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Abstract

Model selection is an important part of model building for Bayesian

linear models when the number of possible model terms is large. Most

current approaches focus on posterior model probabilities or the de-

viance information criterion. This article proposes an alternative strat-

egy that considers how the model will be used after its selection and

selects models based on their predictive abilities over a user-specified

portion of the covariate space defined by a joint probability distribution

called the distribution of interest. Because it is difficult to summarize

the “goodness” of a model with a single number, we present a suite of

numerical and graphical tools for detailed comparisons of different mod-

els. These tools help select a best model or a collection of good models
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based on their prediction performances over covariate locations likely

to arise from the distribution of interest. The proposed method is illus-

trated with two examples. The first example motivates and illustrates

the new method, while the second example considers what to do when

comparing thousands of models. Simulation results demonstrate where

the new method produces improvements in prediction ability over some

existing methods.

Keywords:Bayesian Model Averaging, Correlated Variables, De-

viance Information Criterion, Posterior Probability, Variable Selection

1 Introduction

Model selection is an important step in the process of building a Bayesian

multiple regression model. If too many predictors are included, the spread of

posterior distributions for model parameters or predictions of new observations

may by unnecessarily large. If too few predictors are included, the posterior

distributions may lead to biased point and interval estimates. This article

considers a new model selection methodology for Bayesian multiple regression

models with a focus on obtaining good prediction in a user-specified portion

of the covariate space.

1.1 Motivation

We begin by defining the Bayesian multiple regression model (BMRM):

(
yi|βm, σ2

m

)
∼ N [(βm)′xmi , σ

2
m], i = 1, 2, · · · , n(

βm, σ2
m

)
∼ gm, (1)

where m = 1, 2, · · · , Nmod indexes the models under consideration. Note that

gm serves generically as the joint prior probability density function (pdf) for

βm and σ2
m. In Section 2, sensible forms for gm are considered.

Several procedures for model selection exist for BMRM’s, but all of those

procedures consider only the observed data. If the primary goal of building
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a BMRM is prediction at user-specified covariate locations, then this goal

should be factored into the model selection process. In Section 2 we consider

an example where the warehouse manager receiving shipments uses the number

of drums and the total weight of the shipment to predict the time required

to process the shipment. If the manager wishes to predict handling times for

larger-than-typical shipments, the goal is to select a model that predicts well

outside of the observed data range. Because the number of drums and the

total weight of the shipment are correlated, careful thoughts are required for

defining suitable (number of drums, total weight) pairs that are larger than

typical. The ability of the new method, called the prediction-based model

selection method (PBMSM), to handle such situations distinguishes it from

currently available methods.

The above motivation is based on the need to extrapolate. The dangers

in extrapolation are well known and documented by statisticians. However,

in practice, extrapolation is sometimes necessary, and we are not promoting

the use of statistical methods for extrapolating except when answering the

key questions of interest requires it. Given that this is sometimes necessary,

we think that this goal should be integrated into the model selection process.

However, the PBMSM is not limited to extrapolation. Our second example

considers good prediction in the design region from a designed experiment.

The PBMSM leverages the very powerful Bayesian model averaging (BMA)

approach to prediction [21]. In fact, the PBMSM uses the predictions from

BMA as the basis on which all models under consideration are compared.

This leads one naturally to ask why not just use the predictions from BMA

and stop. There are several reasons. First, with BMA the ability to interpret

the regression parameters is lost. Second, a single model can often provide

predictions that are close to the quality of the predictions from BMA with the

added benefit of a much simpler model. Finally, once the selection phase is

completed, computing predictions from a single regression model instead of an

average of many is more straightforward.
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1.2 Existing Work

We now review current model selection procedures for BMRM’s, methods for

quantifying the discrepancy between functions, and some graphical tools. Dis-

crepancy measures and graphical tools relate to the new method because they

form the basis of the model comparisons.

This review of model selection procedures for BMRM’s is not meant to

be exhaustive, but considers key selection procedures to which the PBMSM

is compared. The deviance information criterion (DIC) [24] can be described

as a measure of a model’s fit to the data plus a penalty for model complex-

ity. This interpretation is similar to the Akaike information criterion (AIC)

[1] and Bayesian information criterion (BIC) [23] with the best models hav-

ing lower values. The DIC draws a nice connection between frequentist and

Bayesian model selection methods and. However, a more popular and intuitive

procedure exists in the Bayesian paradigm.

In the Bayesian paradigm, it is natural to cast the model as another param-

eter and calculate its posterior probability. Once posterior model probabilities

are calculated, several approaches exist. One approach is simply to select the

model with the highest posterior probability. Another approach is to select the

median posterior model (MPM) [3], which includes model terms with posterior

probability greater than 0.5. Under certain conditions, in [3], it is argued that

the MPM is optimal for prediction.

Another procedure in [12] assigns each regression coefficient a prior distri-

bution that depends on model m. If the regression coefficient is absent from

model m, its prior distribution is normal with mean zero and small variance. If

the regression coefficient is present in model m, its prior distribution is normal

with mean zero and larger variance. Then, gm is taken as the product of the

marginal prior distributions. The prior distribution for σ2 does not change

with m, but is chosen to have a convenient form.

Some other model selection algorithms aimed at prediction focus on the

Bayesian posterior predictive distribution. Some examples are the predictive

sample reuse technique of [9], the utility function approach of [22], the L, M ,

and K, criteria of [14] and minimizing expected posterior predictive loss as
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described in [10].

1.3 Brief Description of the Algorithm

When using the Bayesian paradigm for inference, decisions about the predic-

tive ability of a model are based on posterior distributions. Our goal is to

identify a single model that precisely and accurately estimates a quantity of

interest. Let ∆m1 and ∆m2 represent a common quantity of interest estimated

from models m1 and m2, respectively. In the warehouse example, this is the

mean time to process a shipment. Suppose ∆0 is the true, but generally un-

known, value of that quantity. Now, let Fm1 and Fm2 represent the posterior

cumulative distribution functions (cdf’s) for ∆m1 and ∆m2 , respectively, and

let F be a step function that steps from 0 to 1 at ∆0. Thus, F is a cdf or

probability measure that places unit probability at ∆0. Since we wish to select

a single model to be used for prediction, the model we select for predicting ∆0

is the one with the posterior cdf that most closely approximates F . To com-

pare the relative performance of models, we propose a distance or discrepancy

measure between the posterior cdf’s and F related to the Lk distance between

functions, see pages 90 and 91 of [2].

