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a b s t r a c t

Endogenous and exogenous sources cause oxidatively induced DNA damage in living organisms by a vari-
ety of mechanisms. The resulting DNA lesions are mutagenic and, unless repaired, lead to a variety of
mutations and consequently to genetic instability, which is a hallmark of cancer. Oxidatively induced
DNA damage is repaired in living cells by different pathways that involve a large number of proteins.
Unrepaired and accumulated DNA lesions may lead to disease processes including carcinogenesis. Muta-
tions also occur in DNA repair genes, destabilizing the DNA repair system. A majority of cancer cell lines
have somatic mutations in their DNA repair genes. In addition, polymorphisms in these genes constitute a
risk factor for cancer. In general, defects in DNA repair are associated with cancer. Numerous DNA repair
enzymes exist that possess different, but sometimes overlapping substrate specificities for removal of
oxidatively induced DNA lesions. In addition to the role of DNA repair in carcinogenesis, recent evidence
suggests that some types of tumors possess increased DNA repair capacity that may lead to therapy resis-
tance. DNA repair pathways are drug targets to develop DNA repair inhibitors to increase the efficacy of
cancer therapy. Oxidatively induced DNA lesions and DNA repair proteins may serve as potential bio-
markers for early detection, cancer risk assessment, prognosis and for monitoring therapy. Taken
together, a large body of accumulated evidence suggests that oxidatively induced DNA damage and its
repair are important factors in the development of human cancers. Thus this field deserves more research
to contribute to the development of cancer biomarkers, DNA repair inhibitors and treatment approaches
to better understand and fight cancer.

Published by Elsevier Ireland Ltd.

1. Introduction

Oxygen-derived species including free radicals are formed by
normal cellular metabolism in aerobic organisms and by exoge-
nous sources such as ionizing radiations, UV radiation, redox-
cycling drugs and carcinogenic compounds among others [1].
Inflammation also produces oxygen- and nitrogen-derived species
and is a hallmark of cancer as a critical component of tumor pro-
gression and human pathophysiology [2,3]. The acute inflamma-
tory response recruits activated leukocytes involving neutrophils
that can extensively damage DNA bases [4]. Of particular interest
among oxygen-derived species are hydroxyl radical (�OH), superox-
ide radical (O��2 ) and non-radical H2O2. However, O��2 and H2O2 pos-
sess very low chemical reactivity, and do not react with most
biological molecules such as DNA, proteins and lipids. Moreover,
the reaction between these two species is very slow and its rate
constant is close to zero. It is only catalyzed by transition metal
ions such as iron and copper ions, generating �OH (Haber–Weiss
reaction) [1]. A highly damaging agent such as ionizing radiation
also produces these species plus H atom (H�), also a free radical,
and hydrated electron (e�aq) [5]. Hydroxyl radical reacts with most

biological molecules such as DNA at or near diffusion-controlled
rates, causing damage to the heterocyclic DNA bases and the sugar
moiety by a variety of mechanisms. Ionizing radiation-generated H�

and e�aq add to double bonds of DNA bases, leading to modifications
[5]. Various repair mechanisms exist in living organisms to repair
DNA damage. If not repaired, oxidatively induced DNA damage
may lead to mutagenesis and genetic instability, which is a hall-
mark of cancer [6–9]. Experimental and epidemiological evidence
strongly suggests that oxidatively induced DNA damage may sig-
nificantly contribute to human cancers [10]. Therefore, under-
standing of this type of DNA damage, its repair mechanisms and
biological effects is of utmost importance.

2. Mechanisms of oxidatively induced DNA damage

Hydroxyl radical reacts with purines and pyrimidines of DNA by
addition to double bonds, and by abstraction of an H� from the
methyl group of Thy and from each of the C–H bonds of 20-deoxy-
ribose (Fig. 1). Addition reactions occur at diffusion-controlled
rates with second-order rate constants of 4–9 � 109 M�1 s�1, and
preferentially at sites of DNA bases with the highest electron den-
sity, whereas the rate constant of H� abstractions equals to approx-
imately 2 � 109 M�1 s�1 [5]. Ionizing radiation-generated e�aq reacts
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with DNA bases at diffusion-controlled rates with rate constants
varying from 0.9 � 1010 M�1 s�1 to 1.7 � 1010 M�1 s�1, whereas
the rate constants of H� reactions amount to 1–5 � 108 M�1 s�1.

2.1. Purine damage

Addition reactions of �OH generate C4-OH-, C5-OH- and
C8-OH-adduct radicals of Gua (Fig. 2), and at least C4-OH- and
C8-OH-adduct radicals of Ade [11–13]. The addition of �OH to C5
of Ade amounts to less than 5% [13]. The OH-adduct radicals of
purines possess different redox properties. Thus, C5-OH- and
C8-OH-adduct radicals are reducing, whereas C4-OH-adduct radi-
cals are oxidizing. They also exist in different mesomeric forms,
causing a ‘‘redox ambivalence’’ [11–14]. Dehydration of C4-OH-
and C5-OH-adduct radicals yield neutral purine (–H)� radicals
[e.g., Gua(–H)rad], which protonate to give rise to purine radical
cations (e.g., Gua�+) [12–15]. H� abstraction by �OH from the NH2

group attached to C2 (2-NH2) of Gua has also been reported
[16–20]. Chatgilialoglu et al. proposed that this reaction takes
place to an extent of �65% instead of addition �OH to C4 of Gua
and the thus-formed N-centered radical subsequently undergoes
tautomerization to yield Gua(–H)� [18,19]. This is the same radical
that results from the dehydration of the C4-OH-adduct radical as
mentioned above. However, the proposed extent of the H� abstrac-
tion from 2-NH2 excludes the addition of �OH to C4 despite the well
known high electron affinity in purines, making the �OH addition
an energetically favored reaction [20,21]. Phadatare et al. subse-
quently investigated the reactions of �OH with Gua using quantum
chemical calculations, pulse radiolysis and product analysis [20].
The results contrasted the large extent of H� abstraction by �OH
from the 2-NH2 as proposed by Chatgilialoglu et al. [18,19], and

showed that the formation of C4-OH- and C8-OH-adduct radicals
of Gua is the preferred reaction pathway, confirming the early
work by O’Neill and Steenken et al. (see above). Furthermore, this
work concluded that the H� abstraction from N9 and N1 are ther-
modynamically are even more favorable than that from 2-NH2, also
in contrast to the claim by Chatgilialoglu et al.

