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Abstract Several recent international comparison studies
used a relatively novel experimental design to evaluate the
measurement capabilities of participating organizations.
These studies compared the values assigned by each partic-
ipant to one or more qualitatively similar materials with
measurements made on all of the materials by one labora-
tory under repeatability conditions. A statistical model was
then established relating the values to the repeatability
measurements; the extent of agreement between the
assigned value(s) and the consensus model reflected the
participants’ measurement capabilities. Since each partici-
pant used their own supplies, equipment, and methods to
produce and value-assign their material(s), the agreement
between the assigned value(s) and the model was a fairer
reflection of their intrinsic capabilities than provided by
studies that directly compared time- and material-
constrained measurements on unknown samples prepared
elsewhere. A new statistical procedure is presented for the
analysis of such data. The procedure incorporates several

novel concepts, most importantly a leave-one-out strategy
for the estimation of the consensus value of the measurand,
model fitting via Bayesian posterior probabilities, and pos-
terior coverage probability calculation for the assigned 95%
uncertainty intervals. The benefits of the new procedure are
illustrated using data from the CCQM-K54 comparison of
eight cylinders of n-hexane in methane.
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Introduction

The Gas Analysis Working Group (GAWG) of the Consul-
tative Committee for Amount of Substance–Metrology in
Chemistry (CCQM) has recently conducted several interna-
tional comparison studies to evaluate the capabilities of its
member national metrology institutes (NMIs) for preparing
and value-assigning gas mixtures [1–4]. Complete descrip-
tions of these and many other between-NMI comparisons
are publically accessible [5]. In the referenced studies, each
NMI prepared one or more primary standard gas mixtures
(PSMs) at pre-determined target compositions. Each NMI
shipped their PSM cylinder(s) to a coordinating laboratory
where the relative composition of all cylinders from all
participating NMIs was measured under repeatability con-
ditions. NMI capabilities were assessed through the com-
parison of the assigned values for the PSMs, consisting of
both a value and its associated uncertainty, with the mea-
surement data using a regression technology that respected
the variability in both sets of data.

Note that “value assigned” is a generic term for any
material that has been assigned a value and an uncertainty
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on that value; these include but are not limited to certified
reference materials and some proficiency test materials. PSMs
are gas mixtures value-assigned using a primary reference
measurement procedure [6]; such highest metrological-order
materials have the shortest practical traceability chain and are
typically only used within an NMI or for peer-to-peer compar-
isons. The CCQM comparisons are intended to evaluate
higher-order capabilities and do not address whether study
materials are suitable as reference materials for field measure-
ment procedures. The GAWG’s PSM comparisons are much
more representative of higher-order capabilities as actually
used in delivering services than studies where the individual
NMIs make time- and material-constrained measurements on
one or more materials prepared.

The 2006 CCQM-K54 study evaluated eight n-hexane-
in-methane mixtures having mole fraction compositions
ranging from 120 to 200 μmol/mol n-hexane. The data
analysis published in the study’s Final Report [4] deter-
mined that the assigned values for half of the mixtures were
somewhat unsatisfactory. A technical root-cause was estab-
lished for the discrepancy in only one of these mixtures. The
relatively small number of PSMs examined in the study, the
excellent precision of the repeatability measurements, and
the presence of qualitatively different types of discrepancies
make this a nearly ideal exemplar for exploring the fresh
statistical challenges presented by this study design.

This article presents a re-analysis of the CCQM-K54 data
with several new features that further illuminate the results.
The following sections describe the CCQM-K54 study, re-
view the original analysis, detail our analysis, and present
the advantages of our approach. The new analysis approach
is fully portable to other studies of this kind.

The CCQM-K54 experiment

Eight NMIs participated in CCQM-K54, each NMI produc-
ing and value-assigning a single cylinder of n-hexane mixed
in methane. The target composition for each PSM was
assigned by the GAWG when the design for the study was
finalized. Participants were instructed to include only gravi-
metric preparation and purity assessment components of
uncertainty their uncertainty budgets. Table 1 presents this
information, where xi is the assigned n-hexane value in
micromoles per mole reported by the ith NMI and u(xi) is
the standard uncertainty associated with the assigned value.

After value-assigning their PSM, the NMIs shipped
the cylinder to the coordinating laboratory. This labora-
tory evaluated all of the PSMs under repeatability con-
ditions, making five independent measurements of each
mixture per day on three different days using a well-
characterized gas chromatographic measurement process.
The measurement design included appropriate controls

and atmospheric pressure measurements to identify and,
if necessary, correct for within- and between-day instru-
mental drift. Table 2 reports the daily means and stan-
dard deviations for the pressure-adjusted indications, yij
and sij, and the mean of the means and standard devi-
ation of the means, yi and si, over the three measure-
ment campaigns. These summary estimates of the
instrumental response are reported in arbitrary units.

