

Representation of functional networks in STEP AP210
with application to SPICE circuit simulation

James Stori
SFM Technology, Inc.,

This publication was produced as part of contract SB134105-Z0023010248 with the National Institute of
Standards and Technology. The contents of this publication do not necessarily reflect the views or policies
of the National Institute of Standards and Technology or the US Government.

NIST GCR 11-949

NIST GCR 11-949

November, 2011

Representation of functional networks in STEP AP210
with application to SPICE circuit simulation

Prepared for

U.S. Department of Commerce

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899-XXXX

By

James Stori
SFM Technology, Inc.,

U.S. Department of Commerce
John Bryson, Secretary

National Institute of Standards and Technology
 Patrick D. Gallagher, Director

Representation of functional networks in STEP AP210
with application to SPICE circuit simulation

STEP AP210 (ISO 10303-210) supports a comprehensive functional network model representation. SPICE
(Simulation Program with Integrated Circuit Emphasis) is a general purpose, industry standard, analog
electronic circuit simulation. Originally developed at the University of California, Berkeley in the
1970s,1,2 SPICE has evolved into a de-facto standard for analog circuit simulation with several prominent
variants, both open source and commercial, including SPICE3 from UC Berkeley3, PSPICE4 (now owned
by Cadence, HSPICE5 (now owned by Synopsis), and LTspice6

This document provides an overview of the functional network representation in AP210 at both the
ARM (application reference model) and MIM (module integration model) levels, and proposes a
recommended practice for bi-directional mapping between a SPICE circuit representation and an AP210
functional network representation.

 from Linear Technology.

Notation
In the discussion that follows, ARM application objects will be written with the leading character
capitalized (i.e. Functional_unit), while MIM entities will be written in all lower case
(component_functional_unit).

Overview of the AP210 Functional Network Model
The top-level ARM AOs and relationships involved in the definition of a functional network are described
in Figure 1, below. A Functional_unit_network_definition is a description of a version
(Functional_version) of a product (Functional_product) through a network-based representation. A
Functional_unit_network_definition consists of a series of network nodes
(Functional_unit_network_node_definition) that reference the Functional_unit_network_definition. A
network definition is required to have a usage view (Functional_unit_usage_view), which defines the
externally visible interface of an instance (Functional_unit) of the functional product. Typically, a subset
of the nodes of a network definition will be mapped to nodes
(Functional_unit_usage_view_terminal_definition) in the usage view. The terminal definition represents
an individual signal of a usage view. Most commonly, the terminal definition will be of the subtype
Scalar_terminal_definition, and the signal_name attribute will be the known identifier for the terminal.
A top-level network representation is composed of instances of either other networks or base network
elements interconnected through the nodes of the network. Each instance that is used to compose the

1 Nagel, L. W, and Pederson, D. O., SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum
No. ERL-M382, University of California, Berkeley, Apr. 1973

2 Nagel, Laurence W., SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memorandum No. ERL-
M520, University of California, Berkeley, May 1975
3 http://bwrc.eecs.berkeley.edu/classes/icbook/spice/
4 http://www.cadence.com/products/orcad/pspice_simulation/pages/default.aspx
5 http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx
6 http://www.linear.com/designtools/software/

http://bwrc.eecs.berkeley.edu/classes/icbook/spice/�
http://www.cadence.com/products/orcad/pspice_simulation/pages/default.aspx�
http://www.synopsys.com/Tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx�
http://www.linear.com/designtools/software/�

network definition is a Functional_unit, regardless of whether it is itself a network definition, or a base
network element. Each node in the network will be connected to at least one terminal
(Functional_unit_terminal) of a Functional_unit through a Functional_unit_terminal_node_assignment.

 The key ARM application objects and relationships relevant for the description of a Functional_unit are
detailed in Figure 2. A Functional_unit is an instance, or occurrence, of a functional product, whose
interface is provided through its usage view. The Functional_unit is ‘defined by’ a Functional_unit_usage
view. Each Functional_unit will have a Functional_unit_terminal for each terminal definition in the usage
view, and must directly reference the corresponding Functional_unit_usage_view_terminal_definition.

Very commonly, parametric data must be associated with either a Functional_product or an individual
instance of a functional product, a Functional_unit. A Model_parameter is used to represent the
underlying parameter or variable. A specific value may be assigned to the model parameter and
associated with either the Functional_product or Functional_unit through a Parameter_assignment, as
shown in Figure 2. It is also possible for a specific value to the assigned to the parameter by the
Functional_product, and then overridden by a specific Functional_unit. In this case, the
Parameter_assignment_override should be employed. Groupings and associations among model
parameters and functional products can be achieved through a Class_with_attributes. As will be
discussed below, the recommended practice for the SPICE representation will employ this mechanism in
the representation of SPICE circuit elements and models.