Oxygen reacts with purine OH-adduct radicals at varying rates.
The reaction with the C4-OH-adduct radical of Gua is slow; how-
ever, C8-OH-adduct radicals and Gua(–H)� react with oxygen at dif-
fusion-controlled rates [12–14]. Cadet et al. suggested that the
reaction of Gua(–H)� generate imidazolone and oxazolone deriva-
tives [22–25]. However, this mechanism has not been confirmed
and a kinetically more favored alternative mechanism has been
proposed [14]. Purine C8-OH-adduct radicals can be oxidized or
reduced. In competition, they undergo a unimolecular opening of
the imidazole ring by scission of the C8–N7 bond [12–14].
One-electron oxidation of purine C8-OH-adduct radicals gives rise
to 8-hydroxyadenine (8-OH-Ade) and 8-hydroxyguanine (8-OH-
Gua). On the other hand, 4,6-diamino-5-formamidopyrimidine
(FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine
(FapyGua) are formed by opening of the imidazole ring and
one-electron reduction as shown in Fig. 3 in the case of the
C8-OH-adduct radical of Gua [7,12]. The reduction may also occur
prior to ring opening giving rise to hemiorthoamides that are
readily converted into formamidopyrimidines. Oxidizing agents in-
crease the formation of 8-hydroxypurines, whereas formamido-
pyrimidines are preferentially formed under reducing conditions
[7,12]. Both types of products are formed in the absence and pres-
ence of oxygen, albeit with different yields. Formamidopyrimidines
differ from other pyrimidines such as Cyt and Thy in that they are
attached to the sugar moiety of DNA through the amino group at

Fig. 1. Attack sites of �OH on DNA.
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the C6-position of the pyrimidine ring. It should be pointed out
that FapyAde and FapyGua are chemically and mechanistically
distinct from the methylation products of adenine and guanine,
i.e., 4,6-diamino-5N-methylformamidopyrimidine (Me-FapyAde)
and 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine
(Me-FapyGua), respectively, which are formed under harsh
experimental conditions by treatment with compounds such as
dimethylsulfate and methylmethane sulfonate followed by alkali
treatment [26–28]. Moreover, biological effects of Me-FapyAde
and Me-FapyGua are substantially different from those of FapyAde

and FapyGua [29]. Direct effect of ionizing radiation causes ioniza-
tion of purines forming a radical cation, which has been suggested
to form the C8-OH-adduct radical upon hydration (addition of
OH�) (Fig. 4) [30–33]. As discussed above, the latter is also formed
by addition of �OH to the C8 of Gua. This means that the direct ef-
fect and indirect effect of ionizing radiation may produce identical
products. It should be emphasized that, of numerous products of
DNA bases, 8-OH-Gua has received much attention for the past
two decades or so, and has extensively been investigated because
of its relative ease of measurement and strong mutagenicity.

Fig. 2. Reactions of �OH with Gua.

Fig. 3. Reactions of the C8-OH-adduct radical of Gua, resulting in formation of 8-OH-Gua and FapyGua.
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Unfortunately, this led to the paucity of investigation of other
equally important DNA lesions in terms of mechanistic aspects
and biological effects.

Oxidation of Gua as well as 8-OH-Gua by a number of oxidizing
agents such as ionizing radiation, singlet oxygen, metal ions and
peroxynitrate leads to a hydantoin product, spiroiminodihydantoin
(Sp) [34–36]. Further oxidation of 8-OH-Gua also causes the forma-
tion of 5-guanidinohydantoin (Gh), depending on reaction condi-
tions [35,37]. Originally, Cadet et al. misassigned the product of
guanine formed by singlet oxygen to 4-OH–8-OH-Gua [38–42]. La-
ter, the correct product has been found to be Sp [43,44]. Reactions
of radical cations of guanine (Gua�+) and 8-OH-Gua (8-OH-Gua�+)
have been proposed to lead to Sp and Gh, and to other products.
Sp has also been identified in Escherichia coli treated with potas-
sium dichromate [45]. This field has extensively been reviewed
elsewhere [35].

2.2. Pyrimidine damage

Hydroxyl radical adds to the C5–C6-double bonds Cyt and Thy,
yielding C5-OH- and C6-OH-adduct radicals. Abstraction of an H�

from the methyl group of Thy also occurs, leading to an allyl radical

(Fig. 5). The distribution of the attack on Thy amounts to 60% at the
C5 with the highest electron density, 30% at the C6 and 10% at the
methyl group. In the case of Cyt, �OH adds to the C5 and the C6 to
an extent of 87% and 10%, respectively, because of the higher elec-
tron density at the former position. C5-OH- and C6-OH-adduct rad-
icals of pyrimidines possess reducing and oxidizing properties,
respectively [46–48]. Oxidation of C5-OH- and C6-OH-adduct radi-
cals followed by addition of water and subsequent deprotonation
produces Thy glycol (Thy gly) and Cyt glycol (Cyt gly) [7]. The allyl
radical of Thy yields 5-(hydroxymethyl)uracil and 5-formyluracil
upon oxidation. The types and yields of products significantly vary
depending on the absence or presence of oxygen that reacts with
intermediate radicals to give peroxyl radicals, which are unstable
and decompose to give further products. 5,6-Dihydroxycytosine,
dialuric acid, alloxan and ring reduction products 5-hydroxy-5-
methylhydantoin (5-OH-5-MeHyd) and 5-hydroxyhydantoin are
formed from decomposition of pyrimidine hydroxyhydroperoxides
[7,49–53]. In the absence of oxygen, the reduction of C5-OH-adduct
and C6-OH-adduct radicals followed by protonation yields 5-hy-
droxy-6-hydropyrimidines and 6-hydroxy-5-hydropyrimidines,
respectively. Cyt gly and other Cyt products readily dehydrate
and deaminate, giving rise to products such as 5-hydroxycytosine
(5-OH-Cyt), Ura glycol (Ura gly), 5-hydroxyuracil (5-OH-Ura) and
5-hydroxy-6-hydrouracil and 5,6-dihydroxyuracil (isodialuric
acid) [7,54]. Fig. 6 illustrates the structures of some major products
of the DNA bases that have been identified in DNA in vitro and
in vivo [7].

2.3. Sugar moiety damage

Hydroxyl radical abstracts an H� from each of the five C-atoms of
the sugar moiety of DNA, generating a plethora of products. Mech-
anisms of DNA sugar damage and strand breaks by �OH have been
elucidated [55–58]. Sugar products are either released from DNA as
free sugar lesions or remain within DNA or constitute end-groups
of broken DNA strands. The well-understood reactions of the C40-
radical generate 2-deoxypentose-4-ulose within DNA, and strand
breaks with 2,3-dideoxypentose-4-ulose and 2,3-dideoxypentose-
4-ulose as 30- and 50-end groups, respectively. Oxidation of the
C10-radical followed by reaction with water (addition of OH�)
and by the release of an unaltered base generates 2-deoxyribonic
acid lactone within DNA.

The formation of 2,3-dideoxypentos-4-ulose and 2,5-dideoxy-
pentos-4-ulose are inhibited by oxygen, whereas 2-deoxypen-
tose-4-ulose and 2-deoxyribonic acid lactone are formed under
both the absence and presence of oxygen. Fragmented sugar ring
products such as erythrose and 2-deoxytetradialdose are also
formed. Fragmentation of the C40-peroxyl radical yields a glycolic
acid residue as a 30-end group [59]. Moreover, the C50-peroxyl rad-
ical when formed by neocarzinostatin gives rise to a 50-aldehyde
nucleoside as a 50-end group of a broken DNA strand without base
release [60–62]. Fig. 7 illustrates the major products of the sugar
moiety of DNA.

2.4. 8,50-Cyclopurine-20-deoxynucleosides

More than four decades ago, Keck reported an �OH-induced
C50–C8-intramolecular cyclization within adenosine-50-mono-
phosphate (AMP) in the absence of oxygen, giving rise to 8,50-cy-
clo-AMP [63]. This highly stereospecific reaction occurs by the
attack of the C50-centered sugar radical at the C8 of the purine
ring. The rate constants for the cyclization amount to
1.6 � 105 s�1 for dA and �1 � 106 s�1 for dG [64,65]. The N-cen-
tered radical is subsequently oxidized, yielding tandem lesions
8,50-cyclopurine-20-deoxyadenosine (cdA) from dA and 8,50-
cyclopurine-20-deoxyguanosine (cdG) from dG. Both R- and

Fig. 4. Direct and indirect effects of ionizing radiation on Gua.