In the PBMSM, graphical tools are used to compare distributions of dis-

crepancy measures. Boxplots are effective in making rough comparisons among

distributions, and the fraction of covariate distribution (FCD) plots allow for

finer distinctions among models. The FCD plot is similar to the fraction of

design space (FDS) plot introduced by [25]. In [19], boxplots and FCD plots

are used to examine the distributions of prediction mean squared error (MSE).

In [18], FDS plots are used to compare predictions in the design space among

competing designs for generalized linear models.

The remainder of the article is organized as follows: Section 2 describes

the PBMSM with an example. Section 3 presents a simulation study, which

compares the PBMSM to existing methods with respect to the prediction

ability. Section 4 provides a second example with a large number of candidate

models. Section 5 gives some concluding remarks.
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2 Methodology

The new methodology, PBMSM, is described generally by a sequence of four

steps:

1. Select and characterize the user-specified distribution of interest over the

covariate space.

2. Sample points randomly from that distribution.

3. Estimate the discrepancy between the posterior distribution of the quan-

tity being predicted and the ideal value at each point sampled in step 2

for each model under consideration.

4. Compare models graphically based on the discrepancy estimates to select

a best model or a group of models.

These steps match those presented in [19] for the frequentist paradigm, with

one important distinction. In the Bayesian paradigm we use the entire poste-

rior distribution at each location to compare competing models instead of the

mean squared error, which only focuses on variance and bias. A discrepancy

measure is proposed between the posterior cdf of the quantity of interest for

a particular model and the ideal value of that quantity. The algorithm is now

described in more detail.

2.1 Defining the Distribution of Interest

The distribution of interest (DI) specifies covariate locations at which the

user wishes to make predictions, and it is one feature of the PBMSM that

distinguishes it from standard procedures. The DI summarizes where the user

wishes to make future predictions, and the new method uses this information

to influence the model selection procedure. Different forms may be relevant

for different studies, and the choice of a DI is flexible and situation specific.

Consider the chemical shipment example on page 253 of [17] (called Ex-

ample 1). Here,
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Y = the time (in minutes) to handle a shipment of drums

X1 = the number of drums in the shipment

X2 = the total weight of the shipment (in hundreds of pounds).

The collection of models considered is all subsets (23 = 8 models) of a full

model, with two main effects and a two-factor interaction. If the warehouse

manager is expecting larger-than-typical shipments in terms of the number of

drums, then the goal is to use a Bayesian regression model that accurately

predicts the time to handle these new shipments. The new shipments are

assumed to have between 25 and 30 drums, but with unknown weight a priori.

A first step in defining a DI is to examine the empirical relationship between

covariates. The observed (X1, X2) pairs are presented in Figure 1, with “o”

symbols. We see a positive linear relationship between X1 and X2 from Figure

1. Thus, a simple linear regression model describes plausible values of X2 for

a given value of X1, with the distribution of X2 conditional on X1 assumed to

be normal. This gives

f(x2|x1) =
1√

2π(3.96)
exp

{
−1

2(3.96)
(x2 + 1.06− 0.85x1)

2

}
. (2)

Using the assumed sizes of the new shipments, a natural choice for the marginal

distribution of X1 is the uniform distribution on the integers {25, 26, · · · , 30},
denoted by f(x1). The joint probability density is the product of f(x2|x1) and

f(x1), which defines the DI. Figure 1 also depicts a sample from f(x2|x1)f(x1).

In Figure 1, the “x” symbols mark the covariate locations sampled from the

DI, and the line is the least squares regression line.

To characterize the empirical relationship between X1 and X2 to define

the DI, the method of least squares was used. The use of least squares can be

thought of as a heuristic to define the DI. In some situations, the user of the

PBMSM may not need statistical methods to define the DI, as the DI may

be naturally defined by the problem context. Such an example is presented

in Section 4. Finally, for Example 1, the observed relationship between X1

and X2 is assumed to hold outside of the data range. One should always be
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Figure 1: The “o” symbols represent the observed (X1, X2) pairs in Example
1 on page 253 of [17]. The x’s represent a random sample of points from the
DI in Example 1.

cautious with such an assumption, and whenever possible, base it on available

underlying science. If that assumption is not true, predictions made at new

covariate locations are unlikely to match the true process.

2.2 Sampling From the Distribution of Interest

The DI defines covariate locations at which predictions are likely to be sought.

The goal is to select a model that predicts well over the entire DI. To assess a

model’s prediction ability over the entire DI, one must evaluate the prediction

ability of each model at many locations. Randomly sampling from the DI

provides representative coverage of the locations of interest. For Example 1

we first draw a random sample of X1from f(x1). Then, for each sampled point

x1, we draw a random sample of X2 (given X1 = x1) from f(x2|x1). The

sample size, Nnew, should adequately cover the DI, but not be too large to be

computationally infeasible.

Another natural DI might be a uniform distribution over a non-rectangular

region. An example in two dimensions might be a non-rectangular parallelo-
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gram. A rejection algorithm can be constructed to sample from such a DI, see

page 253 of [5]. To sample uniformly from a non-rectangular parallelogram,

first we sample from the smallest rectangle containing the parallelogram, and

then keep only points inside the parallelogram.

2.3 Model Estimation and Evaluation

Model estimation and evaluation are discussed separately here because they

present different challenges. For model estimation, the computational cost of

estimating a large number of models can present challenges. For evaluation,

finding a reasonable surrogate for the ideal result requires special considera-

tion.

2.3.1 Model Estimation

The general form of the BMRM is given in (1). Model estimation in the

Bayesian paradigm calculates pm(βm, σ2
m|y) (the posterior distribution) from

the observed yi’s using (1). For some simple forms of gm, the posterior is

available in closed form, and one such form of gm is

gm(βm, σ2
m) =

1

σ2
m

; σ2
m ∈ (0,∞); βm ∈ RDm , (3)

with Dm being the dimension of βm. In [11], the form of gm in (3) is referred

to as the standard non-informative prior distribution, and they state that

pm(βm, σ2
m|y) is proper under this prior when the model matrix is of full rank

and the sample size is larger than Dm. Throughout this article, it is assumed

that gm is given by (3); however, a great strength of the Bayesian paradigm is

its ability to leverage additional information, so if this is available, it should

be included through the prior gm. The closed form expression for pm under

the prior form in (3) is given by

pm(βm, σ2
m|y) = pm(βm|σ2

m,y)pm(σ2
m|y), (4)
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where

pm(βm|σ2
m,y) = (2πσ2

m)−Dm/2|Vm|−1/2 exp

{
1

2σ2
m

(βm − β̂m)′V −1m (βm − β̂m)

}
,

(5)

and

pm(σ2
m|y) =

(νm/2)(νm/2)

Γ(νm/2)
sνmm (σ2

m)−(νm/2+1) exp

{
−νms2m

2σ2
m

}
. (6)

