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1 INTRODUCTION

The application of metabolomics in the field of environ-
mental science or ecology, which has developed based sub-
stantially on NMR spectroscopic approaches, is a fast-paced,
rapidly developing field which seems to be poised to help
reframe the discussion of environmental effects on or-
ganisms. Because of the nature of metabolomics, where
experiments are based on ensembles of individuals, one
is led to observations that are pertinent to population-,
community-, and ecosystem-scale issues. This is in contrast to
human-health-related metabolomics where one often wishes to
observe or diagnose the condition of a single individual from a
population. The environmental metabolomics literature is ex-
panding and the field is maturing at a rapid pace, in part not
only because of the advances in human-health metabolomics
research but also because of the unique insight that this ap-
proach brings to an important area with global implications.

This article focuses on the study of environmental factors
that impact the health and well-being of “non-model” organ-
isms in the environment, in an effort to demonstrate that the ap-
plication of NMR-based metabolomics can enhance traditional
approaches to environmental science. In this view, non-model
organisms represent a unique realm, distinct from the realm of
direct human-health-related organisms, although these realms
do interact in important ways. This realm includes some mem-
bers that may serve as early warning sentinels for ecological
issues, some which are commercially valuable for tourism,
food, or sport, and some which deserve attention because there
may be some species which, if negatively impacted by an
unanticipated response to pollution, may cause widespread ef-
fects on the ecosystem structure, possibly affecting mankind.

One of the opportunities in environmental metabolomics
is the number of relevant species about which little specific
biochemical information is known. There are species that are
relevant based on geography (diatoms in the Antarctic, or
plants and animals near point pollution sources, for example)
and other species that are seen as the basis for a complex,
interconnected food web which may be perturbed owing to
environmental change or contamination. Some populations
need to be studied because of the need to preserve diversity and

conserve protected species. For many of these organisms, little
is known at the genomic or proteomic level, and sometimes
even basic characteristics such as diet, range, or reproductive
patterns are poorly characterized.

Many anthropogenic contaminants have been well charac-
terized in terms of temporospatial distribution and toxicolog-
ical impacts on relevant species, including humans. While
concerns about historical contaminants such as polychlorinated
biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs),
trace heavy metals, and pesticides have been addressed since
the 1960s through the development of robust analytical tech-
niques and systematic toxicological protocols, a rising aware-
ness of less studied pollutants is raising questions that may
not be as amenable to the established approaches. New mate-
rials for the production of consumer and industrial products or
new drugs find their way into the environment through man-
ufacturing processes, usage, and in the waste stream, where,
for example, wastewater treatment has not been designed to
properly treat the waste stream for the new contaminants.

The need to develop assessments of sublethal stressors such
as those related to climate change, personal pharmaceutical
products in the waste stream, new generations of pesticides,
and new consumer-related chemicals entering the home
and workplace continues to grow.1 Some of these new
chemical stressors may act as endocrine mimics, causing
subtle effects in the reproductive biology of organisms.
Others may have very species-specific interactions that are
undetected in the established regulatory processes, which
typically have a limited suite of biological tests, resulting in
impacts on non-target organisms that only become apparent
once the chemicals have been in use and their distribution is
widespread.

This onslaught of new chemical and physical stressors,
and the awareness of the importance of environmental ser-
vices linked to non-model organisms, can overwhelm tradi-
tional approaches to environmental research. Environmental
metabolomics provides new tools to link environmental stres-
sors to specific biological responses, in a discovery mode
where the biochemistry of the organisms can be illuminated
and also in a quantitative, hypothesis-driven mode where spe-
cific questions can be addressed.

2 BACKGROUND

While the role of NMR in general environmental research
has been growing, techniques such as chromatography-based
light spectroscopy or mass spectrometry continue to be the
analytical workhorses in the area of chemical environmental
research, where most pollutants are measured at trace levels.
NMR spectroscopy has been shown to be useful in a number
of important areas of environmental research.2,3 For example,
NMR is a primary technique in the purity assessment of
compounds and is key in the identification and quantification
of compounds.4 In the general chemical sciences where,
for example, new synthetic products are created, NMR has
had a significant role in structure determination, including
stereochemical assignments.

Since the explicit proposal that “. . . the thorough quantita-
tive analysis of body fluids might permit differential diagnosis
of many diseases in a more effective way than is possible at
the present time” by Linus Pauling et al. in 1971,5 the ability
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2 ENVIRONMENTAL METABOLOMICS

to quantitatively assess the complement of small molecule,
endogenous metabolites in living organisms has shown practi-
cal results for human health through disease research, dietary
studies, and numerous other health-related endeavors.

The concept was clarified and expanded beyond just disease
diagnosis in 1999 in a seminal work.6 A systems approach,
where the overall variation of metabolite concentrations is con-
sidered comprehensively, is fundamentally different from the
approach where a few specific metabolites are individually
assessed. While the map of the important metabolic path-
ways was painstakingly developed through skillful classical
chemical experimentation on a reaction-by-reaction basis, the
concept behind the field of metabolomics is the simultane-
ous direct observation of as many endogenous metabolites as
possible in a “snapshot” of the instantaneous physiological
condition of an organism. In the last two or three decades,
these ideas have been expanded, especially in relation to hu-
man health research, where the utility of NMR-based measure-
ments has been shown to address effectively the concepts of
metabolome assessment.