A particular type of polarized capacitor, for example, may be a recurring element in a circuit network.
This polarized capacitor would be a functional product. Its usage view would have two terminals,
identified as the ‘anode’ and ‘cathode’. Each instance of this type of capacitor would be a
Functional_unit. At the discretion of the modeling application and context, characteristics of the
functional model, such as the equivalent series resistance, equivalent series inductance, nominal
capacitance, etc., might be associated with either the Functional_unit, the Functional_product, or both
(a common value associated with the Functional_product, and selectively overridden by the
Functional_unit in specific cases.

The MIM mapping of the key ARM AOs and relationships in the functional network model
representation are detailed in Figures 3 and 4. In these figures, the mapped ARM AO is selectively
provided in blue to aid in the interpretation of the mapping. With reference to Figure 3, note that both
the Functional_unit_usage_view and the Functional_unit_network_definition both map to the MIM
entity functional_unit. The name attribute of the associated product_definition_context (‘functional
design usage’ and ‘functional network design’, respectively, may be used to identify the two AO
concepts, as may the directionality of the product_definition_relationship (with name ‘design usage’)
that relates the two. The Functional_product maps to a MIM product entity, with the associated
product_context and product_related_product_category attributes outlined in the figure. Certain
aspects of the terminology in the ARM to MIM mapping may lead to confusion. Particularly noteworthy
is that the ARM AO Functional_unit_definition (either network definition or usage view) maps to the
MIM entity functional_unit, while the ARM Functional_unit (instance of a Functional_unit_definition)
maps to the MIM component_functional_unit.

The remaining AP210 concepts needed to support the mapping and representation of a functional
network will be discussed below in the specific context of the SPICE circuit network representation. A
representative example will be used throughout the discussion to illustrate the concepts and mappings.

Due to its position as a leading freely available implementation of SPICE, LTspice IV has been used for
the examples and proof-of-concept JAVA implementation of the bi-directional SPICE<->AP210 mapping.
However, the illustrated concepts and examples should be readily transferable to alternate SPICE
implementations with minor modification.

SPICE circuit
Figure 5 contains both a schematic and netlist representation of a SPICE circuit provided with the
LTspice IV installation. As this recommended practice is limited in scope to the functional network only,
the netlist representation shall serve as the interface to the SPICE circuit. This particular network
consists of 5 nodes and 8 circuit elements interconnecting the nodes. Circuit elements are instances of
functional building blocks of the simulated circuit such as resistors, capacitors, diodes, transistors. The
specific set of circuit elements may vary among SPICE implementations. The nodes are identified by
unique string identifiers within a circuit. All SPICE circuits have an explicit ground node named ‘0’. This
circuit has 4 additional nodes, with string identifiers ‘N001’, ‘N002’, ‘N003’, and ‘N004’. The top-level
SPICE circuit is represented by a functional_unit (Functional_unit_network_definition. Each of the
network nodes will be represented as a network_node_definition
(Functional_unit_network_node_definition) whose id attribute stores the string identifier of the SPICE
node reference. All nodes of a top-level SPICE circuit may be monitored or interrogated by the end-user
during a simulation. For this reason, the usage view of the circuit representation will contain all of the
nodes in the network definition. The AP210 representation enables explicit management of versions of
circuit models through the Functional_version and Functional_product AOs. There is no corresponding
formal mechanism for configuration management within the SPICE representation.

SPICE circuit element
Each of the individual circuit elements will map to a Functional_unit (component_functional_unit) in the
AP210 model. Each circuit element is an instance of an underlying SPICE model element, typically with
one or more parameter values explicitly specified. Circuit elements may or may not include a reference
to a separate .model declaration which enables grouping and reuse of parameter values associated with
a common element. The syntax of a SPICE element includes the instance identifier and sequence
dependent references to the network nodes for the terminals of the element, followed by the
parameters prescribed to the element. The leading letter of the instance identifier determines the
underlying model reference.