Fig. 5. Reactions of �OH with Thy.
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S-diastereomers of each compound are formed. 8,50-Cyclopurine-
20-deoxynucleosides represent a concomitant damage to both the
base and sugar moieties of the same nucleoside, and thus, are re-
garded as tandem lesions. Fig. 8 illustrates the mechanism of for-
mation of these compounds in the case of R-cdA and S-cdA.
Oxygen inhibits the C50–C8-intramolecular cyclization because
of its reaction with the C50-centered radical at a near diffusion-
controlled reaction [64,66]. At low oxygen concentrations, how-
ever, a competition may occur between the C50–C8-intramolecu-
lar cyclization and the reaction of oxygen with the C50-centered
radical [67]. This competition may also occur in vivo because of
low oxygen concentration in the cell nucleus [68]. Identification
of 8,50-cyclopurine-20-deoxynucleosides in DNA in vivo and in hu-
man urine attests to this fact (see, e.g., [69–81]. The C50–C8-intra-
molecular cyclization causes unusual puckering of the sugar
moiety [82–84]. As a consequence, the length of C–C-bonds and
bond angles significantly change compared to normal nucleosides,
weakening hydrogen bonds and causing substantial perturbations
of the DNA double helix. Fig. 9 illustrates the structural model of
cdA from two perspectives and its comparison with that of dA,
clearly demonstrating the distortion caused by the C50–C8-cycli-
zation. An extensive review of reaction mechanisms, formation

and biological effects of 8,50-cyclopurine-20-deoxynucleosides
can be found elsewhere [85].

2.5. Tandem lesions

Tandem lesions have been identified in oligodeoxynucleotides
and DNA exposed to ionizing radiation or other �OH-generating
systems. These lesions consist of either two adjacent damaged
bases on the same strand, or an intrastrand cross-link between
two adjacent DNA bases on the same strand, or an interstrand
cross-link between two DNA bases on opposite strands. A tandem
lesion consisting of an 8-OH-Gua and an adjacent formamido res-
idue has been identified first in Gua-Thy or Gua-Cyt dideoxynucle-
otides, and then in DNA [86–97]. The origin of the formamido
residue has been shown to be either Thy or Cyt. These tandem le-
sions have been suggested to be formed from a single radical event.
Intrastrand cross-links between Gua and Thy, Gua and Cyt, and Ade
and Thy have been detected in oligodeoxynucleotides and DNA
[91,92,98–109]. Exposure living cells to c-irradiation caused the
formation of Gua-Thy and Gua-Cyt cross-links [110,111]. An inter-
strand cross-link has been identified in DNA between Thy on one
strand and Ade on the opposing strand [112–115]. The formation
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Fig. 7. Structures of the major oxidatively induced products of the 20-deoxyribose moiety of DNA.

Fig. 8. Formation mechanism of 8,50-cyclopurine-20-deoxynucleosides.
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mechanism of this cross-link has been elucidated using isotopic
labeling [115].

2.6. Clustered DNA damage

Ionizing radiation produces clustered damage (also known as
locally multiply damaged sites) in DNA other than double-strand
breaks (DSBs) [116–127]. Clustered sites contain two or more le-
sions within one or two helical turns of DNA and can be either
on opposing strands or tandem on the same strand. Ionizing radi-
ation is the almost exclusive source of these lesions, since endoge-
nously induced damage is unlikely to produce them [128,129]. The
formation of a clustered lesion by bleomycin has also been re-
ported [130]. There is a large diversity of clustered DNA damages,
which are differently processed by the cell depending on the type
of lesions, distance between lesions, presence of strand breaks, etc.
Bistranded or tandem clusters may be resistant to DNA repair by
DNA glycosylases or endonucleases, and thus persist in cells for a
significant time period [124]. Bistranded clusters may give rise to
double-strand breaks, if two lesions are removed prior to excision
of one lesion only. The biological consequences of clustered lesions
include point mutations and lethality. This field of research has
extensively been reviewed in the papers cited above, and will not
be discussed here any further.

2.7. DNA–protein cross-links

DNA–protein cross-links are formed in mammalian cells by �OH
reactions with DNA bases and proteins [131–136]. A Thy-Tyr cross-
link has been found in vivo and in vitro by exposure of isolated
chromatin, cultured mammalian cells and animals to ionizing radi-
ation, H2O2, metal ions and carcinogenic compounds [137–141].
The covalent cross-linking has been shown to take place between
the allyl radical of Thy and the C3 of the Tyr ring [142–145].
Thy-Lys and Cyt-Tyr cross-links have also been identified in mam-
malian chromatin in vitro [146–149]. Mechanisms proposed for the
formation of these cross-links were twofold as shown in Fig. 10A–
D: 1. Addition of a DNA base radical such as the allyl radical of Thy
to the aromatic ring of an amino acid such as Tyr, leading to Thy-
Tyr cross-linking (Fig. 10A); 2. Combination of a DNA base radical
with an amino acid radical (Fig. 10B–D). It should be noted that
the phenoxyl radical of Tyr results from addition of �OH to the C3
of the aromatic ring followed by H2O elimination [150].

3. Maintenance of genetic stability

Oxidatively induced DNA damage can lead to genetic instability,
which is a hallmark of cancer [9,151–153]. Genetic instability may
affect the proteins involved in DNA replication, DNA repair, apop-
tosis, cell cycle regulation and chromosomal stability, and ulti-
mately lead to cancer [152]. Furthermore, resistance to cancer
therapy may also occur by genetic instability. To maintain genetic
stability for survival, living organisms evolved to possess cellular
mechanisms to repair DNA damage [8,154]. Failure to repair DNA
lesions may lead to mutagenesis, cytotoxicity, cell death and con-
sequently to disease processes such as carcinogenesis. Fig. 11 illus-
trates possible pathways resulting from damage to a DNA base in
terms of a Gua lesion as an example. The DNA lesion can be re-
moved and the DNA structure can be restored to its original state
by various repair mechanisms. However, if the lesion is not re-
paired before replication, it can interact with replication either
by blocking the DNA synthesis or by being tolerated and bypassed
by DNA polymerases, which can insert a non-cognate intact base
(e.g., Ade) opposite the lesion (e.g., a Gua lesion). A lesion that
blocks replication would be a lethal lesion, leading to cell death,
whereas a bypassed lesion mispaired with an intact base would
cause mutations. The future of a cell containing a DNA lesion
may be determined by the interplay between these three path-
ways. A DNA lesion may also pair with a cognate DNA base. Conse-
quently, it will be neither lethal nor mutagenic. Lesions that are
replication blocks can also be mutagenic when bypassed by poly-
merases [6].