Given the successes in human-health metabolomics re-
search, it is only natural to apply these approaches to envi-
ronmentally relevant, non-model organisms.7 – 13

3 RATIONALE

NMR is an excellent tool for the assessment of the
complex constitution of biomaterials because it is an unbiased
detector, absent some well-documented systematic pitfalls,
of the organic compounds in multicomponent samples.
The NMR signal is a superposition of the spectra of all
the components in the sample, although there can be
some nonadditive effects because of physical/chemical
interactions between compounds which complicate spectral
analysis. Samples can be prepared in relatively simple
ways, especially for biofluids such as urine, plasma, serum,
or cerebrospinal fluid (CSF), often with no need for
any chromatographic separation or cleanup, avoiding the
quantitative complications associated with chromatography
and/or chemical derivatization. The signals of individual
chemical constituents are intrinsically proportional to concen-
tration, simplifying quantitative analysis. Most metabolites
have spectra that exhibit multiple resonances which allow
identification of the compound from simple 1H spectra,
and when correlation spectra such as COSY, TOCSY, or
heteronuclear single-quantum correlation spectroscopy
(HSQC) are used, the identification of compounds becomes
even more specific.

Metabolomics has been shown to be very sensitive to ex-
ternal effects on organisms. For chemical exposures, effects
of exposure can often be detected at environmentally relevant
concentrations, avoiding the difficulties involved in extrapo-
lating from a high-exposure experiment to much lower lev-
els of exposure.14 However, this sensitivity is a two-edged
sword in that experiments must be designed as carefully
as possible to eliminate erroneous observations. In a classic
example of good practice gone bad,15 a laboratory expo-
sure involving rats was found to be problematic because of
a change in feed between the supplier and the pharmaceu-
tical research laboratory; the rats had not been equilibrated
sufficiently on the new diet before the experiments were run.

The implications for environmental research are severe, since
often relatively uncharacterized organisms are used in such
studies. For example, one classic approach to obtain a work-
ing population for study involves field collection of organisms
and equilibration in the laboratory. However, Hines et al.16

contrasted laboratory-equilibrated mussels with field-frozen
mussels and found significant differences in the metabolite
profiles. Their recommendation was to only use field-sampled
tissues and fluids to avoid increasing the metabolic variabil-
ity that may mask the effect being studied. In situations that
seem very amenable to laboratory studies, for example stud-
ies with microorganisms such as bacteria,17 small changes in
sample history can cause apparent metabolomic shifts that
may confuse the interpretation of results. The sensitivity of
metabolomics to phenotypic variation must be appreciated and
controlled as the work in this field advances.

One great advantage of using metabolomics for envi-
ronmental research is the ability to distinguish different
modes of action18 due to different toxicants in sentinel
organisms. Potentially, organisms from the field can be
assessed for metabolic fingerprints of the different modes
of action of various physical and chemical stressors, so that
an effective assessment of community health can be made.
These metabolic responses will be time- and dose-dependent,
so that in well-modeled systems, a complete dynamic picture
of ecosystem health can be developed.

While many of the organisms of interest in environmental
science have not been well characterized proteomically or
genetically, it is still possible to understand the stress
responses from a metabolomics viewpoint. In fact, knowing
the idiosyncrasies of the metabolic response may point to areas
where genetic/proteomic studies should be pressed. Discovery
of disproportionate metabolite signals or hitherto ignored
compounds19 may indicate novel genetic mechanisms which
need investigation.

NMR has a dynamic range of several orders of magnitude,
which can be increased through longer data acquisition or other
approaches that increase the signal-to-noise ratio (SNR). The
absolute sensitivity of NMR can be easily exceeded by the use
of techniques such as fluorescence or mass spectrometry, but
the trade-off in selectivity for these other techniques, coupled
with the requisite need for some sort of chromatography,
is often compensated by the broad-based, nondestructive,
nonselective detection afforded by NMR. In terms of the
natures of the compounds detected, the use of NMR affords
the widest range of detection of chemical moieties in a single
analysis. Sugars, organic acids, lipids, amino acids, and so
on are easily detected and quantified in a single sample in a
single experiment. While it is important to identify as many
metabolites as possible in a sample, the mere nonquantitative
detection of a metabolite using mass spectrometry, for
example, does not necessarily give insight into the metabolic
response to a stressor, especially for subacute responses.
Given the extremely complex and correlated nature of the
metabolome, one must carefully draw the line between
extremely sensitive detection of every compound in a sample,
and the need for quantitative or semiquantitative assessment
of “important” metabolites that can help with the problem
at hand. However, as the field matures, there is a building
consensus that the use of multiple modalities of compound
detection and quantitation provides significant advantages in
understanding the metabolomic system response.