The original analysis

The study data was analyzed using procedures described in
ISO (2001) [7]. These procedures relate instrumental indi-
cations obtained from gas samples (y) to given chemical
compositions (x) using generalized distance regression
(GDR), in this case fitting a straight line model

y ¼ a0 þ a1x ð1Þ
Ordinary linear regression is not used because both the x

and the y values have associated uncertainties.
The original data analysis first combined the 3-day aver-

ages yi1 , yi2 , and yi3 for each mixture to produce a single
average yi. Since the within-day variation of the instrument
response was relatively small compared with the between-
day, and the between-day variation did not appear to be
related to the response magnitude, the standard uncertainty
for the measurement response for all mixtures was estimated
by pooling the eight between-day standard deviations:

u yið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s2i 8=
q

¼ 2:26 a:u:

The GDR procedure estimated bxi;byið Þ for each xi; yið Þ that
minimizes the criterion

X bxi � xi
u xið Þ

� �2

þ byi � yi
u yið Þ

� �2
" #

:

Table 1 PSM compositions with values in micromoles per mole

Assigned value

Cylinder Target value xi u(xi)

PSM-1 120 119.65 0.28

PSM-2 120 119.97 0.12

PSM-3 140 140.09 0.15

PSM-4 140 140.70 0.30

PSM-5 160 160.52 0.13

PSM-6 180 180.997 0.278

PSM-7 180 181.17 0.12

PSM-8 200 199.02 0.15
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Table 3 lists the GDR estimates for the two sets of
values, bxi and byi , their absolute residualsΔxi ¼ xi � bxij j
and Δyi ¼ yi � byij j, and the uncertainty-scaled residuals,
Δxi/u(xi) and Δyi/u(yi).

As is pointed out in Guenther and Possolo [8], the bxi andbyi so derived are the maximum likelihood estimates [9] of θi
and μi, for a statistical model in which xi and yi are the
observed values of Gaussian random variables Xi and Yi
with E(Xi)0θi and E(Yi)0μi0a0+a1θi. The notation E(.)
represents the expectation, or in other words, the aver-
age of a random variable. Maximum likelihood esti-
mates are widely used in classical statistics because
they possess good optimality properties.

Numerous assumptions are applied in performing the GDR
analysis, the most important being that all of the indication
means yi are related to the chemical compositions xi according
to a linear relationship. The fit of this model needs to be
evaluated before it is used to make judgments about the
correctness of the specifications accompanying each mixture.
The original analysis followed [7], which recommends the
model be validated by checking that the residuals satisfy the
requirement that for all i

xi � bxij j � k � u xið Þ and yi �byij j � k � uðyÞ: ð2Þ
Since the uncertainties on both the assigned values and the
repeatability measurements are asserted to be associated with

a “large” number of degrees of freedom, a coverage factor of
k02 was used for these tests. The interpretation is that, if this
criterion is not satisfied for a particular mixture, then either the
model is inappropriate or that the assigned value and/or the
repeatability measurements for that mixture are suspect.

The results for PSM-5, PSM-6, and PSM-7 do not satisfy
the validation criteria. A root-cause for the disparity in
PSM-7’s result was established by examination of the re-
peatability measurement chromatograms, revealing the pres-
ence of hexane isomers. The analysis then proceeded by
removing PSM-7 from the GDR calculation, re-estimating
u yið Þ ¼ 2:28a:u: by pooling the si over just the seven sets of
measurements included in the regression and re-computing
the estimates and residuals. Table 4 lists the results; Fig. 1
provides an overview of the data and details the repeatability
measurement residuals relative to the consensus GDR solu-
tion for this reduced-dataset. The new estimates for the
seven sets of results included in the GDR analysis satisfy
Eq. (2).

