
Families of elliptic curves with rational
 
3-torsion
 

Dustin Moody, Hongfeng Wu 

July 23, 2012 

Abstract 

In this paper we look at three families of elliptic curves with ratio­
nal 3-torsion over a finite field. These families include Hessian curves, 
twisted Hessian curves, and a new family we call generalized DIK 
curves. We find the number of Fq-isogeny classes of each family, as 
well as the number of Fq-isomorphism classes of the generalized DIK 
curves. We also include some formulas for efficient computation on 
these curves, improving upon known results. In particular, we find 
better formulas for doubling and addition on the original tripling-
oriented DIK curves and also for addition and tripling on elliptic 
curves with j-invariant 0. 

1 Introduction 

Elliptic curves have been the focus of much research, particularly in the 
past few decades. An elliptic curve defined over a field K is an abelian 
variety of dimension 1 defined over K. Traditionally, elliptic curves have 
been represented by a Weierstrass equation 

2 3 2 y + a1xy + a3y = x + a2x + a4x + a6, (1) 

with the ai ∈ K. However, the Weierstrass model is simply one way to rep­
resent an elliptic curve. Several alternate models have been proposed. For 
example, Edwards curves [4], [11], Hessian curves [19], [24], Jacobi quartics 
[9], and Montgomery curves [21] have all been proposed for use in cryptog­
raphy. 
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There have been many interesting results for some of these alternate mod­
els. For example, the number of isomorphism classes over Fq (or Fq) for 
various models has been studied in [8], [12], [15], [16], [17], [14]. Recently, 
Ahmadi and Granger were able to count the number of Fq-isogeny classes 
[1] for Edwards curves. Their results extend to twisted Edwards curves, 
Montgomery curves, Huff curves, and Jacobi intersections. In this work we 
continue along these lines. We focus our study on Hessian curves, and two 
related alternative models of curves. 

Hessian curves are a one-parameter elliptic curve family with a rational 
point of order 3. They are defined by the equation 

Hd : x 3 + y 3 + 1 = 3dxy, 

with d ∈ K, d3  1. The point (−1, 0) has order 3 on Hd, for any d. The= 
use of Hessian curves in mathematics and cryptography has been studied in 
many papers. One of their primary advantages is that they help prevent 
against information leakage through side channel attacks. For more on these 
curves see [6], [9], [12], [13], [18], [19], [24]. There is also a generalized Hessian 
curve, known as a twisted Hessian curve, given by 

Ha,d : ax 3 + y 3 + 1 = 3dxy 

for some a ∈ K with d3  a.= This curve was introduced in [6] for use in 
cryptography, and an equivalent version has been further studied in [13]. 

We mention another family of elliptic curves related to elliptic curves with 
3-torsion. Doche, Icart, and Kohel introduced what are known as tripling-
oriented DIK curves. This family consists of curves given by the equation 
y2 = x3 + 3u(x + 1)2 . These curves were first proposed in [10] as curves for 
which there are efficient formulas to perform arithmetic necessary for cryp­
tography. In comparison with Hessian curves, DIK curves are characterized 
by the existence of a rational 3-torsion subgroup, rather than a rational 3­
torsion point. In this paper, we generalize the original DIK curves so as to 
include all elliptic curves with a rational 3-torsion subgroup. 

In section 4 of this work we give a formula for the number of isogeny 
classes for Hessian curves, twisted Hessian curves, and generalized DIK curves. 
The results for Hessian curves were touched on in [7], but without proof. In 
doing so, we discover some information about the distribution of curves in 
the isogeny classes of generalized DIK curves. We also count the number of 
Fq-isomorphism classes of generalized DIK curves. We note that the number 
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of isomorphism classes of Hessian curves and twisted Hessian are given in 
[12] and [13] respectively. 

We then look at computing on these curves. We are able to give new 
records for doubling and addition on the original DIK curves. We give for­
mulas to perform efficient arithmetic on the generalized DIK curves. This 
includes a subfamily with j-invariant 0, where we are able to improve existing 
formulas for addition and tripling. 

2 Elliptic curves with rational 3-torsion 

2.1 Generalized DIK curves 

Let E/K be an elliptic curve. For a through background on elliptic curves, 
see [23]. Let F (x, y) be the defining equation for E as given by (1). We 
introduce a definition from [10]. 

Definition 1. A torsion subgroup G of E(K̄) is said to be defined over K 
or to be K-rational if G\{O} is the zero set of a finite set of polynomials 

{f1(x, y), f2(x, y), · · · , fn(x, y)} ∈ K(x, y)/(F (x, y)). 

It is well known that a finite subgroup G of E is K-rational if and only 
if G is the kernel of an isogeny ψ : E → E' defined over K. Similarly, if 
K is a perfect field, then a subgroup G of E is K-rational if and only if for 
any point P ∈ G and σ ∈ Gal(K/K), σ(P ) ∈ G. Note that E need not 
have a K-rational point in G. However if G = (P ), and P is K-rational, 
then necessarily G is a K-rational subgroup. We now let K be a finite field 
Fq, and focus on Fq-rational subgroups of order 3. For the remainder of the 
paper, we also assume that the characteristic of Fq is greater than 3. 

Theorem 2. Let E be an elliptic curve defined over a finite field Fq with 
characteristic different from 2 or 3. Then E has an Fq-subgroup of order 
3 if and only if it has an Fq-isomorphism to an elliptic curve of the form 
y2 = x3 + a(cx + 1)2, with a, c ∈ Fq and a(4ac3 − 27) = 0. 

Proof. As the characteristic of Fq is greater than 3, we can assume the defin­
ing equation of E is y2 = x3 + a2x2 + a4x + a6. Let the Fq-rational subgroup 
be G = {O, P = (xP , yP ), −P = (xP , −yP )}. For σ ∈ Gal(Fq/Fq), we know 
σ(P ) = (σ(xP ), σ(yP )) ∈ G, thus σ(xP ) = xP and so xP ∈ Fq. This implies 
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that yP 
2 ∈ Fq. By changing x to x − xP , we can assume that P = (0, yP ) and 

yP = 0 (else 2P = O). So without loss of generality, we have a6 = yP 
2 = 0. 