Encyclopedia of Magnetic Resonance, Online  2007–2012 John Wiley & Sons, Ltd.
This article is  2012 US Government in the US and  2012 John Wiley & Sons, Ltd in the rest of the world.
This article was published in the Encyclopedia of Magnetic Resonance in 2012 by John Wiley & Sons, Ltd.
DOI: 10.1002/9780470034590.emrstm1256



ENVIRONMENTAL METABOLOMICS 3

NMR fits comfortably in the continuum of measure-
ment techniques because of the ability to obtain quantita-
tive metabolite “patterns” while also providing quantitative
chemical-specific information for a wide variety of organic
compounds. These features give NMR-based metabolomics
a role in the discovery of new metabolomic insight and in
classical hypothesis-driven investigations that link organism
biochemistry to environmental stressors.

4 TECHNIQUES

4.1 Experiment Design

Robust experiment design is key to meaningful meta-
bolomics results. Good experimental design requires careful
communication and the ability to work with people from
other specializations, developing a dialog with a common
vocabulary, perhaps even developing a formal ontology.20

There is a trend in the literature showing that experiments
are improving from an experimental design standpoint.21

For example, in many published reports, the number of
samples analyzed is large enough to develop meaningful
statistical inferences, and the need for repeating trials is being
recognized. Since many of the practitioners have ties to the
environmental research community, the need for standard
practices and quality control (QC) is recognized as important
in improving the confidence in the reported results. Ideas
for robust analytical measurements can be borrowed from
the environmental analytical community, such as the use of
certified reference materials, project-specific control materials,
measures of analytical repeatability,22 and interlaboratory
comparison exercises.23 In terms of the biological component
of the experimental design, husbandry of the organisms
must be considered in terms of effects on subsequent NMR
experiments. In handling the organisms for sample collection,
stress induction must be minimized and rapid quenching
of metabolic processes should be of paramount importance,
especially in tissues that are metabolically active such as
the liver. The effects of feeding, infection (both bacterial
and viral), species misidentification, or silent phenotypes
must all be considered in the biological design of the
experiment. Because of the trueness and precision of NMR
experiments, the repeatability of sample preparation and the
robustness of the statistical tools used for data analysis, most
practitioners end up confronting biological variability as the
most challenging aspect of environmental metabolomics. Time
spent developing a well-designed biological study will return
rewards in high-quality, repeatable results with a significant
impact in the field.

4.2 Sample Extraction and Cleanup

The broad appeal of NMR-based metabolomics is that one
is able to garner meaningful metabolomics results without
the additional complications of chromatographic fractionation.
However, sample extraction or cleanup is a critically important
factor, because there is no recognized method to isolate
quantitatively all the organic metabolites from biological
samples; each extraction or cleanup protocol introduces some

bias in the quantitative extraction of metabolites. This has not
proven to be a major stumbling block, because it is possible
to make valid inferences based on well-extracted samples.
Perhaps this robustness is due to the fact that the measurements
sample a network of metabolites, and as long as the extractions
are analytically consistent and reasonably robust, the network
responses can be detected in a meaningful manner.

Because of the various organisms and matrices considered
in environmental metabolomics, samples are processed in
ways that are tissue-dependent, and in most cases, different
species require variations in extraction protocols. The most
convenient matrix to work with would be the one with the
least bench workup required, such as a body fluid. However,
the different constituents in fluids such as plasma or serum
warrant some effort in validation of the sample workup.24,25

For tissues, the extraction process can cause a bias if
the extraction efficiency is not examined systematically.26

Depending on the matrix, some extraction schemes are better
than others, much as in environmental analytical chemistry.
Since no real chromatography is performed, one may view
this as a “cleanup” process whereby, for example, large
molecular weight molecules such as proteins, DNA/RNA,
polysaccharides, and other macromolecules are removed,
leaving behind the small molecule (<500 Da) metabolites.

Various extraction schemes have been systematically opti-
mized for some environmentally relevant matrices.26,27 The
optimizations proposed in these systematic studies are se-
lected on the basis of the observed repeatability of the method
and some measure of the amount or number of metabolites
extracted. A common extraction technique is based on re-
solving polar and nonpolar metabolites into separate fractions,
for example using a modified Bligh and Dyer scheme.26,28

This is often desirable since some experiments may be ra-
tionalized based on more polar components (such as amino
acids, TCA cycle metabolites, organic acids, and aromatic
compounds) in a polar solvent such as water-based buffer,
while some compounds associated with lipids or cholesterol
synthetic pathways would be in a nonpolar solvent such as
chloroform. For high lipid-content tissues, the spectral simpli-
fication after polar/nonpolar resolution is significant, leading
to clearer interpretation of the results. Some schemes have
been optimized to use size exclusion cleanup based on size
exclusion filter technology, either by itself or on various frac-
tions previously separated using other techniques.29 For blood
or hemolymph studies, numerous efforts are reported for opti-
mization of metabolite extractions in plasma and serum, often
based on filtering techniques.