For example, the syntax of the inductor element (from the LTspice users guide) is given as follows:

Syntax: Lxxx n+ n- <inductance> [ic=<value>]
+ [Rser=<value>] [Rpar=<value>]
+ [Cpar=<value>] [m=<value>] [temp=<value>]

In the above, values in brackets are optional. Element L4 in Figure 5 is an instance of an inductor
between nodes ‘N003’ and ground (‘0’) represented as follows:

L4 N003 0 1mH Rser=100

L4 has an inductance of 1mH, and one of the optional parameter values (Rser) is provided. In the AP210
functional representation, an individual circuit element instance such as L4 is a Functional_unit
(component_functional_unit) which is an instance of a functional product. The recommended practice
for representation of SPICE circuit elements in AP210 is to create a functional product for each SPICE
model that is to be used in the circuit. This functional product will have a series of model parameters to
which specific values can be assigned. With reference to Figure 2, specific values can be assigned to a
model parameter at either the level of the functional product or the instance (Functional_unit). In the
case of a SPICE element that does not have a .model reference, all parameters associated with the
specific circuit element instance will be populated through a Parameter_assignment of the
functional_property aggregate of the Functional_unit.

Although units are implicit in the SPICE netlist, all parameter values are to be populated with explicit
units in the AP210 representation. Additionally, it is recommended that model parameters be explicitly
associated with their respective Functional_product. As shown in Figure 2, the Class_with_attributes can
be used as a grouping mechanism for this purpose. Each model parameter will be directly related to this
Class_with_attributes through a Classification_attribute.

In the case of the inductor, a Functional_product would be created for the SPICE inductor model, as well
as a corresponding Class_with_attributes. Each of the parameters for the specific model, including the
inductance value, equivalent series and parallel resistance values (Rser, Rpar), etc. would be
represented as a Model_parameter associated with the Class_with_attributes. Figure 6 details both the
ARM AOs and relationships and corresponding MIM mappings for these concepts.

The model parameter is only meaningful in the context of the specific simulation implementation in
which it is defined. For this reason, the model parameters should provide a reference to the external
system in which they are applied. The reference_document derived attribute on the Model_parameter
is used to access this external reference document. Figure 6 shows the ARM AOs and MIM entities
appropriate for providing a reference to an external digital document that may be accessed through a
URL. The External_source_identification (applied_external_identification_assignment) provides an
external reference for a Digital_document_definition. The identification_role identifies the protocol for
interpreting the external_source, in this case, a URL, while the source_id attribute contains the specific
URL. In the context of a LTspice model, it would be appropriate to explicitly reference the current
version of the user’s guide in which the model parameters are based. It is also recommended that the
same referenced digital document be associated with the characterized_class (Class_with_attributes).

Figure 7 details the ARM application objects and relationships used in the representation of a
Parameter_assignment . The Numerical_item_with_unit contains an explicit declaration of the unit of
the represented value, which may be a fundamental unit subtype such as a Time_Unit or a Derived_unit
composed of multiple Derived_unit_element. Figures 8 and 9 contain the corresponding MIM mapping

of the concepts relevant in the expression of parametric data, and its relationship to the functional
model. With reference to Figure 8, note that a single parameter_assignment entity serves as both the
Parameter_assignment and the Representation application objects from the ARM.

In the top portion of Figure 8, a parameter_assignment is associated with a component_functional_unit
(Functional_unit). In Figure 9, a parameter_assignment is associated with a product
(Functional_product) through a product_specific_parameter_value_assignment. In the event that a
parameter value is assigned to a model parameter for a functional_product, and then overridden by
another parameter value associated with a specific component_functional_unit, a
parameter_assignment_override would be employed. In the recommended practice for SPICE model
representation, this will not happen, as parameters values are associated with either the
component_functional_unit or the functional_product, but not both.

The MIM type hierarchy involved in the expression of measure values and units is somewhat involved.
The representation_item corresponding to a Numerical_item_with_unit will be a complex of a
measure_representation_item and a measure_with_unit. If the measure corresponds to an available
subtype of measure_with_unit, such as time_measure_with_unit in the example of Figure 8, this more
specific subtype should be used (i.e. measure_representation_item+time_measure_with_unit). A similar
concept applies to the representation of units. The SPICE parameters are expressed in either base SI
units or derived SI units. Figures 8 and 9 illustrate both cases. In the event of a base SI unit, a complex of
si_unit with the specific subtype representing the unit of measure (i.e. electric_current_unit or
time_unit) should be populated. Figure 9 illustrates a complete example of the population of a
parameter value expressed in a derived SI unit (in this case V/deg. C) associated with a
model_parameter and a product (Functional_product).