The addition law on E yields 

4 2 2 2x − 4a4x − 8a6xP − (4a2a6 − a ) aP P 4 4 − 4a2a6 
x(2P ) = = . 

4a6 4yP 
2 

Therefore, as x(2P ) = x(−P ) = 0, then it follows that a4
2 − 4a2a6 = 0. 

If a4 = 0 then we must have that a2 equals 0. The curve E is then of the 
form y2 = x3 + a, for some a ∈ Fq. If instead a4 = 0, then we can perform 
the change of variables   � �2 � �3 

a4 a4 
x, y → (x, y),

2a6 2a6 

to obtain an isomorphic curve y2 = x3 +a(x+t)2 where t = a4/(2a6), a = a6t4 . 
2 3 + a(x + t)2 2Note that y = x can be rewritten y = x3 + at2(x/t + 1)2 . So 

whether a4 = 0 or not, we have seen that E is Fq-isomorphic to a curve of 
the form y2 = x3 + a(cx + 1)2 . 

Conversely, suppose E has an Fq-isomorphism to an elliptic curve of the √ 
form Ea,c : y2 = x3 + a(cx + 1)2 . Let P = (0, a). Then it is easy to check 
that G = {O, P, −P } is an Fq-rational subgroup of order 3. 

We give the curves of Theorem 2 a special name. 

Definition 3. Let Ea,c be an elliptic curve over Fq, defined by the equation 

y 2 = x 3 + a(cx + 1)2 

with a(4ac3 − 27) = 0. Then we call Ea,c a generalized DIK curve. 

Recall the original DIK curves are of the form y2 = x3 + 3u(x + 1)2, and 
so they are the generalized DIK curves E3u,1. Up to twists, every curve with 
a rational 3-torsion subgroup can be written in the original DIK form. By 
Theorem 2, we see that the generalized DIK curves are exactly the family 
of all elliptic curves with rational 3-torsion subgroup, without needing to 
recourse to twisting. 

Corollary 4. Let E be an elliptic curve defined over a finite field Fq with 
characteristic different from 2, or 3. Then E has an Fq-rational point of 
order 3 if and only if E has an Fq-isomorphism to an elliptic curve of the 
form Wa,b : y2 = x3 + (ax + b)2, with a, b ∈ Fq, b(4a

3 − 27b) = 0. 
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Proof. Suppose first that E is isomorphic to the elliptic curve Wa,b : y2 = 
x3 + (ax + b)2 . Then it is easy to check that (0, b) is a point of order 3 on 
Wa,b/Fq. By the isomorphism, then E also has a rational point of order 3. 

Now suppose that E has an Fq-rational point P of order 3. We saw in 
the proof of Theorem 2 that we can assume E has equation y2 = x3 + c or 
y2 = x3 + a(x + t)2 for some t ∈ Fq, with a = yP 

2 t4 a square in Fq. If E is 
the curve y2 = x3 + c, it is already in the desired form. Otherwise, we can 
rearrange the equation for E as y2 = x3 + (yP t

2x + ypt3)2 , which completes 
the proof. 

A better known way to write an elliptic curve with an Fq-rational point 
of order 3 is y2 + a1xy + a3y = x3, where the point (0, 0) has order 3. We 
will use the form given in Corollary 4, as it is very similar to the equation 
for the generalized DIK curves. 

3 Hessian and twisted Hessian curves 

We now turn our attention to Hessian curves and twisted Hessian curves. 
Recall that every Hessian curve has a rational point of order 3, namely the 
point (−1, 0). Thus Hessian curves form a subset of the curves Wa,b described 
in Corollary 4. The following lemma explicitly shows this relationship. 

Lemma 5. Let Fq be a finite field of characteristic greater than 3, and let 
d ∈ Fq with d3 = 1. In projective coordinates, the Hessian curve 

Hd : U
3 + V 3 + W 3 = 3dUV W 

is isomorphic to the elliptic curve 

Wa,b : Y 2Z = X3 + Z(aX + bZ)2 , 

where a = (d + 2), and b = 4(d2 + d + 1)/3.
 

Proof. The isomorphism is given by the change of variables
 

3d 3 1 
U = X + Y + Z, 

8(d3 − 1) 8(d3 − 1) 2(d − 1)
3d −3 1 

V = 
8(d3 − 1) 

X + 
8(d3 − 1) 

Y + 
2(d − 1)

Z, 

−3 1 
W = 

4(d3 − 1) 
X + 

1 − d 
Z. 
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The inverse change of variables is
 

(4d2 + 4d + 4) (4d2 + 4d + 4) (4d2 + 4d + 4) 
X = U + V + W, 

3 3 3 
(4d3 − 4) (4 − 4d3)

Y = U + V, 
3 3
 

Z = −U − V − dW.
 

The majority of results in this paper will fall into two cases, depending 
on q mod 3. Note that when q ≡ 2 mod 3, then every element is a cube in 
Fq. We will also need the fact that when q ≡ 1 mod 3, then -3 is a square in 
Fq. 

Theorem 6. Let E be an elliptic curve defined over a finite field Fq with 
q ≡ 2 mod 3. Then E has a point of order 3 if and only if it is Fq-isomorphic 
to a Hessian curve Hd : x3 + y3 + 1 = 3dxy. 

Proof. Suppose first that E is isomorphic to a Hessian curve Hd. As the point 
(−1, 0) has order 3 on Hd, then E has a point of order 3. Now suppose that 
E is an elliptic curve with a rational point of order three. By Corollary 4, 
we can assume that the equation for E is y2 = x3 +(ax + b)2 . By composing 
with the isomorphism (x, y) → (u2, u3y), for some u = 0 in Fq, then the curve 
Eu : y2 = x3 + (aux + bu3)2 is isomorphic to E. If we choose u to be a root 
of 3bu3 − 4a2u2 + 12au − 12, then it can be checked that setting d = au − 2 
satisfies bu3 = 4

3 (d
2 + d + 1). Then by Lemma 5, we see Eu is isomorphic to 

the Hessian curve Hd. 
It remains to be checked that 3bu3 − 4a2u2 + 12au − 12 = 0 has a root 

in Fq. If a = 0 then this is clear. For a = 0, let β ∈ Fq be such that 
β3 4a 3β = 

3 
, which is possible as q ≡ 2 mod 3. Then is a root of 

4a3−27b a(β−1) 

3bu3 − 4a2u2 + 12au − 12 = 0 in Fq. 