For completeness, we consider the statistical properties of
this validation procedure. Equation (2) is a classical two-
sided hypothesis test ofH01 : θi ¼ bxi versusHA1 : θi 6¼ bxi and
of H02 : μi ¼ byi versus HA2 : μi 6¼ byi for each mixture, done
independently at approximately a 0.05 confidence level.
This means that, for each test, there is a 5% chance that
the criterion would not be met when the null hypothesis is in

Table 2 Summary statistics for
the pressure-adjusted
instrumental indications with
values in arbitrary units

Day 1 Day 2 Day 3 Combined

Cylinder yi1 si1 yi2 si2 yi3 si3 yi si

PSM-1 1,156.80 0.79 1,165.53 0.50 1,161.81 0.67 1,161.38 2.53

PSM-2 1,152.61 0.93 1,161.22 0.76 1,157.18 1.17 1,157.00 2.49

PSM-3 1,352.81 1.21 1,361.55 0.72 1,358.65 0.93 1,357.67 2.57

PSM-4 1,359.09 0.62 1,368.99 0.98 1,367.64 0.84 1,365.24 3.10

PSM-5 1,561.25 0.35 1,566.04 1.30 1,566.04 0.87 1,564.44 1.60

PSM-6 1,758.92 1.97 1,763.80 0.87 1,764.20 0.66 1,762.31 1.70

PSM-7 1,729.73 0.43 1,735.47 0.93 1,736.47 0.68 1,733.89 2.10

PSM-8 1,933.68 1.21 1,934.83 0.76 1,929.89 1.50 1,932.80 1.49

Table 3 GDR results for the
original analysis Cylinder bxiμmol=mol Δxiμmol=mol Δxi

u xið Þ byi a:u: Δyia:u
Δyi
u yið Þ

PSM-1 119.819 0.169 0.60 1,160.25 1.13 0.50

PSM-2 119.868 0.102 0.85 1,160.73 3.73 1.65

PSM-3 140.129 0.039 0.26 1,356.76 0.91 0.40

PSM-4 140.890 0.190 0.63 1,364.13 1.11 0.49

PSM-5 160.759 0.239 1.84 1,556.37 8.07 3.57

PSM-6 181.610 0.610 2.19 1,758.13 4.18 1.85

PSM-7 180.767 0.403 3.36 1,749.97 16.08 7.12

PSM-8 199.208 0.188 1.25 1,928.40 4.40 1.95

A Bayesian approach to the evaluation of comparisons 539



fact true simply due to random variation. Assuming that
these 16 tests were truly independent, there would be a
56% (see [10, section 2.1]) chance that at least one of the
tests fails by chance. However, the tests of Eq. (2) are not
really independent, as the μi are functions of θi, a0, and a1. It
is thus difficult to say what the overall probability of a
chance rejection of the set of tests really is. However, unless
all of the tests are completely correlated, the probability
must be greater than 0.05. Hence, there is a probability
higher than 5% that a false outlier will be incorrectly iden-
tified. The usual procedure to assure that a set of tests do not
falsely reject too many times is called the Bonferroni in-
equality [10, section 2.1]. It divides the target confidence
level by the number of tests and uses an expansion factor
that corresponds to that adjusted confidence level. For the
original analysis of results for all eight participants, this
would mean applying Eq. (2) with k02.95, identifying only
PSM-5 and PSM-7 as potential outliers.

A clarification is also necessary of what it means when a
PSM satisfies Eq. (2). For such a mixture, it can only be said
that the data did not provide any proof that the model does
not fit well or that the measurements and/or the mixture are
outliers. There is no probability estimate associated with this
“absence of proof” conclusion.

After elimination of PSM-7 on technical grounds and
validating the revised model, the original analysis proceeded
to evaluate the degrees of equivalence, Di, for the eight
PSMs. The Di were estimated as

Di ¼ xi � bxi
The bxi is the GDR-estimate for the seven PSMs included

in the GDR analysis. However, for PSM-7,

bxi ¼ yi � ba0ba1
where ba0 and ba1 are the GDR estimates of intercept and
slope.

For the PSMs included in the GDR analysis, the uncer-
tainty in the degrees of equivalence, u(Di), was estimated as

u Dið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 xið Þ � u2 bxið Þ

p
: ð3Þ

Table 4 Results of the original
analysis with PSM-7 excluded
from regression

Cylinder bxiμmol=mol Δxi μmol/mol Δxi
u xið Þ byi a:u: Δyi a:u

Δyi
u yið Þ

PSM-1 119.851 0.201 0.72 1,160.02 1.36 0.59

PSM-2 119.880 0.090 0.75 1,160.31 3.30 1.45

PSM-3 140.062 0.028 0.18 1,358.32 0.65 0.29

PSM-4 140.742 0.042 0.14 1,364.99 0.25 0.11

PSM-5 160.643 0.123 0.99 1,560.25 4.19 1.84

PSM-6 181.140 0.140 0.50 1,761.34 0.96 0.42

PSM-8 198.901 0.119 0.79 1,935.61 2.81 1.23
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Fig. 1 Observed data and residuals from the consensus regression
model. The lower panel displays the mean of the repeatability measure-
ments as a function of the assigned values for the eight PSMs. The
open circles enclose 2u “error bar” intervals along both axes; these
intervals are barely visible at this graphical scale. The line represents
the generalized distance regression solution when PSM–7 is excluded.
The upper panel plots the repeatability measurement residuals from
this consensus model for the three sets of within-day measurements
and for the grand mean, with 2u bars on the within-day means. The
thick horizontal line again represents the GDR solution; the thin
horizontal lines represent the 95% level of confidence uncertainty
interval (±4.56 μmol/mole) assigned to the repeatability measurement
process
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For PSM-7, the uncertainty was estimated as