Well-executed projects invariably have invested suitable
effort in validating the extraction/workup procedures to
optimize the metabolite fingerprints and sensitivity of the
experiments.

4.3 NMR Data Acquisition

Metabolomics analysis depends greatly on the type
and quality of NMR data collected. Most environmental
metabolomics projects depend on one-dimensional (1-D) data
collection of polar solutes in D2O. The best spectra have
very flat baselines (so that subsequent baseline corrections
are easy), good phase characteristics, reasonable resolution,
minimal spectral artifacts, and very good SNR. In addition,
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spectrum-to-spectrum consistency is very important because
most of the numerical pattern detection techniques will select
for features that vary between spectra.

It is good practice to develop a consistent protocol for
data acquisition that provides consistently good results. For
example, it is more desirable to set up the instrument carefully
and then run all the samples in a project in one “session” than
to run samples in multiple sessions over a few days. For very
large projects, it may be impractical to run all the samples
in one session, so the protocols should involve measures
that enforce and verify consistency between sessions, such as
repeat runs of select samples or measurements of line widths
or SNR. Protocols could cover factors such as temperature
stability, temperature measurement,30 shimming protocols,
standard parameters for the pulse sequences, pulse width
calibration, and standardized processing parameters. While
some projects require deviations from standard protocols,
having a consistent starting place for making those decisions
is good practice.

For water-based samples, most laboratories use water
suppression pulse sequences. Depending on the sample
preparation protocols, samples may be in 90% H2O or
neat D2O or somewhere in between, so the exact water
suppression technique must be optimized for that class
of sample and for the particular instrument being used.
Because of the spectral artifacts that can be introduced
and the need for high-quality semiquantitative spectra, the
optimization of the water suppression technique is critical.
Various suppression schemes have been optimized for water
suppression in systematic studies,31 – 33 and sequences based
on a three-pulse NOESY-type sequence32 are often used on
samples prepared in D2O. However, more rigorous water
suppression techniques are not uncommon. Optimization of
suppression often considers baseline distortions, intensity
perturbations near the water resonance at the theoretical lobes
of the suppression sequence, and difficulty of calibration and
setup.34,35 Trade-offs between these factors often come into
play, and local optimization of water suppression is crucial to
meaningful, consistent results.

For samples that contain residual proteins or high molec-
ular weight lipids, such as plasma or serum, the use of
spin-echo Carr–Purcell–Meiboom–Gill sequences can act as
T2-weighting filters that reduce the contribution of broad-
line signals from high molecular weight species. The op-
timization of these sequences balances the duration of the
effective spin-echo delay against the phase distortion due to
homonuclear couplings and the loss of intensity due to pulse
imperfections and relaxation effects. Reports of cumulative
spin-echo delays in the range of 100 ms have given satisfac-
tory results. Combining the spin-echo sequence with strong
water suppression in high H2O content samples can also be
challenging,36 – 38 and must be weighed against the improve-
ment gained by processing the samples to remove high molec-
ular weight components.

Some reports show that 2-D spectroscopy can lead to supe-
rior results in pattern recognition and compound identification.
One 2-D experiment that seems useful is 2-D J-resolved spec-
troscopy (2D-JRES).39 The tilt-corrected data can be used for
identification of compounds, and a skyline projection along the
direct dimension results in a homonuclear decoupled spectrum
that significantly reduces the spectral complexity by collaps-
ing the homonuclear multiplets. This projection can then be

used in pattern recognition approaches in the very same man-
ner as direct 1-D spectra. Other 2-D homonuclear experiments
such as COSY and TOCSY can also be useful, especially for
compound identification. For more reliable compound iden-
tification, heteronuclear experiments such as 13C-HSQC and
13C-HMBC provide nearly unambiguous compound identifi-
cation in natural abundance samples, although at a somewhat
higher cost than the 1-D experiments because of the need for
longer acquisition.

4.4 Data Processing and Analysis

There are many algorithmic approaches to discerning the
systematic variation in the spectra from a metabolomics
experiment, including many of the tools developed for fields
such as functional genomics. Once patterns are detected, it
is important to carefully evaluate whether the patterns are
statistically significant or a result of systematic error. In some
experiment designs, the number of samples is too small in
an experimental group, and a determination must be made
on whether the data is representative of the populations or
whether outliers have a significant influence. This assessment
is no different from metabolomics in other fields. Interpretation
of the results depends on the robustness of the experimental
design, where phenotypic variability of the sample pool was
assessed, for example, and should be evaluated in the light of
the results on QC samples, which help quantify the variation
due to sample preparation or NMR spectral quality.