When q ≡ 1 mod 3, then Theorem 6 is not true. That is, the family 
of Hessian curves over Fq is not equivalent to the family of curves with an 
Fq-rational point of order 3. The next proposition shows this latter family is 
however, the same as twisted Hessian curves. 

Proposition 7. Let Fq be a finite field with characteristic greater than 3, 
and a, d ∈ Fq with d3 = a and a = 0. In projective coordinates, the twisted 
Hessian curve 

Ha,d : aU
3 + V 3 + W 3 = 3dUV W 
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is Fq-isomorphic to an elliptic curve of the form Ws,t : Y 2Z = X3 + Z(sX + 
tZ)2 . 

Proof. If q ≡ 2 mod 3, then every element of Fq is a cube. Therefore, each 
curve au3 + v3 +1 = 3duv can be changed into a Hessian curve u3 + v3 +1 = 
3d ' uv for some d ' by a suitable change of variables. The result then follows 
from Lemma 5. 

If instead q ≡ 1 mod 3, then there exists an ε ∈ K such that ε2 +ε+1 = 0. 
In projective coordinates, the curve Ha,d is isomorphic to the elliptic curve 
Ws,t with s = d/2, t = (d3 − a)/54 via the change of variables 

U = X, 
V = −seX − (e + 2)Y − 3teZ, 
W = s(1 + e)X + (e − 1)Y + 3t(e + 1)Z. 

The inverse change of variables is given by 

X = U, 
1+E EY = − V − W, 

2(1+2E) 2(1+2E) 
E−1 E+2− sZ = U + V + W. 

3t 6t(1+2E) 6t(1+2E) 

The previous proposition shows that over Fq, the family of twisted Hessian 
curves is equivalent to the family of curves Wa,b : y2 = x3 + (ax + b)2 in the 
sense of isomorphism over Fq. Thus twisted Hessian curves are exactly the 
curves with a rational point of order 3. We note that Farashahi and Joye 
have an equivalent result in [13]. 

2 2 3 +Observe that the curve y = x3 + (ax + b)2 may be rewritten y = x
b2(a/bx + 1)2, showing that every curve with a rational point of order 3 is a 
generalized DIK curve. Therefore 

{Hessian curves} ⊆ {Twisted Hessian curves} ⊆ {generalized DIK curves}. 
(2) 

If q ≡ 2 mod 3, then the three sets are equal. The first equality is clear, 
since every element in Fq is a cube. We now prove the second equality. 

Proposition 8. Let Ea,c : y2 = x3 + a(cx + 1)2 be a generalized DIK curve 
over Fq, with q ≡ 2 mod 3. Then Ea,c has a rational point of order 3. In 
other words, the family of generalized DIK curves over Fq is the same as the 
family of Hessian, or twisted Hessian curves. 
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Proof. Let Ea,c be an elliptic curve Ea,c : y2 = x3 + a(cx + 1)2 over Fq. 
Suppose first that a = s2, for some s. Then Ea,c : y2 = x3 + (csx + s)2, and 
by Corollary 4 then Ea,c has a rational point of order 3. 

So we now assume that a is not a square in Fq. If we twist Ea,c by a, then 
2 2 2 3 4 2we get a curve E ' : y = x3 + a c x2 + 2a cx + a , or y = x3 + (acx + a2)2 . 

We see that E ' has a rational point of order 3 by Corollary 4. Then, as E 
and E ' are twists, their cardinalities N and N ' sum to 2q + 2 which is ≡ 0 
mod 3. As N ' ≡ 0 mod 3, then likewise N ≡ 0 mod 3. Thus E has a point 
of order 3. 

When q ≡ 1 mod 3, then the three families in (2) are not equal. We 
already noted that an elliptic curve with rational 3-torsion subgroup need 
not have an Fq-rational point of order 3. Explicitly, if E is the curve y2 = √ 
x3 + a(cx + 1)2, and a is a non-square, then the point P = (0, a) generates 
a rational 3-torsion subgroup, despite P not being Fq-rational. This shows 
that the generalized DIK curves are not the same as the family of twisted 
Hessian curves, when q ≡ 1 mod 3. To see that Hessian curves and twisted 
Hessian curves yield different families, we need a theorem from [22]. 

Theorem 9. √Let E : y2 = x3 +ax+b be an elliptic curve defined over a finite 
field K with −3 ∈ K. Then E has as its torsion subgroup Z/3Z√× Z/3Z if 
and only if a and b can parameterized by α ∈ K, α = 3, −3

2 (1 ± −3), with 

a = −
3
1 
3 α(α + 6)(α2 − 6α + 36), 

b = −
3
2 
6 (α

2 − 6α − 18)(α4 + 6α3 + 54α2 − 108α + 324). 

This allows us to prove the following theorem. 

Theorem 10. Let E be an elliptic curve defined over a finite field Fq with 
q ≡ 1 mod 3. Then E has two independent points of order 3 if and only if it 
has an Fq-isomorphism to a Hessian curve x3 + y3 + 1 = 3dxy. 

Proof. We saw in the proof of Proposition 7 that when q ≡ 1 mod 3, then the 
Hessian curve x3 +y3 +1 = 3dxy is isomorphic to the curve y2 = x3 +(dx/2+ 
(d3 −1)/54)2 . This curve is in turn isomorphic to y2 = x3 +(3dx+4(d3 −1))2 

via (x, y) → (62x, 63y). Putting this in short Weierstrass form, this is the 
curve 

y 2 = x 3 − 3d(d3 + 8)x − 2(d6 − 20d3 − 8). 
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So we only need to prove E has two points with order 3 if and only if it is Fq ­
isomorphic to some curve of the form y2 = x3 −3d(d3 +8)x−2(d6 −20d3 −8). 