u Dið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 xið Þ þ u2 bxið Þ

p
:

The standard uncertainties of all the bxi , u bxið Þ were
estimated from first-order Taylor’s series propagation of
uncertainty using the GDR-estimated uncertainties and co-
variance of the regression parameters. Table 5 lists the
resulting estimates.

Based on these results, using the criterion that

Dij j
u Dið Þ � 2 ð4Þ

the CCQM-K54 Final Report concluded that the measure-
ments for the mixtures produced by PSM-7, PSM-2, PSM-5,
and PSM-8 were inconsistent with the consensus GDR
model, but that the other four mixtures were consistent with
it [4].

It is again useful to review the above reasoning from a
statistical viewpoint. Equation (4) represents a classical two-
sided hypothesis test of the null hypothesis that the PSM
contents as defined by the NMI and as estimated by the
repeatability measurements are equal, again performed in-
dependently at approximately a 0.05 level of confidence.
The mixtures for which Dij j u Dið Þ= > 2 (i.e., PSM-7, PSM-
2, PSM-5, and PSM-8) are mixtures for which the null
hypothesis was rejected. This procedure is at best only
approximate because u(Di) as defined by Eq. 3 may be
incomplete (see [11, section 1.2.3]). In any case, the same
implications hold here as in the use of Eq. (2). That is,
although there is approximately a 5% chance individually
for each test that a discrepant result could be obtained by
chance even though the actual mixture content was correctly
specified, the chance for at least one of eight PSMs to be
misidentified is higher than 5%.

The remaining mixtures are those for which the null
hypothesis was not rejected, and for these, one may again
only say that the data obtained by the experiment did not
prove that the mixture content as defined by the NMI

and as estimated by the repeatability measurements are
not equal.

In the following section, an alternative method of analy-
sis is proposed, one that in our view is better able to extract
all of the available information from the experiment and
thus better evaluate the NMI’s gravimetry and purity verifi-
cation capabilities.

Re-analysis based on the Bayesian approach

In our view, the classical statistical approach adopted by the
original analysis is not able to extract all of the available
information from the study. Classical statistical methods rely
on probability distributions of data conditional on parameters,
here, for example, that the Xi and Yi follow Gaussian distribu-
tions with means θi and μi. The probabilities associated with
them, like the 0.05 probability of false rejection of a null
hypothesis, do not provide direct measures of how likely the
null hypothesis is. Classical hypothesis tests are not capable of
answering the questions that we would really like to have
answered, for example: “Given that Eq. (2) was not satisfied,
what is the probability that the mixture is truly an outlier?”
Similarly, “Given that Eq. (2) was satisfied, what is the prob-
ability that the mixture is properly specified?”Computation of
these probabilities requires the inversion from a distribution of
data conditional on parameters to one for the parameters
conditional on the data. This is provided by Bayes Theorem,
and for this reason, we adopt the Bayesian approach [12]
which is better suited to this analysis and at the same time is
fully consistent with the ISO Guide to the Expression of
Uncertainty in Measurement [13] and its supplement 1 [14].
We believe that the advantage of using this approach is fully
demonstrated by this example.

In addition to the choice of statistical paradigm, there are
a number of features of the original analysis method that we
view as problematic and in need of improvement. Perhaps
the most important drawback of the method applied [4] is
that it uses the information about the mixture being verified
to first fit the GDR model and then to verify this same
information. When intrinsically discrepant data are present
(as was the case above with PSM-7), this results in incorrect
assessment. With this observation in mind, we take inspira-
tion from the procedure described in ISO Guide 6143 [7] for
building an analysis function to be used to value-assign gas
certified reference materials (CRMs). The Guide 6143 pro-
cedure uses PSMs to build the function and then uses the
measured instrumental indication y of the CRM to estimate
its corresponding x. In the same way, we may proceed here.
For each PSM, in turn, use the others to estimate the analysis
function and then apply it to the instrument indication yi to
estimate its bxi . This “leave-one-out” approach is what was
actually used in the evaluation of the degrees of equivalence