Two major mechanisms exist to repair oxidatively induced DNA
lesions. These are base-excision repair (BER) and nucleotide-exci-
sion repair (NER) [8]. It is beyond the purpose of this article to
extensively review DNA repair mechanisms. However, some as-
pects of DNA repair concerning oxidatively induced DNA lesions
will be discussed. Multiple steps and enzymes are involved in both
BER and NER. A mismatch repair (MMR) mechanism also exists for
repair of DNA lesions mispaired with a DNA base. In addition, re-
pair in the nucleotide pool occurs to prevent the incorporation of
modified 20-deoxynucleotides into DNA by DNA polymerases.

3.1. Base excision repair

In BER, a DNA glycosylase removes a DNA lesion by hydrolyzing
the N-glycosidic bond and generating an abasic site (AP-site). Some
DNA glycosylases also possess an associated AP-lyase activity that

DNADNADNADNA

DNADNA

DNADNA
DNADNA

DNADNA

8,5'-covalent bond

glycosidic 
bond

glycosidic 
bond

Fig. 9. Comparison of the structural models of 8,50-cyclopurine-20-deoxyadenosine (left and middle) and 20-deoxyadenosine (right).
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hydrolyzes the 30-phosphodiester bond of the AP site by a b- or b-d-
elimination mechanism generating a 30 a,b-unsaturated aldehyde
and 50-phosphate products, and thus strand breaks [8]. AP-sites

are processed by AP-endonucleases, DNA polymerases and DNA li-
gases to fully restore the DNA structure. There are two families of
DNA glycosylases, the Fpg/Nei family and the Nth superfamily

Fig. 10. Formation mechanisms of some DNA–protein cross-links detected in mammalian chromatin in vitro and in vivo.
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(removal of the lesion

followed by other steps)
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*G   C damaged base
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Fig. 11. Interplay between the repair and the interaction with replication of a Gua lesion.
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[155,156]. Substrate specificities and excision kinetics of these en-
zymes have been determined using DNA substrates containing
multiple lesions as shown in Fig. 6 (reviewed in [157]). In E. coli,
three major DNA glycosylases exist to remove oxidatively induced
DNA base lesions. Formamidopyrimidine DNA glycosylase (Fpg,
also called MutM) belong to the Fpg/Nei family and specifically
excises FapyAde, FapyGua and 8-OH-Gua with similar excision
kinetics from DNA containing multiple lesions [31,157,158].
Endonuclease VIII (Nei), also a member of the same family, pre-
dominantly acts on pyrimidine lesions and FapyAde [159]. Endo-
nuclease III (Nth) belongs to the Nth superfamily, possesses an
overlapping substrate specificity with Nei and removes pyrimidine
lesions and FapyAde [51,160]. In eukaryotes, a functional homolog
of Fpg, i.e., 8-hydroxyguanine-DNA glycosylase (OGG1), exists in
the Nth superfamily. This enzyme, which is present in various
organisms, exhibits a strong specificity for excision of FapyGua
and 8-OH-Gua, but not FapyAde, unlike Fpg [161–166]. OGG1
exhibits no specificity for Gh or Sp [167]. Human NTH1, which is
also an AP lyase, is specific for pyrimidine lesions; however, it pos-
sesses a narrower substrate specificity than E. coli Nth [168].

E. coli Nei-like DNA glycosylases have also been discovered in
eukaryotes and named NEIL1, NEIL2 and NEIL3 [169–175]. NEIL1
is located to both the nucleus and mitochondrion [176], suggesting
a role for this protein in the protection of genetic stability. FapyAde
and FapyGua have been found to be the major substrates of both
NEIL1 and NEIL3 [169,176–181]. Moreover, NEIL1 acts on pyrimi-
dine lesions Thy gly and 5-OH-5-MeHyd, albeit to a lesser extent.
NEIL3 excises 5-OH-Ura and 5-OH-Cyt from DNA in addition to
Thy glycol and 5-OH-5-MeHyd more efficiently than NEIL1. In con-
trast to Fpg and OGG1, NEIL1 and NEIL3 exhibit no detectable
activity for 8-OH-Gua. However, mouse NEIL1 and NEIL3 efficiently
remove the oxidation products of 8-OH-Gua, Sp and Gh from syn-
thetic oligodeoxynucleotides [181,182]. Recent data suggested that
NEIL1 may also play a role in NER besides being a DNA glycosylase
in BER [183]. NEIL2 exhibits a unique preference for excision from
DNA bubbles, and preferentially excises 5-OH-Ura, and also 5-OH-
Cyt and 5,6-dihydrouracil to a lesser extent, when oligodeoxynu-
cleotides containing a single lesion are used as substrates
[171,184]. Excision of DNA base lesions by NEIL2 from DNA con-
taining multiple lesions has not yet been reported.

3.2. Nucleotide excision repair

NER is responsible for removal of bulky DNA-distorting lesions
from DNA [185–187]. Two distinct mechanisms of NER exists, glo-
bal genome repair and transcription-coupled repair, which are
responsible for the repair of the entire genome and preferential re-
pair of transcribing DNA strands, respectively [188–190]. An exci-
nuclease, which is a multisubunit enzyme system, makes dual
incisions in the DNA strand to remove an oligodeoxynucleotide
containing the lesion. The remaining gap is then filled and ligated
by polymerases to complete the repair. The length of the removed
oligodeoxynucleotide differs between prokaryotes and eukaryotes
[185,191]. Oxidatively induced lesions Thy gly and 8-OH-Gua are
reportedly repaired by NER as well [192,193]. BER cannot repair
8,50-cyclopurine-20-deoxynucleosides because of the 8,50-covalent
bond. NER is the major mechanism for cellular repair of these le-
sions [69,194–196].

3.3. Mismatch repair

Mismatch repair (MMR) is involved in the repair of mismatches
such as 8-OH-Gua�Ade mismatch [8]. In E. coli, a DNA glycosylase,
MutY removes Ade from this mismatch and thus facilitates the
pairing of 8-OH-Gua with the cognate base Cyt, which is then re-
paired by BER [197]. The human homolog MUTYH, which belongs

to the Nth superfamily, is targeted to both the nucleus and the
mitochondrion [197–202]. MUTYH also removes 2-OH-Ade from
opposite all four intact DNA bases [202]. There is evidence that
inherited mutations in mutyh predispose individuals to colorectal
cancer and somatic G ? T mutations, indicating the important role
of MUTYH in cancer prevention [36,197,203–211]. No other oxida-
tively induced DNA base lesions in mismatches have been found to
be substrates of MUTYH. FapyGua, which also mispairs with Ade
and gives rise to G ? T mutations [212,213], is a potential candi-
date to be a substrate of MUTYH and thus to play a role in colorec-
tal cancer as well as 8-OH-Gua.

3.4. Repair in the nucleotide pool

A unique repair mechanism exists in the cellular nucleotide
pool to repair modified 20-deoxynucleoside triphosphates, before
they can be incorporated into DNA by DNA polymerases and
potentially cause mutations [214–216]. In E. coli, MutT hydrolyzes
8-OH-dGTP to 8-OH-dGMP, preventing its incorporation into DNA
[214]. Mammalian and human homologs of MutT have been dis-
covered [215,217,218]. Human MTH1 also hydrolyzes 8-OH-dATP
and 2-OH-dATP [219]. Deletion of mth1 in mice led to spontaneous
carcinogenesis with tumors found in lungs, livers and stomachs,
pointing to the importance of this gene in cancer prevention
[218,220].