Assuming that E : y2 = x3 + ax + b has two points with order 3, then 
from Theorem 9, let β = α/3, then 

a = −3β(β3 + 8), 

b = −2(β6 − 20β3 − 8). 

Hence, E : y2 = x3 + ax +√b isomorphic to some Hessian curve. 
For the converse, since −3 ∈ Fq, then it is easily checked that (3d2 , 4(d3−√ 

1)) and (−(d + 2)2 , 4 −3(d2 + d + 1)) are two linearly independent points of 
order 3 on E/Fq : y2 = x3 − 3d(d3 + 8)x − 2(d6 − 20d3 − 8). 

So for q ≡ 1 mod 3, Hessian curves have two independent points of order 
3, while twisted Hessian curves need only have 1. Thus the two families are 
not the same, as is the case when q ≡ 2 mod 3. 

4 Isogeny and isomorphism classes 

4.1 The number of isogeny classes 

In this section we find the number of isogeny classes of the families from 
the previous section. This includes Hessian curves, twisted Hessian curves, 
and generalized DIK curves. To do so, we look at the possible cardinalities 
of these curves over Fq. Tate’s theorem states that two elliptic curves are 
isogenous over Fq if and only if they have the same number of Fq-rational 
points [25]. So we can count isogeny classes by counting cardinalities. The 
following theorem is proved in [27] and appears as stated in [26]. 

Theorem 11. Let q = pn be a power of a prime p and let N = q + 1 − t. 
There is an elliptic curve E defined over Fq such that #E(Fq) = N if and √ 
only if t ≤ 2 q and t satisfies one of the following: 

1. gcd(t, p) = 1 √ 
2. n is even and t = ±2 q √ 
3. n is even, p  ≡ 1 mod 3, and t = ± q 

(n+1)/24. n is odd, p = 2, or 3, and t = ±p
5. n is even, p  ≡ 1 mod 4, and t = 0 
6. n is odd and t = 0. 
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√ 
The condition t ≤ 2 q is known as Hasse’s condition. In particular, we 

observe that every possible trace t between the Hasse bounds is allowable, 
when (t, p) = 1. These are the ordinary curves. The rest of the conditions 
describe what supersingular traces are possible, i.e. when (t, p) > 1. 

We separate our study into two cases, depending on q mod 3. When 
q ≡ 2 mod 3, then we observed in the last section that the families of Hessian 
curves, twisted Hessian curves, and generalized DIK curves are the same. We 
now give the formula for the number of isogeny classes of these families. We 
denote this number by Mq. 

Theorem 12. The number of isogeny classes of Hessian curves over Fq is 

√ √�2 q �2 q
Mq = 1 + 2 − 2 ,

3 3p 

when q ≡ 2 mod 3. 

√ 
Proof. Let t be such that N = q + 1 − t is a multiple of 3, and |t| ≤ 2 q. If 
(t, q) = 1 then by Theorem 11 we know there is an elliptic curve with trace 
t. As 3|#E(Fq), then there is a rational point of order 3, and by Theorem 
6, E is Fq-isomorphic to a Hessian curve. This takes care of all the ordinary 
curves. 

Let p be the characteristic of Fq, so q is a power of p. As q ≡ 2 mod 3, 
then we must have that p ≡ 2 mod 3 and q = p2k+1 for some k. The only 
allowable trace with (t, q) > 1 is when t = 0. When t = 0 then N ≡ 0 mod 
3, so we see that curves with trace 0 are Fq-isomorphic to Hessian curves. 

Conversely, if E is a Hessian curve then by Theorem 6 E has a point of 
order 3, and so its cardinality N is divisible by three. If E is supersingular 
then the trace of E must be 0. Thus the number of isogeny classes is the 
number of multiples of 3 between the Hasse bounds which yield ordinary 
curves, and we add one for the supersingular curves with cardinality N = 
q + 1. 
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If we write q = 3k + 2, then by Lemma 13, we have 
√ √ √ √ 

q + 1 + 2 q q + 1 − 2 q 2 q −2 q
Mq = − − − + 1 

3 3 3p 3p
√ √ √ 
2 q −2 q 2 q 

= k + 1 + − k + 1 + − 1 + 2 + 1 
3 3 3p√ √ √ 

2 q −2 q 2 q 
= − − 2 

3 3 3p√ √ 
2 q 2 q

= 1 + 2 − 2 . 
3 3p 

Lemma 13. The number of t satisfying a ≤ t ≤ b with t ≡ c mod m is 

b − c a − c − . 
m m 

Proof. This is elementary. 

We now turn our attention to when q ≡ 1 mod 3. In this case, we have 
that 

{Hessian curves} S {twisted Hessian curves} S {generalized DIK curves}. 

We start with Hessian curves. Before we give the number of Hessian isogeny 
classes, we need a preliminary result. 

Proposition 14. Let q ≡ 1 mod 3, and E(Fq) an elliptic curve. If 9|#E(Fq), 
then E is isogenous to a curve over Fq containing a subgroup isomorphic to 
Z/3Z × Z/3Z. 

Proof. As 9|#E(Fq), then E contains either Z/3Z × Z/3Z or Z/9Z as a 
subgroup. If Z/3Z × Z/3Z is the subgroup, then we are done, so we assume 
that E has the subgroup Z/9Z. Let P be a point of order 9 on E. 

By Corollary 4, we can write the equation for E as y2 = x3 + (ax + b)2 , 
for some a, b ∈ Fq, with a point of order 3 given by 3P = (0, b). Using Vélu’s 
formula, we can construct a 3-isogeny φ whose kernel is the subgroup (3P ): 

x3 + 4abx + 4a2 x3 − 4abx − 8a2 

φ(x, y) = , y . 
2 3x x
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The image of φ is the curve 

2 3 2E ' : y = x + a x 2 − 18abx − b(16a 3 + 27b). 

Now let Q = φ(P ), which is necessarily a point of order 3 on E ' , since 
ˆ ˆ3Q = 3φ(P ) = φ(3P ) = ∞. Denote the dual of φ by φ. Then φ(Q) = 

φ̂(φ(P )) = 3P , so we see Q is not in the kernel of φ̂. 
Consider the point 

4a2 4a3 − 27b 
R = − , √ . 