Table 5 Degrees of equivalence

Cylinder bxiμmol=mol u bxið Þμmol=mol Di u(Di)
Di

u Dið Þ

PSM-1 119.85 0.21 −0.20 0.19 −1.1

PSM-2 119.88 0.11 0.09 0.04 2.3

PSM-3 140.06 0.13 0.03 0.07 0.4

PSM-4 140.74 0.20 −0.04 0.23 −0.2

PSM-5 160.64 0.11 −0.12 0.05 −2.4

PSM-6 181.14 0.20 −0.14 0.19 −0.7

PSM-7 178.34 0.28 2.83 0.30 9.4

PSM-8 198.90 0.14 0.12 0.05 2.4
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for PSM-7 because it was identified as a true outlier caused
by incomplete purity assessment of the n-hexane used in its
preparation. Here, we suggest that all of the materials be
treated equally.

Another potential problem with the original analysis is its
reliance on the Gaussian distribution. Specifically, this deter-
mines the expansion factors k in the two criteria which deter-
mine the fit of the model. In Guenther and Possolo [8], it was
suggested that, when the uncertainties of the xi and the yi are
based on a small number of observations and thus have small
degrees of freedom, it is more appropriate to use a Student’s t
distribution rather than a Gaussian. The maximum likelihood
estimates are then obtained by optimization of the slightly
different criterion given in Guenther and Possolo [8]. Here, a
similar procedure is followed to account for the uncertainty in
the yi. Since the u(xi) are asserted to be expandable to approx-
imate 95% coverage intervals using k02, they are all assumed
to be associated with a “large” number of degrees of freedom
and thus to be well characterized as Gaussian distributions.

Since the original analysis pooled the repeatability meas-
urements before performing GDR, it did not allow for the
estimation of any uncertainty component due to incomplete
elimination of between-day differences in the measurement
process. The confounding of uncertainty components may
lead to over-estimating the u(yi). For this reason, our re-
analysis does not pool the data.

The statistical model

We use a statistical model where the five measurements of
PSM i on day j are observed values yijk of Gaussian random
variables

Yijk jaij;σ
2
ij � N aij;σ

2
ij

� �
; i ¼ 1; . . . ; 8; j ¼ 1; . . . ; 3; k

¼ 1; . . . ; 5: ð5Þ
The notation Y|a represents conditioning, that is, the

probability distribution of the random variable Y given a
specific value for the random variable a. This is necessary in
the Bayesian framework because parameters such as means
and variances have distributions which represent our state of
knowledge about them.

To account for potential differences between measure-
ments made on different days, we assume that the day
means ai1, ai2, and ai3 are related to each other because
these measurements are made on the presumptively un-
changing contents of the same cylinder. However, the meas-
urements may also reflect possible “day” effects that the
atmospheric pressure measurements did not completely ad-
just for. This can be modeled as

aijjμi; t
2 � N μi; t

2
� �

; i ¼ 1; . . . ; 8; j ¼ 1; . . . ; 3: ð6Þ

This makes the “day” effect a random variable with
variance t2. Pooling across mixtures is expressed in this
model by having the same t2 for all eight mixtures, imply-
ing that the “day” effect is due to the same cause for
measurements of all PSMs. This pooling is sensible as all
measurements were made under the same conditions and is
far less severe than the pooling done in the original analysis
where all of the σ2

ij are assumed to be equal.

Assuming the same linear relationship between the ana-
lyte content and the measured values assumed in Eq. (1) we
again have

μi ¼ a0 þ a1 θi: ð7Þ

Combining Eqs. (5) to (7) it follows that

Y ijja0; a1; θi; t2;σ2
ij � N a0 þ a1θi; t

2 þ σ2
ij

5

 !
: ð8Þ

Note that the repeatability measurement data in
Table 2 are the day averages, yij, and day standard deviations,

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP5
k¼1

yijk � yij

� �2
4=

s
. For each mixture and day, the

variance σ2
ij can be estimated via these sij since random

variables S2ij follow a Gamma distribution with degrees of

freedom 2 and 1
2σ2ij

:

S2ijjσ2
ij � Gamma 2;

1

2σ2
ij

 !
: ð9Þ

This is the same condition, in a slightly different form, as
was used in Guenther and Possolo [8].