SPICE .model
Certain circuit elements have many parameters. These elements require a reference to a .model
declaration where a set of common parameter values are prescribed. Consider the JFET transistor model
whose syntax is as follows:

Syntax: Jxxx D G S <model> [area] [off] [IC=Vds, Vgs] [temp=T]

The transistor has three terminals identified by their specification sequence. The <model> entry
represents a reference to a .model declaration, which is required. The remaining bracketed entries are
optionally specified parameters.

An example taken from the circuit of Figure 5 is JFET transistor J1, and the corresponding .model
2N5484. The netlist representation is as follows:

J1 N001 N002 N003 2N5484
…
.model 2N5484 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-1.5 Vtotc=-3m Beta=3.0m
Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)

In this particular example, all of the parameter are specified through the .model reference. For circuit
elements with a required .model reference, the recommended practice is that the .model be populated
as a Functional_product, and with Parameter_assignment for each of the parameter values provided in
the .model declaration. The recommended population for the key model identification strings is as
follows: The .id attribute contains the identifier of the model (2N5484) while the .name attribute
contains the explicit model identifier (NJF). Finally, the associated Class_with_attributes
(characterized_class) stores the circuit element type ‘J’ as its id. The individual circuit element J1 is then
a Functional_unit (component_functional_unit) referencing the usage view of this functional product. If
any of the optional parameter values had been specified for element J1, each would be populated
through a parameter_assignment associated with the component_functional_unit. Figure 9 illustrates
the population of the Vtotc parameter of the 2N5484 model. The AP210 functional model
representation enables formal declaration of the model parameters, explicit support for units, and re-
use through the Functional_product concept.

SPICE .subck
A .subck declaration enables the definition of a reusable circuit element. Multiple instances of a
subcircuit can be referenced in a single circuit, and subcircuits can be declared within other subcircuits
to arbitrary degrees of complexity. A subcircuit maps to a Functional_unit_network_definition. In the
AP210 representation, there is no conceptual difference between a top-level circuit network definition,
and a reusable network definition corresponding to a subcircuit. The AP210 functional model has the
benefit of formalizing the notion of the interface to a functional unit definition through the usage view.
Unlike the top-level network definition, a subcircuit has an implicit interface which is that subset of the
nodes of the subcircuit named in the .subck declaration. As in the other circuit elements, the subcircuit
element (X) relies on the sequence of the node references to map to the interface nodes of the
subcircuit. A simple example of a subcircuit declaration (from the LTspice users guide) is provided below:

*
* This is the circuit definition
X1 a b 0 divider
V1 a 0 10
C2 N004 0 50p
C3 N003 0 750p
X2 N003 b N004 divider
* this is the definition of the subcircuit
.subckt divider x1 x2 x3
r1 x1 x2 2k
r2 x2 x3 2k
.ends
.tran 3µ
.end

In the above, example, the subcircuit ‘divider’ is populated as a Functional_product (product) with both
a Functional_unit_network_defintion and Functional_unit_usage_view (each a functional_unit). The
network definition contains three nodes (network_node_definition) In this case all three nodes of the
subcircuit network are exposed to the subcircuit interface, so the usage view contains these same three

nodes. The two resistors within the subcircuit are each a Functional_unit (component_functional_unit)
of a common resistor model. The terminals of these resistor instances are associated with the nodes of
the subcircuit, and are not visible to the top-level circuit network representation. ‘X1’ is a subcircuit
element – an instance of the divider subcircuit. The terminals of the X1 subcircuit element are mapped
to the corresponding nodes in the interface of the divider declaration based on their sequence (a->x1, b-
>x2, 0->x3). In the AP210 functional representation, X1 will be populated as a Functional_unit
(component_functional_unit) referencing the usage view of the divider subcircuit. X1 will have three
Functional_unit_terminals (component_functional_terminal) each associated with a corresponding
terminal (Scalar_terminal_definition) in the usage view of the Functional_product corresponding to the
subcircuit.

Simulator Directives (Dot Commands)
In addition to the definition of a circuit network, consisting of the declaration of circuit elements, SPICE
models, and subcircuits as discussed above, the SPICE netlist representation will typically include a
variety of simulator directives that specify the type of analysis to be performed as well as a variety of
details concerning the simulation execution. As these directives do not contribute to the circuit
topology, they are not included in the AP210 functional model representation.