3 3 −3 

A calculation checks that R is on E ' , and that 2R = −R, so that R is a point 
of order 3. As q ≡ 1 mod 3, then -3 is a square in Fq, and hence R ∈ E ' (Fq). 
It is easy to see that φ̂(R) = ∞, and so the kernel of φ̂ = (R). Thus R = ±Q, 
and we have two independent points of order 3 on E ' (Fq). So E is isogenous 
to a curve E ' which contains Z/3Z × Z/3Z as a subgroup. This proves the 
proposition. 

Corollary 15. Let q ≡ 1 mod 3, and 0 ≤ c ≤ 8 be the residue class of 
(q + 1)/p mod 9. Then the number of isogeny classes of Hessian curves over 
Fq is 

√ √ √ √ 
q + 1 + 2 q q + 1 − 2 q 2 q − cp −2 q − cp

Mq = − − − +Sq,
9 9 9p 9p 

2k+1 2kwhere Sq = 0 if q = p and Sq = 1 if q = p . 

Proof. By Tate’s Theorem, we need only count the possible number of dif­
ferent cardinalities that Hessian curves can have. When q ≡ 1 mod 3, then 
every Hessian curve has cardinality divisible by 9 by Theorem 10. Con­
versely suppose that E is an elliptic curve over Fq such that 9|#E(Fq). By 
Proposition 14 and Theorem 10, then E is isogenous to a Hessian curve. 

We now look at the possible supersingular traces. As q ≡ 1 mod 3 and 
N ≡ 0 mod 3, then t ≡ 2 mod 3. So we cannot have t = 0 as a possible trace. 
Thus if q = p2k+1, then there are no supersingular Hessian curves. We now 
can assume that q = p2k . Let e = ±1 such that pk ≡ e mod 3. Then e2pk is a 
valid trace, while −e2pk is not. Neither ±pk can be a valid trace, which can 
be seen by considering p mod 9: running through the various possibilities, 
we see that p2k + 1 ± pk  ≡ 0 mod 9, when p ≡ 2 mod 3. 

12
 



� � � � �� � � ��

� � � � � �

The supersingular trace condition can be summarized by t ≡ q + 1 mod 
9 and t ≡ 0 mod p. These can be combined into the condition t ≡ cp mod 
9p, where c = (q + 1)/p mod 9. The formulas given in the statement of the 
theorem now follow by Lemma 13. 

We next look at twisted Hessian curves. 

Theorem 16. Let q ≡ 1 mod 3, and 0 ≤ c ≤ 2 be the residue class of p mod 
3. Then the number of isogeny classes of twisted Hessian curves over Fq is 

√ √ √ √ 
q + 1 + 2 q q + 1 − 2 q 2 q + cp −2 q + cp

Mq = − − − +Sq,
3 3 3p 3p 

2k+1 2kwhere Sq = 0 if q = p and Sq = c if q = p . 

Proof. We previously demonstrated that the family of twisted Hessian curves 
is the same as elliptic curves with a rational point of order 3, when q ≡ 1 mod 
3. Thus, if E is a twisted Hessian curve over Fq, then 3|#E(Fq). Conversely, √ √ 
if q + 1 − 2 q ≤ N ≤ q + 1 + 2 q is a multiple of 3, then by Corollary 4 
E may be written y2 = x3 + (ax + b)2 . From section 2, we saw this curve is 
Fq-isomorphic to a twisted Hessian curve. 

As q +1 ≡ 2 mod 3, then t ≡ 2 mod 3. Thus t = 0 is not a possible trace, 
and so for q = p2k+1 there are no supersingular twisted Hessian curves. We 

2k k kcan now assume q = p . Let e = ±1 such that e ≡ p mod 3. Then e2p is 
a valid trace, while −e2pk is not. If p ≡ 2 mod 3, then −epk will be a valid 
trace, while epk is not. 

Let c = p mod 3, so c = 1 or 2. Then the supersingular trace conditions 
may be summarized as t ≡ −cp mod 3p. The results given in the statement 
of the theorem now follow. 

And finally, for generalized DIK curves we are able to prove the following 
theorem. 

Theorem 17. Let q ≡ 1 mod 3. For generalized DIK curves, i.e., curves 
with a rational 3-torsion subgroup, then the number of isogeny classes is 

√ √ √ √ 2 q 2 q 2 q
Mq = 2�2 q� − 2 − 2 + 2 + Sq,

3 p 3p 

2k+1 2kwhere Sq = 0 if q = p , Sq = 2 if q = p , p ≡ 1 mod 3, and Sq = 4 if 
q = p2k, p ≡ 2 mod 3. 
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Proof. Let N be the cardinality of a generalized DIK curve E. We may write 
E as y2 = √ x

3 +a(cx+1)2 . If a is a square, then the proof of Theorem 2 shows 
that (0, a) is a point of order 3. We then have 3|N . Now suppose that a 
is a non-square in Fq, from which it follows that 3 | N . Let E ' denote the 
elliptic curve obtained by twisting E by a. That is, E ' : y2 = x3 + a(ac2x2)+ 
a2(2acx) + a3(a). Then E ' is a generalized DIK curve, with a rational point 

2 2)2of order 3, since E ' : y = x3 +(acx +a . As E and E ' are quadratic twists, 
then we know N + N ' = 2q + 2. As N ' ≡ 0 mod 3, then we see that N ≡ 1 
mod 3. So we see that if E is a generalized DIK curve, then N ≡ 0 or 1 mod 
3. 