Finally, we assume that, for each mixture, the xi are
observed values of Gaussian random variables

Xijθi; u2 xið Þ � N θi; u
2 xið Þ� �

: ð10Þ

So far, with the exception of details dealing with the
uncertainty of the indications, this statistical model is essen-
tially the same as what was used by the original analysis.
But, unlike the classical, the Bayesian model requires addi-
tional components in the form of the so-called prior distri-
butions [12] for parameters a0, a1, t, and the θi and σij.
These probability distributions represent our prior knowl-
edge of these parameters, that is, our knowledge before the
experiment was performed. If no such prior knowledge
exists, as is true here, they are assigned so-called non-
informative prior distributions. One possible choice is to
assign in each case a uniform density on a wide interval.
As this choice is not the only prior distribution that can be
reasonably made, it is important to consider possible alter-
natives and see if the analysis results are insensitive to the
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choice of non-informative prior. This is the case for this
particular data set.

Application of Bayes Theorem [12] results in a posterior
distribution of the quantities of interest: the distribution of
θijyi1; yi2; yi3; si1; si2; si3; xi or, in words, the distribution of
the parameters conditional on the observed data. This is the
inversion of probability that was previously discussed and in
most cases needs to be achieved numerically as closed-form
solutions are available only in the simplest cases. The most
common numerical approach is Markov Chain Monte Carlo
(MCMC), often applied using freeware systems such as
WinBUGS and OpenBUGS [15]. However accomplished,
the MCMC process produces “draws” (representative val-
ues) from the posterior distributions of the parameters. Us-
ing a large number of such draws, the means, standard
deviations, and probability intervals for the parameters can
be estimated. Once the model is fully defined (and de-
bugged), obtaining reliable estimates using this computa-
tionally intensive procedure typically requires only a few
wall-clock minutes on a contemporary personal computer.

The analysis

The steps of the proposed analysis are described in this
section. Before proceeding with the actual calculation of
the estimates, as it was in the original analysis, it is neces-
sary to examine how well the linear model fits the data, that
is, to identify any outlying observations. In the original
analysis, this was done using Eq. (2). In a Bayesian analysis,
the usual method of checking model fit is to compute
posterior predictive probabilities (Bayesian posterior p val-

ues) P Y i > yiobs
� �

[16], where yiobs are the observed overall
means for each mixture obtained from Table 2. (See [17] for
an application of posterior predictive probabilities in a more
usual interlaboratory study design). These Bayesian p values
measure how likely it is to obtain the value yiobs given our
model and all of the observed data.

For the CCQM-K54 data, the probabilities are computed

using the posterior predictive distribution of Y i, that is, the
likelihood function

Y ija0; a1; θi; t2;σ2
ij � N a0 þ a1θi; t

2 þ 1

15

X3
j¼1

σ2
ij

 !

integrated over the posterior distributions of the parameters
a0, a1, t, θi, and σij. This calculation is also achieved using
MCMC. Fitting the model to all eight observation pairs
using the WinBUGS program listed in the Electronic
supplementary material produces the Bayesian p values
given in Table 6. The 0 value for PSM-7 identifies it as a
definite outlier while the values for PSM-5 and PSM-6 are too
low for a good fit. In this particular application, we benefit
from the knowledge that the assigned value for PSM-7 was

technically flawed. Observing that the target n-hexane content
of PSM-6 was the same as that for PSM-7, it is quite plausible
that including the miss-assigned value for PSM-7 strongly
distorts the result for PSM-6. As in the original analysis, re-
fitting the model without PSM-7 produces better results. The
Bayesian p values given in the third column of Table 6 are all
larger than 0.05.

The rest of the analysis is now done without the PSM-7
data. The following steps are performed for each cylinder in
turn:

1. For a particular cylinder i′, apply the model given in
Eqs. (5) to (10) to the cylinders 1,2,…,i′−1,i′+1,…,8
using their measurements yijk and xi to produce posterior
densities of a0, a1, and t.

2. Use the measurements for cylinder i′, yi′jk, j01,…,3, k0
1,…,5, to apply the model given in Eqs. (5) to (9) with a
non-informative (uniform) prior for the quantity θi′, and
the posterior densities of the a0, a1, and t. Implement
via MCMC to obtain draws from the posterior distribu-
tion of θi′.