3.5. Repair of DNA strand breaks

Oxidatively induced damage also causes single- and double-
strand breaks in DNA, which lead to genetic instability and detri-
mental biological consequences [5,8]. Single-strand breaks are re-
paired by similar mechanisms discussed in the case of BER.
Repair of DSBs generally occurs by either homologous recombina-
tion (HR) or non-homologous end-joining (NHEJ) mechanisms.
When NHEJ is deficient, HR proteins such as BRCA1 are induced
and DSBs are processed by HR, pointing to an interplay between
BER and HR/NHEJ pathways [221]. Deficiency in BRCA1 or in repair
of DSBs adversely affect processing of oxidatively induced DNA le-
sions [75,222,223]. Repair of DNA strand breaks has extensively
been reviewed in the past [8,224,225], and will not be discussed
here any further.

4. Biological consequences of oxidatively induced DNA lesions

4.1. Purine-derived lesions

DNA base lesions may be lethal or mutagenic or both depending
on the action of DNA polymerases [6]. 8-OH-Gua is the most exten-
sively studied DNA base lesion among those discussed above. It
mispairs with Ade leading to G ? T transversion mutations; how-
ever, it also pairs with cognate Cyt [226–229]. G ? T mutations
constitute the second most common somatic mutations found in
human cancers, with 14.6% of all mutations in the tumor suppres-
sor gene TP53 following C ? T transition mutations (44.2%) [230]
(also see http://www-p53.iarc.fr/). However, these mutations
may result not only from 8-OH-Gua, but also from other DNA base
lesions. Thus, FapyGua being the other equally important Gua le-
sion also mispairs with Ade, resulting in G ? T mutations [212].
This lesion has been found to be even more mutagenic than 8-
OH-Gua in simian kidney cells [213]. Fig. 12 illustrates the path-
ways leading to G ? T mutations by 8-OH-Gua and FapyGua. Fapy-
Ade mispairs with Ade and leads to A ? T transversions [213,231].
8-OH-Ade induces A ? G transitions and A ? C transversions in
mammalian cells [232–234]. Sp and Gh predominantly mispair
with Ade and Gua, leading to G ? T and G ? C mutations,
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respectively [35,235–238]. In a different sequence context, how-
ever, these products almost entirely mispair with Ade and cause
G ? T mutations [239].

4.2. Pyrimidine-derived lesions

Cyt-derived products Ura glycol and 5-OH-Ura induce C ? T
transition mutations by mispairing with Ade [6,240–242]. 5-OH-
Cyt also leads to C ? T mutations as well as C ? G transversion
mutations [240,241,243,244]. C ? T transitions are the most fre-
quently observed mutations that are generated by oxidatively in-
duced DNA damage [243,245–247]. These mutations are also the
most frequent mutations found in human tumors and in TP53
[230,248]. Thy gly correctly pairs with Ade and is poorly mutagenic
[6,249,250]. In several sequences contexts, it is bypassed by DNA
polymerases and mispairs with Gua, leading to T ? C transitions
[251–253]. Thy gly is a strong block to most DNA polymerases
and is a lethal lesion in vivo [6,249–251,254–257]. 5-Hydroxy-6-
hydrothymine strongly blocks E. coli DNA polymerase I Klenow
fragment (exo-) [258]. Ionizing radiation-induced Thy-derived
product, 5,6-dihydrothymine is neither lethal nor mutagenic, be-
cause it is not a block to DNA polymerases and correctly pairs with
Ade [259,260].

4.3. 8,50-Cyclopurine-20-deoxynucleosides

S-cdA strongly blocks transcription and DNA polymerases
including DNA polymerase d and the bypass polymerase g, and re-
duces transcription and causes transcriptional mutagenesis
[195,196,261–263]. RNA polymerase II bypasses S-cdA and incor-
porates adenosine opposite to the next 50- to S-cdA, leading to
multiple nucleotide deletions [263]. S-cdG is a strong block to rep-
lication and a highly mutagenic lesion leading to G ? A transitions
with G ? T transversions to a lesser extent [264]. By inference,

S-cdA may also be a strongly mutagenic lesion. Elevated levels of
8,50-cyclopurine-20-deoxynucleosides in genomic DNA in vivo in
cancer and other diseases point to a possible role of these lesions
in carcinogenesis and other disease processes [70,72–77,85].

5. Oxidatively induced DNA damage and disease

Unrepaired DNA lesions can accumulate in the genome and pro-
gressively lead to mutations, and consequently to disease including
cancer. Elevated levels of oxidatively induced DNA base lesions
have been observed in precancerous and cancerous tissues
[71,72,85,265–274], in agreement with the fact that persistent oxi-
dative stress exists in cancer [275,276]. This strongly implicates
this type of DNA damage in the etiology of cancer, but does not
necessarily mean that such DNA damage would be responsible
for carcinogenic events. However, most of oxidatively induced
DNA base lesions are mutagenic and may thus be major contribu-
tors to carcinogenesis. Mutations can also occur in DNA repair
genes, destabilizing DNA repair machinery. In this respect, 60% of
cancer cell lines have somatic mutations in DNA repair genes
(http://www.sanger.ac.uk.genetics/CGP). Defects in DNA repair
are associated with carcinogenesis [9,152,277–285]. Defective
DNA repair in tumors may cause therapy resistance, adversely
affecting the outcome of cancer and survival of patients
[283,285–289]. Recent evidence suggests that some type of malig-
nant tumors may possess increased DNA repair capacity. Resis-
tance to chemotherapy has been found in non-small-cell lung
cancer, and this has been associated with elevated NER in cancer-
ous tissues [286–288,290]. In some cancer lung cell lines, an in-
creased expression of ogg1 has been observed when compared to
control lung cell lines [291]. Levels of ethano-DNA adducts in can-
cerous colon tissues were lower than in surrounding non-cancer-
ous tissues of colorectal cancer patients, pointing to an increase
in DNA repair in cancerous tissues [292,293]. Recent evidence

Fig. 12. Formation of G ? T transversion mutations resulting from the mispairing of 8-OH-Gua or FapyGua with Ade.
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suggested that repair of oxidatively induced DNA damage may be
upregulated in human colorectal cancer [294]. Increased rate of
mutations leading to an increase in genetic instability may cause
cell death late in tumor evolution. However, tumors that over-ex-
press DNA repair genes may be favored by natural selection to be-
come capable of surviving and thus develop greater DNA repair
capacity than non-cancerous tissues. Increased DNA repair in tu-
mors may cause resistance to DNA damage-based therapeutic
agents and adversely affect the outcome of therapy. It appears that
DNA repair capacity in cancerous tumors compared to non-cancer-
ous tissues would be a determining factor for patient survival. In
this context, DNA repair proteins are increasingly regarded as
important predictive, early detection, prognostic and therapeutic
factors in cancer [283,285,295]. DNA repair pathways are potential
drug targets for treatment. DNA repair inhibitors are being devel-
oped and tested in clinical trials to increase the efficacy of therapy
[283,285,295]. Development of DNA repair inhibitors for combina-
tion therapy or as single agents for monotherapy that target BER,
NER and MMR pathways will contribute to selective killing of tu-
mors and thus to future advances in cancer therapy. To this end,
further understanding of DNA repair pathways will be of funda-
mental importance.