Conversely, suppose N ≡ 0 mod 3. Then Corollary 4 shows E can be 
written in the form y2 = x3 + (ax + b)2, with b = 0, or equivalently y2 =   2 
x3 + b2 a

b x + 1 . This is a generalized DIK curve. 
Now suppose N ≡ 1 mod 3. Then let N ' = 2q +2 − N , and hence N ' ≡ 0 

mod 3. Then we have a generalized DIK curve E ' : y2 = x3 + a(cx + 1)2 

with cardinality N ' . If we twist E ' by a quadratic non-residue t = 0, we get   22 3 cthe curve E : y = x + at2
t x + 1 and E is a generalized DIK curve with 

cardinality N . 
We now examine the possible supersingular traces. As t = q + 1 − N , 

then we see t  ≡ 0 mod 3. So there can be no supersingular curves with t = 0. 
Thus for q = p2k+1, any generalized DIK curve is an ordinary curve. The 
number of isogeny classes in this case is 

√ √ √ √ 2 q −2 q
Mq = q + 1 + 2 q − q + 1 − 2 q − − 

3 3 
√ √ √ √ 
2 q −2 q 2 q −2 q

− − + − 
p p 3p 3p√ √ √ √ 2 q 2 q 2 q

= 2 2 q − 2 − 2 + 2 . 
3 p 3p 

For q = p2k, then both t = ±2pk are valid traces. When p ≡ 2 mod 3, 
then t = ±pk are also valid. The stated result now follows. 

4.2 Trace ratio results 

For the generalized DIK curve Ea,c(Fq) : y2 = x3 + c(ax + 1)2, let A(Ea,c, Fq) 
denote the trace of the Frobenius endomorphism. Then it is well known that 
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√ 
#Ea,c(Fq) = q +1 − A(Ea,c, Fq), with |A(Ea,c, Fq)| ≤ 2 q. When the context 
is clear, we will just write A. Let 

N(A) = #{(a, c) ∈ Fq × Fq|A(Ea,c, Fq) = A , a(4ac 3 − 27) = 0}. 

Note that N(A) can be analogously defined for any elliptic curve. Katz 
looked at these quantities for Legendre curves, and showed several results 
concerning their ratios. [20]. For Edwards curves, Ahmadi and Granger were 
able to demonstrate certain relationships hold between N(A) and N(−A) [1]. 
For generalized DIK curves, we have the following result. 

Proposition 18. For the family of generalized DIK curves over Fq, then 
N(A) = N(−A). 

Proof. We create a bijection between the generalized DIK curves with trace 
A and −A. Let t be a fixed non-square in Fq. Given a curve Ea,c; y2 = 
x3 + a(cx + 1)2, let φt(Ea,c) be the curve obtained by twisting by t. That is 
φt(Ea,c) = y2 = x3 + atc2x2 + 2act2x + at3 = Eat3,c/t. We see φt is injective. 

Now consider a generalized DIK curve Eb,d with trace −A. Twisting by t 
gives the curve Ebt3,d/t, which has trace A. Under the transformation (x, y) → 
(t2x, t3y), then this curve is isomorphic to Eb/t3,td. But then φt(Eb/t3,td) = 
Eb,d, showing φt is surjective. 

Proposition 18 is not valid for the family of Hessian curves or twisted 
Hessian curves (unless q ≡ 2 mod 3). From experimental observations, we 
did not notice any noticeable patterns between N(A) and N(−A) for Hessian 
or twisted Hessian curves in the case when q ≡ 1 mod 3. For Hessian curves, 
when q ≡ 1 mod 3, then 3|N(A) for any A. This follows as on a given 
Hessian curve there are two independent points of order 3, hence two 3­
isogenies to two other Hessian curves. These three curves all share the same 
trace A. When q = p2k there is exactly one supersingular trace. It appears 
the number of supersingular curves in this case is p − 1 when p ≡ 1 mod 3, 
and p − 2 when p ≡ 2 mod 3. It might be possible to prove this using the 
Hasse polynomial (see section V.4 of [23]). 

For twisted Hessian curves with q ≡ 1 mod 3, then N(A) is always even. 
This follows as on any twisted Hessian curve there is always a point of order 
3. So there is likewise always a 3-isogeny to another twisted Hessian curve, 
resulting in pairs for each isogeny class. 
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We saw in section 3 that the Hessian curve Hd has a birational transfor­
mation to the curve y2 = x3 − 3d(d3 + 8)x − 2(d6 − 20d3 − 8), d3 = 1. We 
use this representation over finite fields Fq, with q ≡ 2 mod 3, and let d vary. 
Based on numerical evidence, it appears that the number of supersingular √ 
curves is jh, where h is the class number of Q( −q), and j is 1,2, or 4. It 
seems j = 1 when q ≡ 5 mod 12, j = 2 when q ≡ 23 mod 24, and j = 4 
when q ≡ 11 mod 24. 

4.3 Isomorphism classes of generalized DIK curves 

In this section, we determine the number Nq of Fq-isomorphism classes of 
generalized DIK curves. The results for Hessian and twisted Hessian curves 
are known [12], [13]. We re-state the twisted Hessian result, as we can easily 
determine Nq from it. 

Theorem 19. Let Nq 
' denote the number of Fq-isomorphism classes of twisted 

Hessian curves. Then 

' N = q 

⎧⎨ ⎩
 

q − 1 if q ≡ 2 mod 3, 
(3q + 9)/4 if q ≡ 1 mod 12, 
(3q + 7)/4 if q ≡ 7 mod 12. 

Theorem 20. Let Nq denote the number of Fq-isomorphism classes of gen­
eralized DIK curves. Then 

Nq = 

⎧⎨ ⎩
 

q − 1 if q ≡ 2 mod 3, 
(3q + 9)/2 if q ≡ 1 mod 12, 
(3q + 7)/2 if q ≡ 7 mod 12. 

Proof. When q ≡ 2 mod 3, then by Proposition 8 we know the family of 
generalized DIK curves is the same as the family of twisted Hessian curves. 
For q ≡ 1 mod 3, then consider first the generalized DIK curves Ea,c : y2 = 
x3 + a(cx + 1)2 with a = 0 a square in Fq, say a = d2 . Then we can rewrite 
Ea,c : y2 = x3 +(cdx + d)2 . By Proposition 7, these curves are Fq-isomorphic 
to twisted Hessian curves. 

Now consider the curves Ea,c with a a non-square in Fq. Each such curve 
is a non-trivial quadratic twist of a generalized DIK curve Eb,d with b a 
square. It is easy to check as we run over all the non-square a, then we run 
over all the square b in F∗ 

q . This implies that Nq is exactly twice the number 
of Fq-isomorphism classes of the Ea,c with a square. Thus Nq = 2Nq

' , when 
q ≡ 1 mod 3. This completes the proof. 
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Remark: it seems difficult to count the number of Fq-isomorphism classes 
of the original tripling-oriented DIK curves y2 = x3 + 3a(x + 1)2 . Farashahi 
and Shparlinski [15] obtained the number of Fq-isomorphism classes, but 
not the number of Fq-isomorphism classes. From numerical observations, 
this number is approximately 5q/6 when q ≡ 1 mod 3, and 3q/4 when q ≡ 
2 mod 3. 