3. The mean of these draws is an estimate of the true
amount of measurand, and the standard deviation is an

Table 6 Bayesian pos-
terior p values Cylinder All

cylinders
PSM-7
excluded

PSM–1 0.34 0.30

PSM–2 0.12 0.13

PSM–3 0.44 0.39

PSM–4 0.32 0.46

PSM–5 0.003 0.06

PSM–6 0.04 0.39

PSM–7 0 –

PSM–8 0.15 0.14

Table 7 Re-analysis results

Arbitrary units μmol/mol μmol/mol

Cylinder byi u byið Þ bxi u bxið Þ Di u(Di) (Di,0.025,
Di,0.975)

PSM-1 1,161.4 2.81 120.07 0.35 −0.42 0.45 −1.32, 0.48

PSM-2 1,157.1 2.74 119.23 0.36 0.74 0.38 −0.01, 1.49

PSM-3 1,357.8 2.92 139.97 0.33 0.11 0.36 −0.59, 0.84

PSM-4 1,365.2 2.93 140.74 0.31 −0.05 0.43 −0.89, 0.79

PSM-5 1,564.3 2.67 161.17 0.31 −0.65 0.34 −1.31, −0.01

PSM-6 1,762.5 2.92 181.33 0.36 −0.34 0.45 −1.24, 0.55

PSM-7 1,733.9 2.74 178.31 0.33 2.86 0.35 2.17, 3.55

PSM-8 1,933.0 2.66 198.11 0.41 0.91 0.44 0.01, 1.72
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estimate of the standard uncertainty. These are labeled
as bxiand u bxið Þ in Table 7. The endpoints of the central
95% of the draws, Di,0.025 and Di,0.975, estimate the 95%
coverage interval.

4. The posterior means and standard deviations of the μi
can also be obtained and are labeled byi and u byið Þ.

The computations were done using the WinBUGS pro-
gram listed in the Electronic supplementary material and
produced the results given in Table 7.

In the Bayesian model, it is possible to quantify the knowl-
edge about the difference (call it δi) between the true quantity

of the mixture content (posterior knowledge of θi based on
measurements) and the assigned value provided by the labora-
tory (lab-specified knowledge of θi in terms of xi and u(xi)) in
terms of a probability distribution. We will call the expected
value of δi the degree of equivalence Di. This is in fact
the same as in the original analysis, that is, Di ¼ xi �bxi,
the difference between the specified value and the pos-
terior mean of θi of the mixture content. The posterior
standard deviation of this distribution estimates the standard
uncertainty, u(Di). Unlike the classical confidence interval on
which Eq. (4) is based, the 95% uncertainty interval (Di,0.025,
Di,0.975) is computed from the endpoints of the central 95% of
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D = 2.86 
P = 0 

PSM-8 
D = 0.91
P = 0.46 

Degrees of Equivalence, µmol/mol 

PSM-2 
D = 0.74 
P = 0.49 

PSM-5 
D = -0.65
P = 0.54 

PSM-1 
D = -0.42
P = 0.85 
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D = -0.34 
P = 0.89 
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D = 0.11
P = 0.94 
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D = -0.05
P = 0.94 

Fig. 2 Density plots of the degrees of equivalence. The curve in each
panel represents a Bayesian estimate of the probability density function
for the δi for the PSM relative to the consensus reference function. The

degree of equivalence Di is also given. The vertical lines mark the ideal
equivalence value of zero
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posterior distribution and has the property that P Di;0:025

�
< di

< Di;0:975Þ ¼ 0:95.
We first note that it is quite likely that the true quantity of

the mixture content is in fact what was specified by the NMI
when the uncertainty interval includes the value 0. This con-
clusion can be drawn about all of the mixtures except for
PSM-5, PSM-7, and PSM-8. The 95% interval for PSM-7 is
far from 0; those for PSM-5 and PSM-8 are marginally so.

The advantage of the Bayesian approach over the classi-
cal is that we can say much more than this about the

mixtures. Figure 2 shows the probability densities of δi for
all of the PSMs, one panel per PSM in order of improving
|Di|. By observing the position of 0 under the curve, it
becomes clear that agreement between what is specified
and what is measured is much more likely for some of the
mixtures than for others. For example, it is much more likely
for PSM-3 than for PSM-2 although the shapes of the
density functions are rather similar.

To better quantify this observation, we can compute the
probability that δi lies in a given interval, thus giving a direct
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1 = 0.93
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Fig. 3 Assigned and consensus probability densities for the analyte
content, θ. The dashed line in each panel represents the Gaussian
probability density function for the analyte content as assigned by the
NMI. The solid line represents the density function for the Bayesian

estimate of analyte content as calibrated through the consensus refer-
ence function. The shaded area represents the probability content φ1,
the fractional area of the posterior distribution of θi that lies within the
95% uncertainty interval that was assigned by the NMI
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probability of such an event. For example, a measure of how
likely it is that the assigned value of a mixture is well specified
is the probability that δi is contained within in the interval
from −2u(Di) to 2u(Di): Pi ¼ P �2u Dið Þ < di < 2u Dið Þð Þ .
The Di and Pi values for each PSM are provided in the
corresponding panel of Fig. 2.