Polymorphisms in DNA repair genes are also a risk factor for
cancer [154,281,283,285,296]. Polymorphic variants of DNA repair
enzymes such as NEIL1 and OGG1 involved in BER have been dis-
covered in humans. Defects in repair by these and other DNA repair
enzymes have been shown to lead to detrimental biological conse-
quences. It is beyond the scope of this article to review the role of
all DNA repair enzymes in disease processes. Only the conse-
quences of defects in DNA repair by DNA glycosylases such as
NEIL1, NTH1, NEIL3 and OGG1 will be presented. The consequences
of defects in MUTYH and MTH1 involved in MMR and nucleotide
pool repair, respectively, have briefly been discussed above.

5.1. NEIL1

Since its discovery, numerous studies demonstrated a critical
role for NEIL1 in maintaining the genetic stability and in disease
prevention. Inactivating mutations in neil1 correlated with human
gastric cancer [297]. Embryonic stem cells were sensitized to kill-
ing effects of ionizing radiation by downregulation of NEIL1
expression [174]. Significantly decreased levels of NEIL1 led to in-
crease in spontaneous mutations in human and Chinese hamster
cell lines, and the mutation frequency was further enhanced by
oxidative stress [298]. NEIL1 expression was increased in human
carcinoma cells by oxidative stress [299]. In this respect, four poly-
morphic variants of human NEIL1, i.e., NEIL1-Cys82, NEIL1-Asp83,
NEIL1-Asn252 and NEIL1-Arg136 have been isolated and character-
ized [178]. An AP site-containing 33-mer oligodeoxynucleotide, a
Thy glycol-containing 30-mer oligodeoxynucleotide and DNA sub-
strates with multiple lesions have been used to evaluate the effect
of mutations on the AP-lyase and glycosylase activities of NEIL1. As
Fig. 13A illustrates, NEIL1-Cys82 (Ser82Cys) and NEIL1-Asn252 (As-
p252Asn) exhibited a b,d-elimination activity on the AP-site as
wild type NEIL1. In contrast, NEIL1-Asp83 (Gly83Asp) had a b-elim-
ination activity only and NEIL1-Arg136 (Cys136Arg) was not active
at all. In agreement with these data, an efficient excision of Thy
glycol from the 30-mer oligodeoxynucleotide (Fig. 13B), and that
of FapyAde and FapyGua from DNA (Fig. 13C,13D) by wild type
NEIL1, NEIL1-Cys82 and NEIL1-Asn252 was observed, whereas
NEIL1-Asp83 and NEIL1-Arg136 were completely devoid of DNA gly-
cosylase activity. NEIL1-Cys82 appeared to have a lower activity on
FapyGua than on FapyAde (Fig. 13C,13D). In all three cases, the
specificity constant (kcat/KM) for excision of FapyAde was signifi-
cantly greater than that for excision of FapyGua, suggesting a pref-
erence of these enzymes for FapyAde over FapyGua. The reason

may be that FapyGua is also a substrate of OGG1, which does not
act on FapyAde. In the case of DNA substrates, NEIL1-Arg136 could
not be used, because it precipitated under the experimental condi-
tions used. Taken together, these data suggested that individuals
carrying neil1 mutations may be at risk for disease development.

Recently, a NEIL knockout (neil1�/�) mouse model has been
used to investigate the consequences of NEIL1 deficiency in vivo
[300]. Without exogenous oxidative stress, neil1�/� and heterozyg-
otic (neil1+/�) animals developed the typical symptoms of human
metabolic syndrome such as severe obesity, dyslipidemia, fatty li-
ver disease and hyperinsulinemia. Mitochondrial (mt) DNA dam-
age and deletions also increased, pointing to a deficiency of
mtDNA repair and/or increased levels of oxidatively induced dam-
age in mtDNA. Male animals were most severely affected. These re-
sults strongly pointed to an important role of NEIL1 in prevention
of disease processes. In the same context, there is evidence that
metabolic syndrome may be associated with certain types of can-
cer [301–304]. Another study has recently been conducted using
neil1�/�, nth1�/� and neil1�/�/nth1�/� mice [179]. In the second
year of life, these animals developed pulmonary adenomas and
adenocarcinomas, and hepatocellular carcinomas, nodular hyper-
plasia and severe hepatocellular displasia. A much greater tumor
incidence was observed in neil1�/�/nth1�/� mice than in either of
the single knockouts. Table 1 shows the number of male and fe-
male animals used in this study, and the resulting numbers and
percentages of tumor incidence. Moreover, activating GGT ? GAT
transitions were observed in single and double knockouts in codon
12 of K-ras of pulmonary tumors. This is in contrast to the
GGT ? GTT transversions of codon 12 in K-ras in the lung tumors
of mice lacking both ogg1 and mutyh [305].

Oxidatively induced DNA lesions have also been measured in
several organs of neil1�/�, neil1�/�/nth1�/� and nth1�/� mice.
Fig. 14 illustrates the levels of FapyAde, FapyGua and 8-OH-Gua
in livers, kidneys and brains of these mice. When compared to wild
type animals, significantly increased levels of FapyAde were ob-
served in all three organs of neil1�/� and neil1�/�/nth1�/� mice.
The kidneys of nth1�/� mice also contained slightly but signifi-
cantly elevated level of this lesion. FapyGua also accumulated in
livers and kidneys of neil1�/� and neil1�/�/nth1�/� mice. However,
no significant increase in the level of this lesion was observed in
the brains of knockout mice. In contrast, 8-OH-Gua did not accu-
mulate in any organ of knockout animals. These findings are in
complete agreement with the substrate specificity of NEIL1 ob-
served in vitro using DNA containing multiple lesions (see above),
and provide the evidence that FapyAde and FapyGua, but not 8-
OH-Gua, are also the major in vivo substrates of NEIL1. Increased
levels of FapyAde in kidneys of nth1�/� mice can be explained by
the fact that this lesion is also an in vivo substrate of mouse
NTH1 [176]. The levels of OGG1 was normal in all knockout mice.
This is likely to be the reason for the observed differences in the
accumulation levels of FapyAde and FapyGua, because FapyGua
is a major substrate of OGG1, but not FapyAde. Besides the lack
of NEIL1 activity on 8-OH-Gua, normal levels of OGG1 apparently
prevented accumulation of 8-OH-Gua in knockout mice. In con-
trast, accumulation of 8-OH-Gua has been reported in lacking both
MUTY and OGG1 [306] or OGG1 only [176,183]. Significantly great-
er levels of FapyAde and FapyGua in cancer-prone neil1�/� and
nth1�/� mice than in wild type mice strongly suggest a role for
these compounds in carcinogenesis, and for the involvement of
NEIL1 and NTH1 in cancer prevention. The absence of 8-OH-Gua
accumulation and GGT ? GTT transversions of codon 12 in K-ras,
which is typical of tumors in ogg1�/� and muty�/� mice, unequivo-
cally excludes the involvement of 8-OH-Gua in the tumor inci-
dences observed in neil1�/� and nth1�/� animals.