Note that (5) is a multivariate normal distribution with mean vector β̂m, and

variance-covariance matrix σ2Vm, with

β̂m = [(Xm)′Xm]−1(Xm)′y, (7)

and

Vm = [(Xm)′Xm]−1, (8)

where

Xm = (xm1 ,x
m
2 , · · · ,xmn )′ (9)

We assume all of the models are parametrized so that [(Xm)′(Xm)] is non-

singular. For (6),

νm = n−Dm, (10)

and

s2m =
1

νm
(y −Xmβ̂m)′(y −Xmβ̂m). (11)

Although (4) has a convenient closed form, it is still complicated. Thus,

quantities of interest are estimated using Nsamp samples from (4). Sampling

from (4) is straightforward because (5) and (6) are multivariate normal and

inverse scaled χ2 pdf’s, respectively. Markov chain Monte Carlo (MCMC)

methods are not required for the prior form in (3). In the model selection set-

ting, non-informative flat priors are generally applicable because often little

is known about the magnitude of the terms or which terms are likely to be

active. However, the Bayesian approach allows us to incorporate prior knowl-

edge if such knowledge exists, with conjugate priors for βm and σ2
m of the form

10



βm ∼ N(q, σ2
mR) and ab

σ2
m
∼ χ2

a.

In the preceding paragraph, methods for sampling from the posterior dis-

tribution of βm are discussed, but these need to be converted to the posterior

distribution for µm(xmnew) = E[y(xmnew)|βm] = (βm)′xmnew. We use, xnew to

generically refer to a covariate location sampled from the DI, and xmnew to re-

fer to the vector of predictor terms for model m and covariate location xnew.

The sample from the posterior distribution of βm is transformed to give a

sample from the posterior distribution of µm(xmnew), which is used to approx-

imate properties of the posterior distribution. For each of the Nnew covariate

locations sampled from the DI, a posterior distribution is approximated for

all Nmod models. To reduce the computational burden, a single sample of

Nsamp β
m’s from (4) is used to explore all Nnew posterior distributions. To

ensure that this is reasonable in Example 1, the PBMSM was carried out with

Nsamp = 5, 000 and Nsamp = 10, 000, and the results were compared.

2.3.2 Approximating µ(xnew)

The ideal value, µ(xnew), is the true, but unknown, value of the quantity be-

ing predicted at covariate location xnew. In the shipment example, µ(xnew)

is the mean time to process a shipment of x1,new drums weighing 100 ∗ x2,new
pounds. To judge the prediction abilities of the models under consideration, a

reasonable surrogate for the ideal value, µ̂(xnew), is calculated. This is impor-

tant because some models may lead to posterior distributions of µm(xmnew) with

small spreads but large biases, while others may lead to posterior distributions

with large spreads and small biases. The surrogate is necessary to judge the

bias of a model. Because a priori it is unknown which models under consid-

eration lead to good point estimates of µ(xnew), BMA [21] is used because it

combines information from all models weighted by the estimated qualities of

the models. A point prediction, µ̂m(xmnew) (say the posterior mean), is taken

from each model, and all the predictions are combined through weighted av-
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eraging based on the posterior probabilities of the models. Specifically,

µ̂(xnew) =

Nmod∑
i=1

wiµ̂
i(xinew), (12)

where
∑Nmod

i=1 wi = 1. In the case that model parameters are assigned proper

priors, wi will be the posterior probability of model i, P (M = i|y). Here,

model parameters are assigned improper priors, so P (M = i|y) is not well

defined, see pages 64 and 65 of [19].

As a substitute for a model’s posterior probability when improper priors

are employed, we use the approximation given by [20] on page 145:

P (M = m|y) ≈
exp{−1

2
BICm}πm∑Nmod

i=1 exp{−1
2

BICi}πi
, (13)

where BICm is the Bayesian information criterion (BIC) for model m [23] and

πm is the prior probability associated with model m. Note that when πm is

constant for all m, the πm in the numerator and denominator will cancel. Be-

cause (13) is not a function of the prior distributions of the model parameters,

it can be used in our situation. Equation (13) is derived by approximating the

marginal pdf of y for model m, say p(y|M = m), as

p(y|M = m) ≈ exp{−1

2
BICm}. (14)

This approximation uses the Laplace method for integrals and the asymptotic

likelihood theory. See [20] for more details on the derivation.

If model parameters are assigned proper prior distributions, an MCMC

algorithm can be used to sample realizations from the joint posterior distribu-

tion of (βm, σ2
m, m). Four general purpose algorithms are proposed by [4], [7],

[13], and [15]. In [21], the methodology of [15] is used for linear models.

Again, the reader might feel that since we are comfortable using the model

averaged point estimate as a surrogate for the true value over the DI, we should

not continue with our process to select only one model. To answer this, we

12



remind the reader that our goal from the beginning has been to select a single

model. We believe this is reasonable because practitioners of statistics, e.g.

scientists and engineers, may prefer to work with a single model which lends

itself more easily to interpretation than model averaging. We understand the

advantages of model averaging, and we are not suggesting that our procedure

is a replacement for it. We are simply leveraging the power of model averaging

into our selection procedure.

2.3.3 The Discrepancy Measure

In Section 2.3.1, sampling from the posterior distribution of µm(xmnew) at each

xnew was discussed. In Section 2.3.2, approximating µ(xnew) at each xnew

was considered. We now use these results to define a measure of prediction

ability. For prediction in the Bayesian paradigm, the optimal scenario occurs

when the posterior distribution is a point mass at the ideal value, µ(xnew),

that is, when the posterior distribution provides unbiased predictions with

no uncertainty. So to judge the prediction ability of model m at xnew, the

posterior distribution of µm(xmnew) is compared to a point mass at µ̂(xnew). If

model m1 is more similar to a point mass at µ̂(xnew) than model m2, model

m1 has better predictive ability than model m2.

Let Fm
xm

new
denote the posterior cdf associated with µm(xmnew) and Fxnew

denote the cdf for a point mass at µ̂(xnew). So Fxnew is a step function

jumping from 0 to 1 at µ̂(xnew). A natural way to compare these cdf’s is

by integrating their absolute difference, which is similar to the L1 distance

between two functions, see page 90 of [2]. Let

Dm(xmnew) =

∫ ∞
−∞
|Fm
xm

new
(u)− Fxnew(u)|du. (15)

Equation (15) generalizes to

Dk
m(xmnew) =

{∫ ∞
−∞
|Fm
xm

new
(u)− Fxnew(u)|kdu

} 1
k

, (16)

13



which is similar to the Lk distance between two functions for k ∈ [1,∞).