5 Arithmetic on generalized DIK curves 

In this section, we look at how to efficiently perform arithmetic on a general­
ized DIK curve. Let M and S respectively denote the cost of a multiplication 
and a squaring in the finite field Fq. We also use C to denote the cost of a 
multiplication by a constant in the finite field. We are assuming the cost of 
an addition in Fq is negligible in comparison to M , S, or C. 

Throughout this section we use Jacobian, or extended Jacobian coordi­
nates. With these coordinates, the elliptic curve Ea,c has the form Ea,c; Y 2 = 
X3 + ac2X2Z2 + 2acXZ4 + aZ6 . Points in Jacobian coordinates are repre­
sented by the triple (X, Y, Z) which corresponds to the affine point (X/Z2, Y/Z3), 
when Z = 0. The extended Jacobian coordinate for the same point is 
(X, Y, Z, Z2). 

5.1 Improved formulae for the original DIK curves 

For the original tripling-oriented DIK curves y2 = x3 +3u(x + 1)2, the record 
for doubling and addition formulae is 2M + 7S and 11M + 6S respectively 
[3]. We are able to present faster formulas. The count for our new formula 
for doubling on an original DIK curve is 1M + 8S + 3C, while for addition 
it is 11M + 4S + 3C. 

Doubling For the curve y2 = x3 + 3u(x + 1)2, the new doubling formula is 
2(X1, Y1, Z1, Z1

2) = (X3, Y3, Z3, Z3
2): 

C1 = u, C2 = 6u − 3u2 , 
A = Z1

2, B = X1 + C1 ∗ A, D = B2, E = Y1
2, F = E2 , 

S = 2((B + E)2 − D − F ), M = 3D + C2 ∗ A2, T = M2 − 2S, 
= (Y1 + Z1)

2 − A − E, R = Z2Z3 3
 

X3 = T − C1 ∗ R, Y3 = M · (S − T ) − 8F.
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The new formula costs 1M +8S +3C. The 3C are multiplications by C1 and 
C2. 

Addition On the curve y2 = x3 +3u(x +1)2, our new proposed addition 
formula for (X1, Y1, Z1, Z1

2) + (X2, Y2, Z2, Z2
2) = (X3, Y3, Z3, Z3

2) is 

= u, A = Z2, M = X1 + C1 ∗ A,C1 1 

B = Z2
2, N = X2 + C1 ∗ B, U1 = M · B, U2 = N · A, 

S1 = Y1 · Z2 · B, S2 = Y2 · Z1 · A, H = U2 − U1, 
I = (2H)2, J = H · I, R = 2(S2 − S1), V = U1 · I, 
Z3 = ((Z1 + Z2)

2 − A − B) · H, T = Z3
2, W = R2 − J − 2V, 

X3 = W − C1 ∗ T, Y3 = R · (V − W ) − 2S1 · J. 
The new formulae cost 11M +4S +3C. The 3C are all multiplications by C1. 

We note that if we use expanded coordinates (X1, Y1, Z1, uZ1
2), then the 

cost for the doubling and addition formulae on DIK curves are 1M +8S +2C 
and 11M + 4S + 1C respectively. 

5.2 Efficient Point Multiplication on general DIK curves 

Earlier we introduced the family of elliptic curves 

Ea,c : y 3 = x 3 + a(cx + 1)2 , 

which we called generalized DIK curves. By Theorem 2, every curve with a 
rational 3-torsion subgroup can be written in this form. We now give efficient 
formulas for the group law on these curves. 

Doubling and Addition Given P = (X1, Y1, Z1), let 2P = (X3, Y3, Z3). 
Then 

X3 = (3X1
2 + 2ac2X1Z1

2 + 2acZ1
4)2 − 8X1Y1

2 − ac2Z3
2 , 

Y3 = (3X2 + 2ac2X1Z
2 + 2acZ4)(4X1Y 2 − X3) − 8Y1

4 ,1 1 1 1
 

Z3 = 2Y1Z1.
 

Using the same sorts of tricks as in [5, 10], we obtain the following addition 
formula. Let P = (X1, Y1, Z1), Q = (X2, Y2, Z2), and P + Q = (X3, Y3, Z3). 
Then 

X3 = (Y2Z
3 − Y1Z3)2 − (X2Z

2 − X1Z
2)2(X1Z2

2 + X2Z1
2 + ac2Z2Z2),1 2 1 2 1 2 

= (Y2Z
3 − Y1Z3)(X1Z

2(X2Z
2 − X1Z

2)2 − X3) − Y1Z3(X2Z
2 − X1Z

2)3 ,Y3 1 2 2 1 2 2 1 2
 

Z3 = Z1Z2(X2Z1
2 − X1Z2

2).
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Therefore, we have the following efficient algorithms. Compared to the orig­
inal DIK curves, our new doubling formula increases the computational cost 
by only needing 1 more C. Our new tripling requires 2 more C. 

Doubling. We give explicit formulae to compute 2(X1, Y1, Z1, Z1
2) = (X3, Y3, Z3, Z3

2) 
for Ea,c. 

C1 = ac2/3, C2 = 2ac − (1/3)a2c4 , 
A = Z1

2, B = X1 + C1 ∗ A, D = B2, E = Y1
2, F = E2 , 

S = 2((B + E)2 − D − F ), M = 3D + C2 ∗ A2, T = M2 − 2S, 
Z3 = (Y1 + Z1)

2 − A − E, R = Z3
2 

X3 = T − C1 ∗ R, Y3 = M · (S − T ) − 8F. 

The new formula costs 1M +8S +3C. The 3C are multiplications by C1 and 
C2. 