Once there is confidence that a true pattern exists, the
compounds that contribute to the separation in the pattern
must be identified so that linkages to metabolic pathways
can be established. Therefore, pattern recognition techniques
should be chosen based on their ability to provide both pattern
detection and chemically relevant compound identification.
In the simplest of cases, a simple univariate approach
based on comparison of group-averaged spectra, for example,
may lead to an understanding of the biochemical basis
for differences between the treatment groups.40 – 42 In these
cases, there are probably very small numbers of compounds
that are significantly different between treatment groups.
However, metabolic response to a stressor may be more
subtle, and spread over a wide range of metabolic compounds
or pathways, since the whole metabolome responds to the
stressors in the experiment. In this case, multivariate analysis
techniques that are sensitive to coherent variation in numerous
chemical signals simultaneously are most informative for
detecting this coherent variation. Because of the nature of
NMR spectra, where an individual compound often has
numerous peaks, there is considerable correlation in the data,
so that each spectral point or bin does not necessarily represent
a fully independent variable. This results in a reduction of rank,
and numerical methods that are robust to this nonindependence
should be the most trustworthy.

The preprocessing of the data also affects the pattern recog-
nition process. For example, baseline correction is necessary
because of imperfections in instrumentation, including back-
ground signals from the probe or preamplifiers.43,44 Some-
times, there may be effects from the receiver/digitizer system
that cause rolling baselines. Baselines are corrected with any
of a myriad of techniques, ranging from simple polynomial
subtractions to more sophisticated algorithms. It is best to
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avoid severe baseline corrections by having a well-designed
and maintained NMR instrument that produces flat baselines
on good test samples. Good laboratory practice involves care-
ful setup, testing and execution of experiments, in a way that
detects spectral quality issues as soon as possible.

Most tools for data analysis organize the individual spectra
into the rows of a matrix in which the columns then represent
the chemical shift of the spectra. The number of columns
of the matrix may be reduced by “binning” the spectra in
a systematic manner as part of the data pretreatment.45,46 The
simplest form of binning involves dividing the spectrum into
a fixed number of fixed width bins, summing the individual
points that fall into a bin. The selection of the appropriate
bin width is often dependent on the experience of the analyst,
but using a bin width that is too large means the selectivity
of the analysis is reduced, since multiple compounds may
contribute to a bin, while selecting a bin width that is
too small means the results may be overly sensitive to
spectral features, such as the line width, so that the effect of
shimming, for example, gets exaggerated. Other considerations
include the possibility of inappropriate alignment of bin edges
on spectral features, separation of spectral multiplets into
individual bins, or peaks that shift slightly from sample to
sample due to pH effects or ionic strength issues causing the
spectral feature to jump between bins in different rows of the
matrix. These considerations led to the development of more
sophisticated binning algorithms and to the development of
more robust spectral alignment tools.47 This is an active area
of development across all of NMR-based metabolomics.48

Parts of the NMR spectrum, such as the water region,
can be excluded a priori from the analysis, and this is often
done by simply deleting the data columns associated with
certain chemical shift regions. For example, in a chemical
dosing experiment, the toxicant may show up in the samples,
and including this in the subsequent analysis might be
inappropriate. Another example would be that residual solvent
or inadvertent contamination from the sample extraction
process remains in the sample and would contribute to the
variance in the data set.

Since the effect of spectral noise on some pattern recognition
techniques is not well determined, it is best to collect data in a
way that keeps the SNR consistent throughout data acquisition.
In cases where sample concentration cannot be controlled, due
to the sampling techniques for example, experiments may need
to be run with an appropriate adjustment of the number of
spectral scans. Most often, spectra are normalized so that the
total spectral area is constant, but there may be a reason to use
a single metabolite or spectral region for data normalization
because of the nature of the samples. For example, creatinine is
often used in urine-based experiments because of the historical
clinical practice of normalization to the creatinine level.49

In some experiments, there is a relatively small number of
spectral peaks that dominate the spectrum, and unless those
compounds are the particular ones of interest, these peaks
can be scaled so that the variance of less intense peaks is
detected. In extreme cases, the samples may need to be treated
differently during sample preparation in order to mitigate the
intense signals that may actually obscure smaller signals that
convey the important information.21 Alternatively, bins may
be normalized to the variance of the data in each column, and
this gives equal importance to each column variable. Other
schemes, such as Pareto weighting, where each column is

normalized by the square root of the variance, can reduce
the influence of large peaks while keeping scale information
for the other spectral regions with less overall variation.
Some more complex transforms are also possible, such as
log transformations.50 Since metabolomics is evolving rapidly,
numerous variance stabilizing transforms are being proposed
and tested.

4.5 Principal Components Analysis

The workhorse of multivariate analysis in NMR-based
metabolomics is principal components analysis (PCA), where
the preprocessed data matrix is resolved into a “scores” ma-
trix, which represents each sample spectrum as a point in a
high-dimensional space, and an accompanying loadings ma-
trix, which describes the optimal axes for this new space in
terms of the spectral bins. These new axes are determined
based on the criteria of maximizing the explained variance
(EV) along each orthogonal axis. The scores are sorted by de-
creasing eigenvalue, since the smaller eigenvalues correspond
to less explanatory power, and the overall dimensionality is re-
duced by considering the first few components corresponding
to the largest eigenvalues. There are numerous ways to decide
how many principal components (PCs) are sufficient to model
the data, but seldom are more than two or three considered.
Systematic investigation of higher PCs, however, is good prac-
tice. The decrease in EV for successive PCs is an indicator of
the quality of the model, and often there is a significant ex-
planatory power in the first few PCs. A very gradual increase
in the cumulative EV with PC number may be an indication of
a less definitive model. Auxiliary information from the PCA
analysis, for example, plots of Hotelling’s T2, can be used to
identify potential outliers in the data set.