One should note that Dk
m(xmnew) is almost identical to Lk in [2] on page 90

except that
∫
|Fm
xm

new
(u)|du = ∞ and

∫
|Fxnew(u)|du = ∞. The definition of

Lk in [2] requires that
∫
|Fm
xm

new
(u)|du < ∞ and

∫
|Fxnew(u)|du < ∞, so that

finite distance is guaranteed. However, Dk
m(xmnew) is finite under the minimal

conditions that the posterior distribution of µm(xmnew) has finite expected value

and k > 1. For a proof, see pages 80 and 81 of [19].

To help understand the metric, Figure 2 graphically depicts Dm under four

different scenarios where “D” in the legend is the value of Dm, and the area

of the gray shading lines graphically represents Dm. In all four scenarios, the

step is at µ̂(xnew) = 0. The upper left graphic depicts a scenario where the

expected value of the posterior distribution of µm(xmnew) matches µ̂(xnew) = 0

well, and the spread of the posterior distribution of µm(xmnew) is small. The

bottom left graphic depicts a scenario where the expected value of the posterior

distribution of µm(xmnew) is shifted from 0, but the spread is still small. The

upper right graphic depicts a scenario where the expected value of the posterior

distribution of µm(xmnew) matches µ̂(xnew) = 0 well, but the spread is large.

The bottom right graphic depicts a scenario where the expected value of the

posterior distribution of µm(xmnew) is shifted from 0, and the spread is large.

Note that an expected value close to µ̂(xnew) with small spread leads to the

smallest value of Dm.

Taking k to be small is recommended because as k increases, Dk
m(xmnew)

tends to either Fm
xm

new
[µ̂(xnew)] or 1−Fm

xm
new

[µ̂(xnew)]. To see why, consider the

following argument. Note that

lim
k→∞

[∫
R
|Fm
xm

new
(u)− Fxnew(u)|kdu

] 1
k

= sup
u∈R
{|Fm
xm

new
(u)− Fxnew(u)|} =

=

{
Fm
xm

new
[µ̂(xnew)] if Fm

xm
new

[µ̂(xnew)] ≥ 0.5

1− Fm
xm

new
[µ̂(xnew)] if Fm

xm
new

[µ̂(xnew)] < 0.5

because Fxnew is a step function at µ̂(xnew). Thus, Dk
m(xmnew) reduces to a

single property of Fm
xm

new
as k increases. Because other important properties

14
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Figure 2: Graphical representations of D1
m under four circumstances. The area

depicted by the gray diagonal shading lines represents D1
m where “D” in the

legend is D1
m.
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of Fm
xm

new
are ignored, that reduction is undesirable. For instance, if Fm

xm
new

has large spread, the prediction from Fm
xnew

has low precision. However, as k

increases, the spread is progressively ignored. So we select k = 1, the lower

boundary, in the remainder of this article. In Section 3, we see that with

k = 1 the PBMSM outperforms other methods in terms of prediction ability.

However, a clearly optimal setting for k in all scenarios is not available, but

the sensitivity of the PBMSM to k in a given scenario can be assessed.

2.4 Comparing Models Graphically

Because Dm(xmnew) is estimated for m = 1, 2, · · · , Nmod and at each xnew, the

goal is to select the model with the most desirable distribution of discrepancy

measures, D’s. This is easy with a single location for the DI, as the model

with the smallest D is selected. However, for most practical situations where

the DI includes many (likely infinitely many) possible covariate locations, se-

lecting the most desirable distribution of D’s is not straightforward. Several

different aspects of the distribution of D’s could be used; one could focus on

the average, median, maximum, or any percentile of the sampled D’s. How-

ever, we recommend a graphical approach to simultaneously examine many

characteristics.

First, using the boxplot of discrepancy measures for each model across all

sampled locations from the DI, gross distinctions between models can be made.

Figure 3(a) contains the set of boxplots for Example 1 where model 7 (X1 and

X2) is clearly the best because small values for D are preferred.

In other scenarios, boxplots may not be sufficient to discern among mod-

els with similar performances. In these instances, we recommend fraction of

covariate distribution (FCD) plots. FCD plots [19] are similar to fraction of

design space (FDS) plots introduced by [25]. FCD plots are made by plotting

the ordered discrepancy measures for each model on the vertical axis against
1

Nnew
, 2
Nnew

, · · · , Nnew−1
Nnew

, and 1 on the horizontal axis. More specifically, let

Dm,(i), i = 1, 2, · · · , Nnew, be the ith smallest discrepancy measure for model

m. Then, the points ( i
Nnew

, Dm,(i)) i = 1, 2, · · · , Nnew, are plotted. Figure 3(b)
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contains the FCD curves for the four most competitive models, 3 (X2 only),

5 (X1 only), 7 (X1 and X2), and 8 (the full model). From Figure 3(b), it is

again clear that model 7 is the best because an ideal curve is low and flat.

We now consider results for three other model selection methods. The

DIC’s and posterior probabilities for all eight models are presented in Table 1.

Model 7 (X1 and X2) has the smallest DIC and is the highest posterior prob-

ability model (HPPM). The third method is referred to as the median prob-

ability model (MPM) in [3], and is also derived from the posterior probabilities.

The first step in finding the MPM is calculating P (term i is in the true model|y) =∑
m∈Bi

P (M = m|y), where Bi is the set of models that contain term i. Each

term with a posterior probability of inclusion over 0.5 is considered to be im-

portant. For Example 1, the values are 1, 1, and 0.24 for X1, X2, and X1X2,

respectively, with model 7 again highlighted as the best.

Model Terms Posterior Probability DIC

1 None 0 213.18
2 X1X2 0 162.77
3 X2 0 151.82
4 X2, X1X2 0 153.37
5 X1 0 158.32
6 X1, X1X2 0 148.58
7 X1, X2 0.76 130.65
8 X1, X2, X1X2 0.24 132.19

Table 1: Posterior probabilities and DIC’s for all eight models in Example 1.

3 Simulation Study

In this section, a simulation study compares the new model selection method

to three other methods. The three methods select the HPPM, the MPM, and

the model with the lowest DIC. The metric to evaluate the methods is based

on prediction ability. More specifically, the distance of a selected model’s

prediction from the true value is evaluated because the true data generating

model is known.
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Figure 3: (a) Boxplots of discrepancy measures in Example 1. (b) FCD plots
in Example 1 for models 3 (X2 only), 5 (X1 only), 7 (X1 and X2), and 8 (the
full model).

18



In the simulation study, 45 distinct scenarios are considered. The factors

distinguishing the scenarios are the correlation level between the predictors,

the DI, and the true model. Each scenario involves two covariates, X1 and

X2, and eight models corresponding to all subsets of a full model with both

main effects and the two-factor interaction. For each scenario, 30 data points

are observed, and Nnew = 1, 000 covariate locations are sampled from the DI.

