9650   0.7182       0.8323      0.6032         0.9177 
ND+DTP – HistS 0.9633   0.7443       0.8541      0.6223         0.9255 
Gauss+DTP – VS 0.9633   0.7019       0.8273      0.5975         0.9123 
CI+SI – VD 0.9600   0.7349       0.8625      0.6237         0.9238 
ND 0.9600   0.7351       0.8451      0.6154         0.9171 
ND+Gauss – VD 0.9583   0.6958       0.8221      0.5956         0.9036 
ND+CI – VD 0.9583   0.6958       0.8221      0.5956         0.9036 
CIVD 0.9583   0.6910       0.8178      0.5942         0.9002 
NDVD 0.9567   0.6668       0.8000      0.5773         0.8913 
ND+SI – VD 0.9550   0.7182       0.8537      0.6186         0.9210 
Mean+SI – VD 0.9533   0.7089       0.8556      0.6159         0.9143 
ND+DTP – VS 0.9533   0.6740       0.8132      0.5873         0.8978 
CI+Gauss – VD 0.9417   0.6645       0.7900      0.5714         0.8877 
MeanVD 0.9400   0.6877       0.8238      0.5946         0.8984 
ND+Gauss – HistS 0.9367   0.6474       0.7732      0.5580         0.8840 
SI+Gauss – HistS 0.9367   0.6474       0.7732      0.5580         0.8840 
Gauss 0.9367   0.6474       0.7732      0.5580         0.8840 
DTPHistD 0.9333   0.6416       0.7897      0.5649        0.8846 
Mean+Gauss – VD 0.9300   0.6728       0.8096      0.5812         0.8939 
SI+DTP – VD 0.9283   0.6595       0.8282      0.5914         0.8869 
SIVD 0.9150   0.6263       0.7905      0.5645         0.8704 
Mean+DTP – VD 0.9133   0.6494       0.8068      0.5777         0.8815 
ND+DTP – VD 0.9017   0.6121       0.7673      0.5478         0.8604 
DTP 0.9000   0.6073       0.7616      0.5422         0.8629 
Gauss+DTP – VD 0.8900   0.6024       0.7496      0.5348         0.8541 
GaussVD 0.8183   0.5303       0.6810      0.4829         0.8066 
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DTPVD 0.7983   0.5319       0.6983      0.4910         0.8040 
 
 

7. CONCLUSION 

We explored the capabilities of the bag-of-words algorithm through testing proposed local 
descriptors, algorithm parameters, sampling methods, and combining descriptors. We have 
found that mean curvature, shape index, and curvature index are the best descriptors. In 
addition, we have determined that there is a significant performance gain when increasing 
dictionary size and the number of random sample points from small values. Salient point 
detection methods are still limited by the number of sample points they return, and seem to 
also only significantly improve performance when the number of sample points is small. 
Overall, 3D-Harris rings and mesh saliency are the best methods. Finally, normal distribution 
and shape index, through concatenating the vectors returned from calculating each at the 
same sample points, gives the best performance. We believe these observations we present 
can be useful to future experiments. 
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