Practically, the scores plots are examined for grouping
or trends according to treatment group. If there is apparent
grouping in scores plots, univariate testing can be done on the
score values to determine the significance of the separation,
even if there is significant scatter in the individual treatment
groups.

Loadings plots contain information about which bins
contribute to the EV for the corresponding PCs. Loadings plots
are also often plotted as two-dimensional plots corresponding
to the PCs in the scores plot. A loadings plot shows which
compounds are correlated or anti-correlated to separations in
the corresponding scores plots. In a 2-D loadings plot, there
is one data point for each variable or bin in the data matrix.

Although PCA scores and loadings are a powerful, unbiased
way to examine the data, the interpretation of PCA scores
and loadings plots is somewhat difficult because there is no
constraint on the algorithm to present a linear combination of
pure NMR spectra. Sometimes, there is a strong effect in the
data set which is tied to a few compounds and these spectral
features dominate the loadings plots, making it straightforward
to identify these important compounds and progress to a
biological interpretation. Unfortunately, it is difficult for
people trained in the thought processes of “single response,
single variable” to conceptualize a system-wide response
vector. There is a natural tendency to revert to univariate
thinking in discussing results, and seldom are the data treated
as a multicomponent, coherent effect. If there are a few strong
signals in a loadings plot, libraries of spectra or peak data
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6 ENVIRONMENTAL METABOLOMICS

tables can be used to identify the relevant compounds. In some
cases, there is no small number of intense peaks, so one is
faced with a much more difficult interpretation of the loadings
vectors. The interpretation of loadings vectors is often more
difficult, as well, when higher PCs are examined. Also, trans-
lating a coherent change in metabolite levels to a metabolic
pathway interpretation is difficult, especially given the dearth
of specific knowledge of metabolic pathways in non-model
organisms. Metabolomics results presented in a “network”
topology, often correlated with established metabolic
pathways, can be useful for conveying the multivariate
response that is observed in metabolomics experiments.51

The classification capability of the analysis is often assessed
using receiver operating characteristic (ROC) curves, and the
associated area under the curve (AUC) parameter.48,52

4.6 PLS and PLS-DA

Often, experiments are designed to have an independent
variable or classification of the treatments as the basis for
determining an effect. This information is most often brought
into the multivariate analysis through techniques based on
partial least squares (PLS) projections, especially when the
class separation is not as apparent in a PCA analysis. The
classification information is incorporated into the analysis
through a vector or matrix relating the experimental variable
for each sample to the sample spectrum. If the experimental
variable is not a continuous variable such as temperature,
length, or pH, for example, but a discrete parameter such as
male/female, this “Y” matrix is constructed as a discriminant
matrix where the class is assigned a numerical value, leading
to PLS with discriminant analysis (PLS-DA). For cases where
there are multiple discriminators, the Y matrix is constructed
with one column for each discriminant value and a numerical
value, such as 1 or 0, is used to denote class membership. The
difficulty with this approach is that the algorithm can blindly
find correlations in the variables that satisfy the constraints,
even if those variables are really just incidentally correlated
noise. Therefore, one must very carefully test the results
of PLS analysis for accidental correlations and bias, and
numerous robust techniques have been developed to assess
the “trueness” of detected correlations.53 – 56

PLS analysis also leads to scores and loading plots that
can be used to tie the systematic variation between treatment
groups to the specific chemical variation that distinguishes
the groups. These identified compounds can then be linked
to metabolic pathways, indicating the systematic response to
the treatment variables.

4.7 Other Pattern Recognition Techniques

Numerous other pattern recognition tools can be and
have been used for metabolomics studies. These range
from the previously mentioned significant difference spectra
(SDS) analysis42 to artificial neural networks (ANN)18 and
support vector machines (SVM).57 Each of these techniques
has particular strengths, but none has found as widespread
applicability in environmental metabolomics as PCA and PLS
techniques.