Finally, Nsim = 2, 000 data sets are simulated and analyzed for each scenario.

The different scenarios form a full factorial with three factors: correlation

level (3 levels), DI (3 levels), and true model (5 levels). The three correlation

levels are 0, 0.8, and 0.95. The three DI’s characterize an extrapolated region

(labeled DI 1), the entire observed data region (DI 2), and only a portion of the

observed data region (DI 3). These nine combinations of correlation level and

DI are illustrated in Figure 4 where the o’s represent observed covariate points,

and the x’s represent sampled locations from the DI’s. For all combinations,

five true models are examined. Those models are µ(x) = x1, µ(x) = 2x1,

µ(x) = x1 + x2, µ(x) = 2x1 + 2x2, and µ(x) = 2x1 + x2 + x1x2. The “new”

subscript is omitted because the true model applies to both the new locations

sampled from the DI and the observed covariate points. All true models use

σ2 = 1.

For each scenario, the simulation uses these steps:

1. Generate a data set from the true model based on a fixed set of xi’s for

that scenario.

2. Perform model selection with each of the four methods where models

are assumed to be equally likely a priori, and the model parameters are

assigned the standard improper priors.

3. Quantify the prediction error, Em = 1
Nnew

∑Nnew

i=1 [µ̂m(xmnew,i)−µtrue(xnew,i)]2,
of each selected model where m is one of mPBMSM, mHPPM, mMPM, or mDIC

selected by its respective model selection algorithm, and µ̂m(xmnew,i) is

the mean of the posterior distribution of µm(xmnew,i) for xnew,i, the ith

covariate location sampled from the DI.
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Figure 4: The nine combinations of correlation level and DI. The o’s represent
the observed covariate points and the x’s represent covariate locations sampled
from the DI.
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The prediction error, Em, is the average squared distance (over the points

sampled from the DI) from a selected model’s prediction to the true value.

Because the goal of the simulation study is to assess the prediction ability of

the four selection algorithms, Em is a natural metric. If a selection algorithm

leads to predictions close to the true value, Em will be small. For each of

the 45 scenarios, each selection methodology has Nsim = 2, 000 simulation

values, Em’s, which we summarize with the mean, median, and 90th and 95th

percentiles.

Because the new model selection procedure is repeated many times across

the many data sets and scenarios, graphical comparisons are not practical.

(We still recommend graphical comparisons for an individual analysis be-

cause many considerations from the whole distribution of discrepancies can

be factored into the selection decision.) An automated numerical summary of

{Dm(xmnew,i)|i = 1, 2, · · · , Nnew} is used in the simulation study, where qα(Dm)

is its α percentile. Then, the summary of {Dm(xmnew,i)|i = 1, 2, · · · , Nnew} is

ζm = 1
11

∑11
j=1 qαj

(Dm) where α1 = 0.05, α2 = 0.1, α3 = 0.2, · · · , α10 = 0.9,

and α11 = 0.95. The model with the smallest value of ζm is used as the best

for the new method. This can be thought of as comparing 11 distinct points

that comprise FCD curves. As we expect, if the FCD curve for model m1 is

always below the FCD curve for model m2, ζm1 < ζm2 .

Table 2 summarizes the values of Em from the simulation study. Consider

0.5605 in the third row of the first column, which corresponds to the PBMSM.

For each of the five models within the scenarios with DI 1 and correlation 0,

the 90th percentile was calculated from the 2,000 data sets. The value 0.5605

is the average of the five 90th percentiles across the different true models.

Because smaller values of Em are preferable, the row minimums of Table

2 are highlighted. It is clear that the PBMSM often out-performs the other

selection methodologies; however, when the DI is 2 or 3 and the correlation is

0.8, selecting the model with the lowest DIC out-performs the PBMSM.

Table 2 summarizes the results of the entire simulation study, which include

the scenarios that use the full model as the true model. In practice, the full

model is often larger than necessary so some model reduction is anticipated.
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PBMSM HPPM MPM DIC
Distribution=1; Correlation=0

mean 0.2322 0.2368 0.2369 0.2578
median 0.1256 0.1315 0.1317 0.1547
90th 0.5605 0.5826 0.5831 0.6357
95th 0.7990 0.8184 0.8164 0.8595

Distribution=1; Correlation=0.80
mean 0.4306 0.4435 0.4407 0.4508
median 0.2714 0.2630 0.2601 0.2261
90th 0.9522 1.0159 1.0118 1.1652
95th 1.3840 1.5152 1.5120 1.6737

Distribution=1; Correlation=0.95
mean 0.4906 0.5159 0.5099 0.5629
median 0.2843 0.2858 0.2741 0.2610
90th 0.9943 1.1082 1.0992 1.4979
95th 1.6208 1.9402 1.9462 2.2610

Distribution=2; Correlation=0
mean 0.0883 0.0906 0.0906 0.0971
median 0.0637 0.0658 0.0659 0.0754
90th 0.1907 0.1978 0.1976 0.2058
95th 0.2533 0.2571 0.2569 0.2641

Distribution=2; Correlation=0.80
mean 0.1227 0.1235 0.1210 0.1169
median 0.0928 0.0941 0.0928 0.0914
90th 0.2613 0.2555 0.2508 0.2424
95th 0.3440 0.3443 0.3420 0.3176

Distribution=2; Correlation=0.95
mean 0.1089 0.1159 0.1108 0.1131
median 0.0800 0.0823 0.0800 0.0835
90th 0.2389 0.2605 0.2459 0.2523
95th 0.3006 0.3195 0.3097 0.3138

Distribution=3; Correlation=0
mean 0.1123 0.1139 0.1136 0.1219
median 0.0657 0.0678 0.0678 0.0805
90th 0.2682 0.2715 0.2707 0.2893
95th 0.3696 0.3716 0.3702 0.3873

Distribution=3; Correlation=0.80
mean 0.1385 0.1430 0.1402 0.1318
median 0.0887 0.0917 0.0896 0.0890
90th 0.3301 0.3395 0.3338 0.3107
95th 0.4068 0.4130 0.4105 0.4010

Distribution=3; Correlation=0.95
mean 0.1197 0.1271 0.1224 0.1216
median 0.0815 0.0856 0.0823 0.0838
90th 0.2711 0.2887 0.2786 0.2793
95th 0.3542 0.3727 0.3654 0.3627

Table 2: Summary of results from the simulation study.
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Table 3 summarizes the results of the simulation study, but it excludes the

scenarios for which the full model is the true model. Table 3 shows that the

PBMSM is either best or very competitive in all of the considered scenarios.