Recent findings suggested an additional function for NEIL1.
Greater levels of R-cdA and S-cdA have been observed in livers of
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neil1�/� mice than in those of wild type and ogg1�/� mice (Fig. 15)
[183]. As was discussed above, R-cdA and S-cdA can only be re-
paired by NER; therefore, this finding points to a role of NEIL1 in
NER as well, in addition to being a DNA glycosylase in BER. It
may well be that NEIL1 interacts with proteins of the NER complex.
To this end, there is evidence that excision of FapyAde and
FapyGua by NEIL1 is stimulated by Cockayne syndrome B protein
(CSB) [180]. Furthermore, accumulation of S-cdA has been

observed in liver, kidney and brain of csb�/� mice, providing evi-
dence that CSB is involved in repair of S-cdA [78], as in repair of
8-OH-Gua, 8-OH-Ade, FapyAde and FapyGua [180,307–309]. These
facts strongly suggest an interaction between NEIL1 and CSB in
repairing DNA lesions. Future studies may elucidate the mecha-
nism of action of NEIL1 in NER. In contrast, no direct functional
stimulation of hOGG1 by CSB occurs, although a defective csb de-
creases the efficiency of 8-OH-Gua removal by BER and expression

Fig. 13. (A) Lyase activities of wild type NEIL1 and its polymorphic variants on an abasic site-containing oligodeoxynucleotide, (B) lyase activities of wild type NEIL1 and its
polymorphic variants on a Thy gly-containing oligodeoxynucleotide, (C and D) the kcat/KM values for excision of FapyAde and FapyGua from DNA by wild type NEIL1 and its
polymorphic variants. Uncertainties are standard deviations (data from [178]).

Table 1
Numbers and percentages of tumor incidence in lungs and livers of neil1�/�, nth1�/�, and neil1�/�/nth1�/� mice (data from [179]).

Genotype Males Females

Total number Lunga number (%) Liverb number (%) Total number Lunga number (%) Liverb number (%)

neil1�/� 25 3 (12%) 4 (16%) 18 0 (0%) 2 (11.1%)
nth1�/� 52 1 (1.9%) 8 (15.4%) 54 2 (3.7%) 7 (13%)
neil1�/�/nth1�/� 43 32 (74.4%) 20 (46.5%) 29 12 (41.4%) 5 (17%)

a Adenoma, adenocarcinoma.
b Hepatocellular carcinoma, nodular hyperplasia, severe dysplasia.
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of hOGG1 [310]. Other NER proteins, Cockayne syndrome A (CSA)
and xeroderma pigmentosum C (XPC) also play a role in removal
of the aforementioned DNA lesions [73,76]. It may well be that
CSA and XPC interact with NEIL1 as well as CSB in repair of oxida-
tively induced DNA lesions.

Accumulated data as discussed above suggest an important role
for NEIL1 in the prevention of cancer and metabolic syndrome-
associated diseases. Thus far, it is not clear as to how a deficiency
in a DNA glycosylase such as NEIL1 in vivo may lead to carcinogen-
esis and other disease processes. NEIL1 possesses a substrate spec-
ificity, which is distinct from that of most other known DNA
glycosylases. Moreover, its possible role in NER in addition to being
a DNA glycosylase in BER makes it a unique DNA repair enzyme.

NEIL1 may also have a primary role in transcription- and replica-
tion-coupled repair [169,184]. On the basis of all these compelling
facts, one may strongly argue that NEIL1 is not simply a backup
DNA glycosylase for other DNA glycosylases in the BER pathway
as was assumed originally, when it was first discovered. Another
important question arises from the specificity of NEIL1 about the
role of its substrates, FapyAde, FapyGua, R-cdA and S-cdA in dis-
ease processes observed in NEIL1 knockout animals. The lack of
its activity on 8-OH-Gua in vitro and in vivo, which has almost al-
ways been presented in the literature as the major lesion that con-
tributes to the mutagenic and carcinogenic effects of oxidatively
induced DNA damage, clearly excludes this lesion from the adverse
effects of NEIL1 deficiency in vivo. The known mutagenic and other
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Fig. 14. Levels of FapyAde, FapyGua and 8-OH-Gua in livers, kidneys and brains (from the top) of wild type, neil1�/�, neil1�/�/nth1�/� and nth1�/� mice. The uncertainties are
standard deviations. Stars denote statistical significance (p < 0.05) (data from [179]).
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properties of NEIL1 substrates should add a new dimension to ef-
forts for understanding repair and biological effects of oxidatively
induced DNA damage.

Moreover, a recent study demonstrated the ability of NEIL1 and
NEIL3 in the prevention of mutagenesis in vivo [181]. An E. coli fpg
mutY nei mutant strain, which spontaneously exhibits a high G ? T
transversion mutation frequency, has been used for this purpose.
As Fig. 16A illustrates, the expression of NEIL1 or NEIL3 in this
strain significantly reduced the mutation frequency. The expres-
sion of E. coli Nei also reduced the mutation frequency, albeit at
a lower level. When DNA samples were extracted from these
strains and analyzed for DNA lesions, a significantly greater level
of FapyGua was observed in the fpg mutY nei mutant than in the
wild type strain, most likely due to the absence of Fpg (Fig. 16B).
A significant reduction in the FapyGua amount was observed by
expression of NEIL1 or NEIL3. In contrast, there was no reduction
of FapyGua in the triple mutant expressing Nei. This is likely due
to the previously reported lack of specificity of Nei for this lesion
[159]. These results confirm the specificity of NEIL1 for in vivo re-
pair of FapyGua and suggest that NEIL3 also recognizes FapyGua
in vivo. Furthermore, the reduction of both the mutation frequency
and the level of FapyGua suggests that the G ? T transversion

mutations observed in the triple mutant result from FapyGua at
least to a great extent. This lesion is known to lead to this type
of mutations [212,213].

5.2. OGG1

Many single-nucleotide polymorphisms have been found in hu-
man ogg1, fourteen of which change the sequence of the major pro-
tein isoform OGG1-1a (http://www.ncbi.nlm.nih.gov/sites/
entrez?db=snp) [311–315]. Function, substrate specificity and
kinetics of only a few proteins encoded by these genes have been
reported [162,163,166,314]. The most widely encountered poly-
morphic form is the ogg1 326C allele with varying frequencies from
�0.1 in African Americans to >0.5 in some Japanese populations
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp). Most atten-
tion has been given to the product protein OGG1-Cys326, whose
association has been demonstrated with the risk of esophageal, co-
lon, orolaryngeal, lung, gastric, cervical, gallbladder, head, neck,
kidney and bladder cancers [311,316–334]. However, no associa-
tion has been reported between the OGG1-Cys326 polymorphism
and the risk of squamous cell head and neck carcinoma [335].
Other mutant forms OGG1-His154, OGG1-Gln46 and OGG1-Gln209
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have been found in a human gastric cancer cell line, human kidney
tumors and a leukemic cell line, respectively [315,317,336]. OGG1-
Val288 has been observed in Alzheimer’s disease patients with its
activity being lower than that of the wild type OGG1 [314]. Low
OGG1 activity has been shown to constitute a risk factor in lung,
head and neck cancers [337–341]. Substrate specificities and exci-
sion kinetics of a variety of polymorphic variants of OGG1 have
been determined using oligodeoxynucleotides containing a single
lesion or using DNA with multiple lesions. For excision of both
FapyGua and 8-OH-Gua from DNA, OGG1-Val288 exhibited excision
kinetics similar to that of the wild type OGG1, whereas the activi-
ties of OGG1-Cys326, OGG1-His154, OGG1-Gln46, and OGG1-Asn322

were significantly lower than that of wild type OGG1 [162,163,
166]. However, OGG1-Val288 was �30% less efficient than the wild
type OGG1 when an oligodeoxynucleotide containing 8-OH-Gua
paired with Cyt was used as the substrate [166].