4.8 Spectral Libraries

Compound identification is key to tying the spectral infor-
mation to biochemical pathways and biological interpretation.
In most experiments, reports indicate the assignment of ap-
proximately 50 and up to 100 compounds from NMR data.
By carefully matching sample spectra to spectra of pure com-
pounds in libraries, collected under similar sample and experi-
mental conditions, confidence in identification and quantitation
of the peaks in the mixture spectra grows. Many spectral
libraries are freely publicly available58 – 61 and some are com-
mercially available. Matching can be accomplished through
manual peak enumeration and comparison of chemical shift
tables, or through interactive library searches or interactive
peak alignment. Care must be exercised in matching because
there are several chemical shift standards in use, and peaks
may not match well if the chemical shift standard is not unam-
biguously identified.62 For the non-model organisms of interest
in environmental metabolomics, one has the potential problem
that peaks from existing databases may not include metabo-
lites of importance,19,63 – 65 even though most of the libraries
contain several hundred compounds. Most of the libraries are
focused on more polar compounds; however, it is often desir-
able to consider the metabolomics of nonpolar compounds, and
these libraries are less developed at this time. Under optimum
conditions, the quantification of metabolites can be accom-
plished based on libraries, and these quantified metabolites can
then be used for subsequent data analysis, rather than binned
spectra. This process has been named “targeted profiling”.32

As always, ambiguities can always be resolved using analytical
techniques such as authentic compound standard additions or
chromatography-based purification and structure elucidation.

4.9 Quality Control

Analysis of individual spectra for quality parameters
such as lineshape, baseline distortions, and instrumental
artifacts (quadrature images, spurious radiofrequency signals)
is essential for generating quality metabolomics results.
Statistical analysis of QC samples that were processed with the
experimental samples22 can be used to classify the reliability
of the overall experiment, although this is rather rare in the
published literature at this time.

Intercomparison exercises, where participants analyze iden-
tical samples according to a specific protocol and the results are
compared for consistency, have shown that at least the techni-
cal analysis of samples using NMR spectroscopy can have a
high level of consistency across laboratories.23 Even with dif-
ferent magnetic field strengths, instruments from different ven-
dors, and analysis with different software packages, substan-
tial agreement is feasible in NMR-based metabolomics. This
contrasts sharply with mass-spectrometry-based metabolomics
and with efforts in other -omics fields to show analytical
consistency.66 – 69 Because of the complexity of the biolog-
ical models developed and the need for larger studies that
may involve instrumental analysis across different laboratories,
the ability to consistently, quantitatively analyze metabolomics
samples with a high degree of interlaboratory reproducibility
is crucial.
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4.10 Data and Reporting Standards

The advancement of the field of environmental meta-
bolomics depends on laboratory exchanges of data and
consistent descriptions of data treatment and interpretation.
Efforts to standardize the mechanism of data exchange
are ongoing and can piggyback on efforts such as the
metabolomics standards initiative (MSI).70 For NMR data,
the actual exchange and storage of raw spectral data is
straightforward; however, the accompanying metadata, which
describes the experimental design, the sample collection and
handling, NMR data collection and processing, and subsequent
multivariate analysis, is still evolving.71,72 Once practical
data standards are established and put into widespread use,
data can be placed into repositories in meaningful ways.
Data repositories will prove useful for future analysis with
new algorithms, for long-term environmental studies, and for
development of species-specific “stressor libraries” compiled
from numerous independent research efforts.

5 CURRENT APPLICATIONS

As mentioned in the introduction, the application of
NMR-based metabolomics can enhance traditional approaches
to environmental science, and can address environmental
factors that impact the health and well-being of “non-model”
organisms in the environment. These organisms are important
as functioning members of the ecosystem, forming the basis
of the food web, providing important ecological services
and providing us with sustenance, besides having important
societal and cultural value.

5.1 Laboratory Exposures/Treatments

An essential element of environmental toxicology is the
laboratory-based experiment. In these experiments, an organ-
ism is maintained in an artificial environment where conditions
such as temperature, water conditions, or nutrition are under
control. In well-designed experiments with appropriate con-
trol organisms, the response to chemical toxicants or physical
stressors is measured in a way that should allow extrapolation
to a “real-world” exposure or stress. However, as useful and
essential as these experiments are, the laboratory environment
often does not mimic every factor that may be found in the
field.

The problem of linking field-collected samples to laboratory
studies has not been addressed in general. The equilibration
of field-collected organisms to the laboratory may cause a
bias in the results and predictions. For example, the organism
selection process (capture, transport, shock survival, etc.) can
lead to a bias based on organism survival, biased phenotype
selection, or limited gene pools. In microorganism culture
experiments, only a subset of the population may be cultivable
in the laboratory, so that only a small part of the representative
organisms can survive to the laboratory environment. For
organisms with gut or symbiotic microorganisms, change from
a wild environment to laboratory environment may cause
alterations in the microflora, impacting the metabolome in
important ways. In addition, other factors such as adaption
to consistent feeding, lack of predation, lack of temperature

or physical variability, or lack of multispecies signaling may
lead to confounding factors which impact the applicability
of laboratory-based assessments to field observations. Factors
such as full-spectrum sunlight, diurnal cycles, tidal cycles,
predation, and competition for food are difficult to replicate
in a consistent manner. These effects are often observed
in metabolomics experiments, while for other measurement
modalities, these effects may not be considered important in
interpreting the experimental outcome, perhaps hiding major
contributing factors to the experiment.