4 An Example Involving a Large Number of

Potential Models

In Example 1 and the simulation study, a small number of competing models

was considered. The second example (Example 2) below considers a far larger

collection of competing models, which may be more typical of many practical

situations.

4.1 Introduction

The data set on page 596 of [8] involves a designed experiment using a central

composite design (CCD) with axial values of α = 2, see page 49 of [16]. The

design considers four factors:

X1 = percentage of H2O2 by weight of paper,

X2 = percentage of NaOH by weight of paper,

X3 = percentage of silicate by weight of paper,

X4 = process temperature.

The response, Y , is the brightness of finished paper, and the full model is a

full quadratic model with 4 linear effects, 4 pure quadratic terms, and 6 two-

way interactions. The competing models are taken to be all subsets of the full

model. We assume that the goal of the experiment is to develop a model that

predicts well over a small hypercube near the boundary of the design region.

4.2 Selecting and Sampling From the Distribution of

Interest

To meet the goal of the study, a DI is constructed as a uniform distribu-

tion on the four dimensional hypercube, [1, 1.5]4. Sampling a covariate lo-
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PBMSM HPPM MPM DIC
Distribution=1; Correlation=0

mean 0.2103 0.2196 0.2197 0.2482
median 0.1073 0.1147 0.1149 0.1436
90th 0.5270 0.5558 0.5565 0.6229
95th 0.7632 0.7958 0.7933 0.8550

Distribution=1; Correlation=0.80
mean 0.2944 0.3205 0.3174 0.3764
median 0.1392 0.1456 0.1419 0.1668
90th 0.6634 0.7484 0.7442 0.9952
95th 1.1000 1.2690 1.2674 1.5217

Distribution=1; Correlation=0.95
mean 0.3355 0.3735 0.3704 0.4720
median 0.1267 0.1371 0.1285 0.1575
90th 0.6749 0.8109 0.8062 1.3437
95th 1.3406 1.7373 1.7483 2.1641

Distribution=2; Correlation=0
mean 0.0821 0.0851 0.0851 0.0936
median 0.0569 0.0595 0.0597 0.0715
90th 0.1839 0.1931 0.1929 0.2036
95th 0.2445 0.2506 0.2504 0.2612

Distribution=2; Correlation=0.80
mean 0.1053 0.1092 0.1061 0.1082
median 0.0721 0.0757 0.0741 0.0805
90th 0.2481 0.2429 0.2372 0.2343
95th 0.3351 0.3374 0.3345 0.3115

Distribution=2; Correlation=0.95
mean 0.1003 0.1070 0.1028 0.1077
median 0.0742 0.0771 0.0747 0.0805
90th 0.2194 0.2394 0.2274 0.2390
95th 0.2796 0.2971 0.2899 0.3005

Distribution=3; Correlation=0
mean 0.1050 0.1077 0.1074 0.1181
median 0.0587 0.0614 0.0614 0.0773
90th 0.2550 0.2602 0.2593 0.2827
95th 0.3549 0.3602 0.3584 0.3804

Distribution=3; Correlation=0.80
mean 0.1235 0.1274 0.1244 0.1235
median 0.0759 0.0793 0.0775 0.0825
90th 0.3108 0.3201 0.3137 0.2939
95th 0.3885 0.3927 0.3897 0.3896

Distribution=3; Correlation=0.95
mean 0.1159 0.1218 0.1182 0.1186
median 0.0777 0.0809 0.0783 0.0814
90th 0.2683 0.2819 0.2741 0.2745
95th 0.3470 0.3622 0.3589 0.3558

Table 3: Summary of results from the simulation study, but scenarios for which
the full model is the true model are excluded.
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cation, xnew = (xnew,1, xnew,2, xnew,3, xnew,4)
′, is done by sampling xnew,j for

j = 1, 2, 3, 4 independently from a uniform distribution on [1, 1.5].

The relationship between the covariates is one of two major differences

between Examples 1 and 2. Selecting and sampling from the DI in Example

2 is straightforward because the covariates arise from a designed experiment

and are uncorrelated. In general, selecting the DI is an important step in

the PBMSM, and the choice should be based on the goal of the analysis, the

observed relationship between the covariates, and advice from subject matter

experts.

4.3 Calculation of Dm

If we consider all subsets of the full model, Example 2 has 214 = 16, 384

models because the full quadratic model in four factors has 14 terms plus the

intercept (which we assume is always included). It is preferable to reduce the

number of competing models, if possible, before carrying out the PBMSM.

One possibility for this is to consider only models adhering to strong or weak

heredity principle [6]. These principles place conditions on the inclusion of

interaction and quadratic terms, and this helps the scientific interpretability

of the selected model. Both the strong and weak heredity principles can lead

to large reductions in the number of competing models.

Another way to reduce the number of competing models is to realize that

many of them will predict very poorly, and they can be quickly disregarded.

To accomplish the reduction, only models with high posterior probabilities

relative to the highest posterior probability are considered. The models in

this reduced set belong to Occam’s window (OW), and by this definition,

Occam’s window is said to be symmetric [20].

To find this reduced set of models, posterior probabilities are first ap-

proximated for all models using (13). Let P represent the collection of all

approximated posterior probabilities, and let MP = max(P). Then, the re-

duced set is OW = {m| MP
P (M=m|y)

< ω}. The interpretation of ω is intuitive:

If ω = 50, the models not included in OW have posterior probabilities that
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are less than 1
50

= 2% of MP . Taking ω = 50 reduces the number of models

from 16, 384 to 310, and taking ω = 10 reduces the number of models to 53.

Figure 5 displays the trade-offs between using ω = 10 and ω = 50 for Example

2 where increasing ω from 10 to 50 leads to 257 extra models in OW ; however,

the posterior probability of each of those 257 models is less than 0.005. In this

example, the Occam’s window approach (not the heredity principles) is used

to reduce the number of competing models; however, it would be possible to

use both approaches.

After reducing the set of competing models, we renormalize the posterior

probabilities to make the probabilities of the remaining models sum to 1. Then,

the calculation of Dm for all models in the reduced set is carried out as before.

In Example 2, the values of ω, Nsamp, and Nnew are chosen as 50, 5, 000, and

1, 000, respectively.

4.4 Comparing Models

Graphical comparisons of 310 models (based on ω = 50) still are not an easy

task. Thus, the set of 310 models, for which discrepancy measures are calcu-

lated, is further reduced before graphical comparisons by examining a table of

summary statistics for the best models.

Table 4 lists the 95th percentile and mean discrepancy measures for the

five best models for each number of terms according to the 95th percentile.