Addition The following formulae, given P = (X1, Y1, Z1, Z1
2) and Q = 

(X2, Y2, Z2, Z2
2), computes the sum P + Q = (X3, Y3, Z3, Z3

2) on Ea,c. 

C1 = ac2/3, A = Z1
2, M = X1 + C1 ∗ A, 

B = Z2
2, N = X2 + C1 ∗ B, U1 = M · B, U2 = N · A, 

S1 = Y1 · Z2 · B, S2 = Y2 · Z1 · A, H = U2 − U1, 
I = (2H)2, J = H · I, R = 2(S2 − S1), V = U1 · I, 
Z3 = ((Z1 + Z2)

2 − A − B) · H, T = Z3
2, W = R2 − J − 2V, 

X3 = W − C1 ∗ T, Y3 = R · (V − W ) − 2S1 · J. 

The new formulae cost 11M +4S +3C. The 3C are all multiplications by C1. 

Mixed-Addition Let P = (X1, Y1, Z1, Z1
2), Q = (X2, Y2, 1, 12), P + Q = 

(X3, Y3, Z3, Z3
2). Then the operations for mixed-addition can be organized as 

follows: 

M = Z1
2, A = X2M, R = Z1M, B = Y2 · R, 

D = A − X1, E = 2(B − Y1), G = D2, H = 4D · G, 
V = 4X1 · G, Z3 = (Z1 + D)2 − M − G, F = Z3

2 

X3 = E2 − H − ac2 ∗ F − 2V, Y3 = E · (V − X3) − 2Y1 · H. 

The formulae cost 4S + 7M + C. The C is a multiplication by ac2 . 
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5.3 Tripling on the curve Ea,c 

In this subsection, we show the tripling formula on Ea,c. We again use Jaco­
bian coordinates, let P = (X1, Y1, Z1) and 3P = (X3, Y3, Z3). By a long and 
straightforward calculation, it can be checked that 

X3 = U2 + V, Y3 = U(X3 − 4V ), Z3 = X1Z1W, 

where 

U = Y1 (Y1
2 − ac2X1

2Z12 − 6acX1Z1
4 − 9aZ1

6) , 
4ac3 − 27 ac2

2 

V = −aX1
2Z1

2 X1
2Z1

2 − c(Y1
2 + X1

2Z1
2 + 2acX1Z1

4 + 3aZ1
6) ,

3 3
 
W = 3Y1

2 + aZ1
2(c2X1

2 + 6cX1Z1
2 + 9Z1

4).
 

Now we have the following algorithm 

A = Z1
2, B = (a/3) ∗ A, D = 3A, E = X1 · Z1, F = E2, G = (c ∗ X1 + D)2 , 

M = B · G, U = Y1 · (Y12 − 3M), J = Y1
2 + M, 

· (4ac3−27V = −a ∗ F 
3 ∗ F − c · J)2 ,
 

X3 = U2 + V, Y3 = U(X3 − 4V ), Z3 = 3EJ.
 

The cost is 6S + 6M + 5C. The 5C are multiplications by a/3, a, c, 
4ac3−27 2and 

3 . If c = 0, then one could also compute H = ac ∗ F , and 
V = −H · (4

3 H − (9/c) ∗ F − J)2 . The cost is then 6S +6M +4C, saving one 
multiplication by a constant. 

5.4 Elliptic curves with j=0 

Let E be an elliptic curve over finite field Fq with j-invariant j = 0. Then we 
can write E as y2 = x3 + a for some a ∈ F∗ 

q . Note this is the generalized DIK 
curve Ea,0. Elliptic curves with j = 0 are used in elliptic curve cryptography. 
For example, the Barreto-Naehrig (BN) curve has j = 0 [2]. When using 
Jacobian coordinates, the previous records for the lowest costs of addition, 
doubling, and tripling are 11M + 5S, 2M + 5S and 5M + 10S, respectively 
[3]. Here, we present new formulae for addition and tripling using extended 
Jacobian coordinates (X, Y, Z, Z2). 
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Addition The following formulae, given P = (X1, Y1, Z1, Z1
2) and Q = 

(X2, Y2, Z2, Z2
2), computes the sum P + Q = (X3, Y3, Z3, Z3

2). 

A = Z1
2, B = Z2

2, U1 = X1 · B, U2 = X2 · A, H = U2 − U1, 
S1 = Y1 · Z2 · B, S2 = Y2 · Z1 · A, 
F = (2H)2, J = H · F, R = 2(S2 − S1), V = U1 · F, 
Z3 = ((Z1 + Z2)

2 − A − B) · H, T = Z3
2 , 

X3 = R2 − J − 2V, Y3 = R · (V − X3) − 2S1 · J. 

The new formula costs 11M + 4S. 

Tripling The following formulae, given P = (X1, Y1, Z1, Z1
2) computes 3P = 

(X3, Y3, Z3, Z3
2). 

A = Z1
2, B = a ∗ A, D = 3A, E = X1 · Z1, F = E2, G = D2 

M = B · G, U = Y1 · (Y12 − M), J = 3Y1
2 + M, V = −a ∗ F · (9F )2 , 

X3 = U2 + V, Y3 = U(X3 − 4V ), Z3 = EJ. 

The cost is 6M + 6S + 2C. The 2C are multiplications by a. 

6 Conclusion 

In this paper, we proved various results for three families of elliptic curves: 
Hessian curves, twisted Hessian curves, and generalized DIK curves. These 
families all have properties relating to when the 3-torsion subgroup is ratio­
nal. When q ≡ 2 mod 3, we saw these families are the same family, while 
when q ≡ 1 mod 3, then they are distinct. In particular, we looked at the 
number of isogeny classes of these families, as well as the number of isomor­
phism classes (for generalized DIK curves). It would be interesting to find 
formulas for the number of isogeny classes of other families, or to extend 
the known results for the various models to characteristic 2 and 3. We still 
do not know how to explain some of the data we observed for supersingular 
curves in section 4.2. Finally, we examined performing efficient arithmetic on 
these curves, and found some faster formulas in various cases. It is possible 
the formulas we gave can be further improved on, leading to lower operation 
counts. 

We would like to thank the anonymous reviewers for their comments. 
Their suggestions greatly improved the paper, particularly section 4.2. 
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