Naturally, laboratory-based metabolomics measurements do
have some advantages. Laboratory exposures make diet,
temperature, and other environmental factors controllable
so that experiments can be done with reasonable sample
sizes, keeping the logistics manageable. Also, single captive
organisms may be followed over time as the individual
responds to treatment. Often the protocols, while not “perfect,”
are well defined, and therefore replicable to a great degree in
other laboratories. A consistent protocol allows at least for
a systematic framework for comparing the toxicity of widely
disparate chemical exposures and stressors.

5.2 Field Collections

To connect laboratory data to true environmental prob-
lems or monitoring, one has to move toward analysis of
field-collected samples. Ecological aspects are probably best
answered by field collections. However, in terms of interpret-
ing environmental metabolomics results, one must consider
the problem of uncontrolled variables such as diet, tempera-
ture, predators and factors such as pollution; these may have
to be explored through careful laboratory exposures. This also
implies that single individual sampling for a “quick” environ-
mental assessment will be problematic. Again, just because
metabolomics is influenced by the effects of uncontrolled vari-
ables does not mean that the technique is flawed; it probably
means that more of the factors influencing the results can come
into play, resulting in a more robust population-level analysis.

5.3 Case Studies

Many environmental problems are being addressed through
“case studies” where an organism is subjected to a relevant
stressor and the metabolomic response is rationalized. These
types of studies are important because they are the building
blocks that can be used to design more comprehensive studies,
better understand the biology of the non-model organisms, and
develop expertise in understanding multistressor, multiorgan-
ism ecological models based on the biochemical response to
stressors. Two groups of organisms, earthworms and bivalves,
have been the objects of numerous studies and the expanding
body of knowledge may prove to be very valuable.

As an integrated assessor of environmental processes in soil,
worms are garnering a lot of attention.21,73 – 88 Studies based
on several species of field-collected and laboratory-dosed
worms indicate that the organism has a robust metabolic
response to soil contamination, including organic compounds
and heavy metals. These studies show a splendid progression
of interest and report on a number of sample preparation
schemes, exposure routes, and elucidation of different modes
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of action. As an Organization for Economic Cooperation and
Development (OECD) recommended test species,89 Eisenia
fetida is the focus of a majority of the studies, although other
ecologically important species are being studied.

Mussels and clams have also been investigated using
metabolomics.7,16,90 – 100 Given the stationary nature of these
mollusks and their aquatic environment, they may prove to
be an important monitoring organism as an early warning
sentinel for incipient pollution issues. Studies involving
organic and inorganic pollutants have shown that bivalves
are metabolically sensitive and different modes of action are
apparent in their metabolic fingerprints. In one study,92 the sex
of mussels was determined using NMR-based metabolomics,
and, while not as accurate as reverse transcriptase polymerase
chain reaction (RT-PCR) for sex determination, metabolomics
was a better indicator of functional reproductive status in both
ripe and spent mussels.

Numerous case studies, which may be part of longer term
investigations, have been reported since two reviews of the en-
vironmental metabolomics field were published.10,101 Research
involved NMR-based metabolomics studies of coral-associated
bacteria,17 Atlantic blue crabs,102 and fish.14,103 – 108 Environ-
mental stressors varied from hypoxia, to microbial challenge,
to temperature, to oil exposure, to heavy metals contamination.

5.4 Comprehensive Approaches

A recent report demonstrated the potential of environmental
metabolomics to address the full range of linkages in envi-
ronmental assessment from ecosystem-scale measurements to
specific modes of action from environmental stressors.95 The
study illustrated the linkage of metabolomic biomarkers to an
accepted assessment of organismal health based on the scope
for growth (SFG), a well-defined biological index of the fit-
ness of an organism for growth, reproduction, and survival.
In a review of this work,94 Robertson stated “The elegance in
the work. . . is that they not only generated the models in the
laboratory environment but they further field tested them in a
real-world application” and indicated that the field of environ-
mental metabolomics had reached another level of expectation
and performance. Not all current studies are as comprehensive
at this point, but the mark has been set and the potential is
tremendous.

6 THE FUTURE

The opportunities for impacting the field of environmental
research seem to be growing, based on the increasing number
of publications and increasing scope of study. Perhaps the
future holds exciting biological discoveries as more non-model
organisms come under the “NMR-metaboscope” and more
specific metabolic pathway maps are refined. The possibility
of linking established biological indexes to metabolomic
information means that there may be effective ways to assess
environmental impacts and set public policy based on specific
biochemical interactions, leading to better science-based
management decisions.

Improving the tools of NMR-based metabolomics means
that more consistent analysis protocols and metabolome

mining techniques will appear, either based on specific needs
of the analysis of non-model organisms or as an adaptation of
approaches in human-health metabolomics.109,110 Consistent
ways of reporting, archiving, and sharing data are emerging
which will allow groups to confidently leverage existing data
and analysis.

As progress continues, there will be examples of long-term,
regional monitoring which may help provide an early warn-
ing of encroaching environmental issues. NMR-based envi-
ronmental metabolomics can develop systematic descriptions
of mode of action responses to specific stressors in sensitive
organisms, leading to new biological insights and better tox-
icological understanding of the complex, multispecies, multi-
stressor environment in which we and our fellow creatures live.
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