In Table 4 local rank refers to a model’s rank within a specified number of

terms, and global rank refers to a model’s rank among all 310 models in OW .

More than one summary statistic is used because we prefer to judge a model

on its distribution of discrepancy measures, not on a single summary statistic.

One might use other summary statistics besides the 95th percentile and the

mean. Table 4 also lists the terms in each model. Since referring to a model by

its terms is cumbersome here, the models will be referred to by their numeric

names (given in parentheses in the second column of Table 4) in the remainder

of this section.

From Table 4, the five overall best models with respect to the 95th per-
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95th Percentile Mean
# terms Model value rank value rank

2 X1, X2 (1) 0.47583 1(247) 0.40305 1(257)
3 X1, X2, X1X4 (5) 0.24162 1(1) 0.21226 1(2)
3 X1, X2, X2X3 (3) 0.24232 2(2) 0.21449 2(3)
3 X1, X2, X3 (135) 0.31748 3(50) 0.27404 3(68)
3 X1, X2, X4 (84) 0.34976 4(128) 0.2916 4(127)
3 X1, X2, X

2
1 (32) 0.62267 5(292) 0.51453 5(292)

4 X1, X2, X4, X2X3 (86) 0.2579 1(5) 0.21868 2(6)
4 X1, X2, X3, X2X3 (137) 0.26632 2(8) 0.21695 1(4)
4 X1, X2, X3, X1X4 (139) 0.2761 3(11) 0.22111 4(9)
4 X1, X2, X

2
4 , X1X4 (21) 0.28052 4(13) 0.23676 5(14)

4 X1, X2, X4, X1X4 (88) 0.28344 5(15) 0.22088 3(8)
5 X1, X2, X3, X

2
1 , X1X4 (175) 0.24902 1(3) 0.21151 1(1)

5 X1, X2, X3, X
2
1 , X2X3 (172) 0.25468 2(4) 0.21845 2(5)

5 X1, X2, X4, X
2
1 , X1X4 (104) 0.25906 3(6) 0.21945 3(7)

5 X1, X2, X4, X
2
1 , X2X3 (102) 0.26501 4(7) 0.22574 4(11)

5 X1, X2, X1X4, X2X3, X2X4 (10) 0.29921 5(24) 0.2542 6(32)
6 X1, X2, X3, X

2
1 , X2

4 , X1X4 (196) 0.27087 1(9) 0.22561 1(10)
6 X1, X2, X

2
1 , X2

4 , X1X4, X2X3 (61) 0.27783 2(12) 0.23328 2(13)
6 X1, X2, X3, X4, X

2
1 , X2X3 (257) 0.28802 3(16) 0.23913 4(17)

6 X1, X2, X3, X
2
1 , X2

4 , X2X3 (194) 0.29336 4(20) 0.23732 3(15)
6 X1, X2, X3, X4, X1X4, X2X4 (239) 0.29484 5(22) 0.25006 6(26)
7 X1, X2, X3, X4, X

2
1 , X2

4 , X1X4 (277) 0.27472 1(10) 0.23094 1(12)
7 X1, X2, X3, X

2
1 , X1X4, X2X3, X2X4 (180) 0.2808 2(14) 0.23863 2(16)

7 X1, X2, X4, X
2
1 , X1X4, X2X3, X2X4 (109) 0.29227 3(19) 0.24714 3(21)

7 X1, X2, X
2
1 , X2

3 , X1X4, X2X3, X2X4 (70) 0.31272 4(42) 0.26579 6(52)
7 X1, X2, X3, X

2
4 , X1X4, X2X3, X2X4 (156) 0.31409 5(45) 0.26746 7(55)

8 X1, X2, X3, X
2
1 , X2

3 , X1X4, X2X3, X2X4 (213) 0.29081 1(18) 0.24676 1(19)
8 X1, X2, X3, X

2
1 , X2

2 , X1X4, X2X3, X2X4 (225) 0.29406 2(21) 0.24713 2(20)
8 X1, X2, X4, X

2
1 , X2

3 , X1X4, X2X3, X2X4 (126) 0.29764 3(23) 0.25085 5(28)
8 X1, X2, X3, X

2
1 , X2

4 , X1X4, X2X3, X2X4 (200) 0.30168 4(27) 0.24785 3(22)
8 X1, X2, X4, X

2
1 , X2

2 , X1X4, X2X3, X2X4 (131) 0.30321 5(31) 0.25371 6(31)
9 X1, X2, X3, X4, X

2
1 , X2

4 , X1X4, X2X3, X2X4 (281) 0.28885 1(17) 0.24981 2(25)
9 X1, X2, X3, X

2
1 , X2

3 , X2
4 , X1X4, X2X3, X2X4 (218) 0.30197 2(28) 0.25132 3(29)

9 X1, X2, X3, X
2
1 , X2

2 , X2
4 , X1X4, X2X3, X2X4 (230) 0.3027 3(30) 0.24934 1(24)

9 X1, X2, X3, X4, X
2
1 , X1X3, X1X4, X2X3, X2X4 (269) 0.30831 4(36) 0.26547 6(48)

9 X1, X2, X3, X
2
1 , X2

2 , X2
3 , X1X4, X2X3, X2X4 (234) 0.31528 5(47) 0.26132 4(41)

10 X1, X2, X3, X4, X
2
1 , X2

3 , X2
4 , X1X4, X2X3, X2X4 (295) 0.30853 1(37) 0.2667 4(54)

10 X1, X2, X3, X4, X
2
1 , X2

2 , X2
4 , X1X4, X2X3, X2X4 (305) 0.30991 2(41) 0.26474 3(47)

10 X1, X2, X3, X
2
1 , X2

2 , X2
3 , X2

4 , X1X4, X2X3, X2X4 (235) 0.31405 3(44) 0.26105 1(40)
10 X1, X2, X3, X4, X

2
1 , X2

4 , X1X3, X1X4, X2X3, X2X4 (284) 0.31713 4(49) 0.26432 2(45)
10 X1, X2, X3, X4, X

2
1 , X2

2 , X1X3, X1X4, X2X3, X2X4 (303) 0.3246 5(68) 0.27607 5(73)
11 X1, X2, X3, X4, X

2
1 , X2

2 , X2
4 , X1X3, X1X4, X2X3, X2X4 (307) 0.32457 1(67) 0.27247 1(65)

11 X1, X2, X3, X4, X
2
1 , X2

2 , X2
3 , X2

4 , X1X4, X2X3, X2X4 (310) 0.32764 2(72) 0.27803 3(83)
11 X1, X2, X3, X4, X

2
1 , X2

3 , X2
4 , X1X3, X1X4, X2X3, X2X4 (297) 0.32852 3(74) 0.27645 2(75)