A more intuitive method of evaluating the specification
of the mixture content under the Bayesian paradigm is the
following. For each mixture, we can obtain the probability
content, 8 1i, of its certified 95% uncertainty interval comput-
ed under the posterior distribution for θi. If the mixture is well
specified, 8 1i should be large since the usual understanding of

the certified uncertainty interval is that it contains the true
value with probability 0.95. The posterior density represents
our best knowledge of θi after the experiment. Figure 3 com-
pares the intervals for all of the PSMs, one panel per PSMwith
the panels in order of increasing 8 1i.

Figure 3 shows that the assigned value interval for PSM-
7 is not covered and those for PSM-8, PSM-2, and PSM-5
are poorly covered. The assigned values for all of these
PSMs are biased relative to the consensus model and have
uncertainties that appear to be too small. These mixtures
were identified by the original analysis as “not consistent
with the [Key Comparison Reference Value] KCRV”. The
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Fig. 4 Assigned and consensus probability densities for the analyte content, θ. As in Fig. 3 but with the shaded area representing the probability
content φ2, the fractional area of the 95% uncertainty interval assigned by the NMI that lies within posterior distribution of θi
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remaining four PSMs achieve coverage over 60% but only
PSM–4 is close to 95%. The figure shows that PSM-6 and
PSM-1 are somewhat biased relative to the consensus mod-
el, but their uncertainties are large enough to provide good
probability coverage. PSM-3 has a very small bias, but
because its specified uncertainty is rather small, its φ1i is
only 0.60. In comparison, PSM–4 achieves coverage prob-
ability of 0.93 since its specified uncertainty is close to the
uncertainty obtained in the experiment.

This illustrates an important point: The posterior uncertain-
ties are a function not only of the measurement repeatability
but also of the consensus fit of the set of PSMs to the linear
model. One could argue that this particular experiment resulted
in posterior uncertainties that are too large. If the posterior
uncertainty for PSM–3 was smaller, that is, more in line with
the assigned uncertainty, then the 8 1i for PSM–3 would im-
prove. However, because of their biases, the 8 1i of some of the
other PSMswould bemade worse. In fact, if one could achieve
the perfect experiment, then the posterior density of each θi
would be a point mass at the true value. In such a case, 8 1i

would equal 1 if the point mass was within the 95% specified
uncertainty interval and 0 otherwise. If the posterior densities
remained centered, as they are in Fig. 3, then the solid curves
would shrink to the posterior mean (corresponding to the
center). The 8 1i of PSM–3, PSM–1, PSM–6, and PSM–4
would be equal to 1 and the others would be 0. From this,
one can conclude that if a PSM has 8 1i of 0.5 or more then it is
likely well specified.

Another way to view this data is to consider the proba-
bility content 8 2i of the 95% posterior probability interval
under the specified probability density. Since the posterior
probability interval has 0.95 probability of containing the
true value, large 8 2i is desirable. Figure 4 compares the
intervals for all of the PSMs, one panel per PSM with the
panels in order of increasing 8 2i. Again it is instructive to
consider the perfect experiment which would result in the
95% posterior probability interval being a single point. Then
8 2i would be the probability, computed under the specified
density, that θi is equal to this point. If we again assume that
the centers of the posterior densities remain the same, then
the solid curves in Fig. 4 shrink to their center points. PSM–
3 and PSM–4 would then have high values of 8 2i while the
others would be much smaller, with the values of PSM–7,
PSM–8, PSM–2, and PSM–5 being close to 0.

Summary

We examined the published analysis of CCQM-K54 criti-
cally and identified some aspects that should be more fully
considered in future studies. We identified and explained
how the original analysis’s reliance on the frequentist theory
of probability was not able to extract all of the available

information from the data. We presented an alternative anal-
ysis which was able to draw stronger, more quantitative
conclusions. Our analysis used several novel concepts, most
importantly a Bayesian framework, a leave-one-out strategy
for the estimation of bxi, model fitting via Bayesian posterior
probabilities and posterior coverage probability calculation
for the specified 95% uncertainty intervals. We showed the
added benefit that these brought to the analysis of CCQM-
K54 data. Our analysis methods are appropriate for other
comparisons of individually value-assigned reference materi-
als. With extension of the statistical model to accommodate
measurements on multiple units, the methods can be made
appropriate for comparisons of batch-assigned materials.
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ity conditions by one organization.
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