Thus far, there has been no clear connection between deficien-
cies in ogg1 and human carcinogenesis. There were also conflicting
reports in the literature about the disease development in ogg1
knockout animals, although greater levels of 8-OH-Gua have been
observed than in wild type animals. In certain organs of ogg1�/�

mice, an increase in G ? T transversions has been found with a
simultaneous accumulation of 8-OH-Gua; however, the animals
exhibited no malignancies and no pathological changes
[342,343]. No tumor formation has been observed in ogg1�/� mice
treated with KBrO3, despite a much greater level of 8-OH-Gua
found in these mice than in wild type mice [344]. Upon exposure
of both wild type and ogg1�/� mice to low doses of ionizing radia-
tion, ogg1�/� mice exhibited a significant increase in G ? T trans-
versions in their brains; however, no tumor development has
been observed [345]. On the other hand, ogg1�/�mice accumulated
8-OH-Gua in their genomes and developed lung adenoma/carci-
noma after about 1.5 years after birth [346]. No other DNA lesions
have been measured to unequivocally conclude that this effect had
been due to accumulation of 8-OH-Gua only. Exposure to chronic
UVB made ogg1�/� mice susceptible to skin carcinogenesis upon
radiation [347]. A greater level of 8-OH-Gua has been observed
in these mice than in wild type ones, suggesting this type of oxida-
tively induced DNA damage plays a role, although levels of no
other major lesions have been measured in this case, either. Only
in the case of deficiencies in both ogg1 and mutyh, lung and ovarian
tumors, and lymphomas significantly occurred in the majority of
mice, with accompanying G ? T transversions in lung tumors at
codon 12 of the K-ras oncogene [305]. Mice with missing mutyh
alone developed no tumors similar to ogg1�/� mice. These findings
may indicate the requirement of several DNA repair genes for pre-
vention of mutagenesis and tumorigenesis. This notion is sup-
ported by the fact that a greater level of tumor formation
occurred in neil1�/�/nth1�/� mice than in single knockout mice
[179]. Wide population studies may contribute to a better under-
standing of the role of defects in ogg1 in carcinogenesis.

6. Oxidatively induced DNA lesions and DNA repair proteins as
biomarkers

Accumulated evidence strongly suggests that oxidatively in-
duced DNA lesions and DNA repair proteins may be used as poten-
tial sentinels for cancer risk assessment and therapy monitoring.
For more than 20 years, a large number of studies have been con-
ducted to measure DNA base lesions in human urine as non-inva-
sive biomarkers for diagnosis, early detection and therapy
monitoring as well as for epidemiological investigations. First stud-
ies suggested two modified 20-deoxynucleosides, 8-hydroxy-20-
deoxyguanosine (8-OH-dG) and 20-deoxythymidine glycol as suit-
able biomarkers for oxidatively induced DNA damage [348,349].

Subsequent studies mainly measured 8-OH-dG and its free base
8-OH-Gua in human urine (reviewed in [350]). 5-OH-Ura, 8-OH-
Ade and FapyGua have also been identified in urine as potential
biomarkers [351,352], although these lesions have not received
as much attention as 8-OH-dG and 8-OH-Gua. There has been a
significant controversy about the measurement techniques in dif-
ferent laboratories and the source of these lesions in urine. The
contribution of diet and cell death has been excluded [353–356].
BER has been suggested to be a likely source for the excretion of
8-OH-Gua into urine because of its efficient removal by OGG1
[357]. In contrast, it is not clear as to how BER would be responsi-
ble for the presence of 8-OH-dG. Moreover, no oligodeoxynucleo-
tides containing 8-OH-dG have been identified in human urine,
excluding NER for excretion of this lesion into urine [354]. There
is evidence that the nucleotide pool may also be a major source
of 8-OH-dG in urine [358,359]. Recently, the presence of both R-
cdA and S-cdA as free nucleosides has been discovered in human
urine [80]. Since these lesions are repaired by NER, their excretion
into urine has been proposed to result from repair by this pathway.
R-cdA and S-cdA may serve as alternative well-suited disease
biomarkers.

DNA repair proteins may serve as early detection, prognostic
and therapeutic biomarkers in cancer [283,285]. To be used as bio-
markers for cancer and other diseases, these proteins must be
accurately measured in relevant tissues by proper chemical and
physical techniques. Recently, methodologies using isotope-dilu-
tion tandem mass spectrometry have been developed for positive
identification and accurate quantification of some DNA glycosy-
lases [360]. For this purpose, stable isotope-labeled analogues of
these proteins have been isolated, purified and characterized to
be used as internal standards [361]. More efforts will be necessary
to develop mass spectrometric assays for the accurate measure-
ment of a variety of DNA repair proteins in tissues using proper
stable isotope-labeled internal standards. There is no doubt that
such measurements will be of fundamental importance for under-
standing of the role of DNA proteins in carcinogenesis, for their use
as biomarkers in cancer detection, prognosis and therapy, and for
development of DNA repair inhibitors to increase the efficacy of
the therapy.

7. Conclusions

Normal cellular metabolism and exogenous sources generate
oxygen-derived species including free radicals that can damage
biological molecules such as DNA, proteins and lipids. Oxidatively
induced DNA damage by these damaging agents may lead to muta-
genesis and genetic instability, which is a hallmark of cancer. Accu-
mulated evidence suggests that this type of DNA damage may
significantly contribute to human cancers. Oxidatively induced
damage to DNA components generates a plethora of products by
a variety of mechanisms. Most of these DNA lesions are known
to be strongly mutagenic leading to mutations that are commonly
found in human cancers. They accumulate in cancerous tissues,
possibly contributing to genetic instability and metastatic poten-
tial. To maintain genetic stability and survive, living organisms
are endowed with a number of different mechanisms involving
numerous proteins to repair DNA damage. Unrepaired DNA lesions
may cause detrimental biological consequences. Evidence suggests
that defective DNA repair, and mutations and polymorphisms in
DNA repair genes significantly contribute to cancer development.
Recent findings showed that some types of tumors possess in-
creased DNA repair capacity, which may cause resistance to thera-
peutic agents and affect the outcome of therapy and survival.
Apparently, DNA repair capacity in cancerous tissues will be an
important factor to be considered for future therapeutic
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approaches in cancer treatment. Moreover, DNA repair proteins are
increasingly emerging as important predictive, early detection,
prognostic and therapeutic factors in cancer. DNA repair inhibitors
are being developed to target DNA repair pathways in order to in-
crease the efficacy of therapy. Evidence accumulated for over two
decades suggests that oxidatively induced DNA lesions and DNA
repair proteins may be used as potential cancer biomarkers for risk
assessment, early detection and therapy monitoring. Analytical
techniques such as isotope-dilution mass spectrometry will be
needed for accurate measurement of DNA lesions and repair pro-
teins as suitable biomarkers. More research in the field of DNA
damage and repair will be essential to develop cancer biomarkers,
DNA repair inhibitors and treatment approaches to better under-
stand and fight cancer.
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