11 X1, X2, X3, X4, X
2
1 , X2

4 , X1X2, X1X3, X1X4, X2X3, X2X4 (288) 0.34257 4(111) 0.28997 4(121)
11 X1, X2, X3, X4, X

2
1 , X2

4 , X1X3, X1X4, X2X3, X2X4, X3X4 (285) 0.34401 5(118) 0.2924 5(130)

Table 4: The 95th percentile and mean discrepancy measures for the best
models in Example 2. The rank within parentheses is a model’s rank relative
to all of the other models, and the rank outside of parentheses is a model’s
rank relative to all other models with the same number of terms.
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centile or mean discrepancy are models 3, 5, 86, 137, 172, 175. From these

six models, a winner is selected using graphical comparison. Figure 6 contains

FCD curves of the discrepancy measures for these six models. It provides ev-

idence that model 175 is preferred over the others because it has the smallest

discrepancy measure for more than 50% of the DI, and for locations in the DI

where models 3 and 5 have smaller discrepancy measures, model 175 is not

much worse. Here, the PBMSM identifies two or three models that are best

over different parts of the DI. We view this as a strength of the PBMSM be-

cause at this point, subject matter specialists can incorporate non-statistical

criteria, such as the cost of future data collection, into the final selection pro-

cess.

In comparison to the PBMSM, Table 5 displays the four models with the

highest posterior probabilities and the four models with the lowest DIC values.

There is considerable overlap because models 264, 180, and 281 appear in both

lists as the top three models. The marginal posterior probabilities for each of

the 14 terms are given in Table 6. Based on this, the MPM is model 180.

Note that there is not much overlap between the three current methods and

the PBMSM. This is due to the DI’s dissimilarity to the design region. In

contrast, if the DI were taken to be the hyper-cube [−2, 2]4 (the hyper-cube

containing the design region), there would be considerable overlap between

the current methods and the PBMSM. Specifically, the best model from the

PBMSM would be the same as the MPM, and three of the best models from

the PBMSM would have a top four posterior probabilities and DIC’s. With

the DI being [1, 1.5]4, the best model from the PBMSM is not the MPM, and

none of the best models from the PBMSM have a top four posterior probability

or DIC. Also note that the models selected as the best by the PBMSM (with

the DI being [1, 1.5]4) tend to have less terms than the models selected as the

best by the current methods. This is expected because the DI is near the outer

boundary of the design region where there is a greater penalty for predicting

based on including additional terms as the spread of the posterior distribution

of µm(xmnew) is larger than that near the center of the design region.

We realize that the number of models considered moderate by today’s
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Figure 5: The trade-offs between using ω = 10 and ω = 50 for defining
Occam’s window in Example 2. The symbol “p” on the vertical axis stands
for posterior probability. The horizontal axis is the model’s rank according to
posterior probability.
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Figure 6: FCD plots of discrepancy measures for the best models in Example
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# Terms Model Posterior Probability

8 X1, X2, X3, X4, X
2
1 , X1X4, X2X3, X2X4 (264) 0.0437

7 X1, X2, X3, X
2
1 , X1X4, X2X3, X2X4 (180) 0.0424

9 X1, X2, X3, X4, X
2
1 , X2

4 , X1X4, X2X3, X2X4 (281) 0.0259
6 X1, X2, X

2
1 , X1X4, X2X3, X2X4 (43) 0.0232

DIC

8 X1, X2, X3, X4, X
2
1 , X1X4, X2X3, X2X4 (264) 30.3746

9 X1, X2, X3, X4, X
2
1 , X2

4 , X1X4, X2X3, X2X4 (281) 30.4310
7 X1, X2, X3, X

2
1 , X1X4, X2X3, X2X4 (180) 31.3797

9 X1, X2, X3, X4, X
2
1 , X1X3, X1X4, X2X3, X2X4 (269) 31.4917

Table 5: Posterior probabilities and DIC’s for the top models in Example 2.

Term Posterior Probability
X1 1.0000
X2 1.0000
X3 0.6392
X4 0.4269
X2

1 0.7587
X2

2 0.1100
X2

3 0.1100
X2

4 0.2583
X1X2 0.1018
X1X3 0.1653
X1X4 0.9086
X2X3 0.8561
X2X4 0.7939
X3X4 0.1181

Table 6: Marginal posterior probabilities of each term in Example 2.
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standards; however, this example illustrates nicely how to apply the algorithm

when there are too many models under consideration for graphical comparisons

alone.

5 Concluding Remarks

In this article, we developed a model selection algorithm for Bayesian lin-

ear models. The procedure, PBMSM, focuses on good prediction in a user-

specified portion of the covariate space defined by the DI. The PBMSM uses a

sequence of four steps. The first step is to define the DI. The second step sam-

ples from the DI. The third step calculates the discrepancy measure at each

covariate location sampled from the DI for each model under comparison. The

final step compares models graphically and numerically to identify a model or

models which perform best for the DI.

Two examples are considered in this article. Example 1, which identifies a

model to predict handling time for a shipment of drums, is used to illustrate

the four steps of the procedure. It provides an instance when the covariates

are naturally correlated and the DI naturally falls outside of the observed data

range. Simple linear regression is employed to extend the observed relationship

of the two covariates. The HPPM, the MPM, the model with the smallest DIC,

and the model selected by the PBMSM all highlight the same best model.

Example 2 is from a designed experiment, and provides a new challenge of

a large number (214 = 16, 384) of competing models. It serves to illustrate how

these models can be reduced to a much smaller set of promising models before

applying the PBMSM. Posterior model probabilities are calculated, and mod-

els with small posterior probabilities are excluded from further investigation.

In Example 2, the PBMSM highlights models that tend to be smaller than

the models highlighted by the three other standard methods. This difference

is attributable to the selected DI because when the DI matches the design

region more closely, the PBMSM produces results that are more in line with

the three standard methods.

A simulation study is also presented. It considers a range of true models,
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correlation levels between covariates, and DI’s when two covariates are present.

The simulation study shows that the PBMSM performs well in most of the

considered scenarios. The largest improvement is seen when the DI is outside

of the observed data range and correlation between the covariates is high. This

is expected because in that situation, the variability of predictions is inflated.

Thus, a smaller model with less variable predictions may be preferred.

The model selection procedure presented in this article focuses on good

prediction in a user-specified portion of the covariate space. Many model se-

lection procedures are available, with each developed for particular objectives.

Users of model selection algorithms should consider those objectives when se-

lecting an approach. We have provided evidence that when good prediction

over a specific portion of the covariate space is the goal, the PBMSM is a good

choice.
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