Case Study and Validation
To validate and demonstrate the proposed bi-directional mapping, a prototype implementation has
been developed in JAVA based on the JSDAI7

To support round-trip verification of the implementation, simulator directives are extracted from the
input netlist and appended to the output netlist – a comment to this effect is included in the output
netlist files indicating the start of the appended dot directives. These directives are not persisted in the
AP210 functional model. All other data, including the complete circuit representation including all
parametric and model details in the output files has been extracted directly from the AP210 functional
representation.

 library for manipulating EXPRESS data models. The JAVA
implementation supports a subset of the most common LTspice IV circuit elements and parameters, and
may be readily extended to support other SPICE implementations and models. The JAVA
implementation parses the original SPICE circuit and populates an internal Java representation of the
SPICE network, circuit elements, and models. This SPICE network is then mapped to the corresponding
AP210 representation and written out as a Part 21 physical file. The process is the repeated in the
inverse direction with the AP210 model of the functional network read and converted to the
corresponding SPICE model. The equivalence of the input and output SPICE networks has been verified
by using both to drive the simulation, and comparing waveforms of representative traces from each.

Four representative example circuits, provided with the LTspice IV installation have been used to
validate and demonstrate the bi-directional mapping. These examples contain a wide variety of circuit
elements, models, and parameter representations. The SPICE netlists generated from the AP210
functional network models for these representative circuits are contained in the Appendix. The original

7 http://www.jsdai.net/

http://www.jsdai.net/�

netlists, along with the generated AP210 functional models, and corresponding output netlists are
provided in the demo files directory of the prototype bi-directional SPICE<->functional network JAVA /
JSDAI implementation.

Figure 1. Top-level ARM application objects in the definition of a functional network.

Functional_unit_network_
definition

Functional_unit_terminal

Functional_unit_network_termin
al_definition_node_assignment

connected_terminal composed_node

Functional_unit
_usage_view

Functional_unit_usage_
view_terminal_definition

Functional_unit_termi
nal_node_assignment

associated_functional_unit_definition

Scalar_terminal_
definition

Functional_version

of_product

Functional_product

usage_view

Functional_unit_network_
node_definition

composed_node

(INV) node_assignment [0:1]

defined_version defined_version

connected_terminal

Functional_unit_definition

Functional_unit_network_
node_definition

associated_functional_unit_definition

…
.

Functional_unit_terminal

Functional_unit_termi
nal_node_assignment

(INV) node_assignment [0:1]

connected_terminal

composed_node

…
.

Figure 2. Top-level ARM application objects in the description of a Functional_unit.

Functional_unit

Functional_unit_terminal

Functional_unit_
usage_view

Functional_unit_usage_v
iew_terminal_definition

definition

Scalar_terminal_definition

Functional_version

defined_version

of_product

Functional_product

definition

Product_specific_parameter
_value_assignment

of_product

Parameter_assignment

assigned_parameter

Model_parameter

property

Information_product

Parameter_assignment
_override

functional_property [1:?]

Parameter_assignment

property

overridden_parameter_assignment

overriding_parameter_assignment

Functional_unit_usage_v
iew_terminal_definition

Functional_unit_terminal
definition

associated_functional_unit_definition
(INV) access_mechanisms [1:?]

accessed_functional_unit

Classification_assignment

Class_with_attributes

assigned_class items [1:?]

Classification_attribute

characerized_class

attribute_definition

Figure 3. MIM mapping of AOs related to the Functional_product and Functional_unit_definition.

Functional_unit_
network_definition

Functional_unit_
usage_view

Functional_product

functional_unit

product_definition_f
ormation

formation

product

of_product

related_product_definition

formation

frame_of_reference [1:?]

product_context

{.name = ‘functional’}

application_context
frame_of_reference

product_related_pr
oduct_category

products [1:?]

product_related_pr
oduct_category

products [1:?]

product_definition_
context

frame_of_reference

{.name = ‘functional design usage’}

product_definition_
context_association

definition

product_definition_
context_role

.name = ‘part definition type’

role

frame_of_reference

functional_unit

product_definition_
context

{.name = ‘functional network design’}

product_definition_
context_association

product_definition_
context_role

.name = ‘part definition type’

role

frame_of_reference

definition

.name = ‘functional’ .name = ‘information’

product_definition
_relationship

{.name = ‘design usage’}

relating_product_definition

frame_of_reference

Figure 4. MIM mapping of AOs related to the Functional_unit and
Functional_unit_network_definition.

Functional_unit_network_
definition

Functional_unit_terminal
_node_assignment

Functional_unit_network
_node_definition

Functional_unit_usage_view

Functional_unit

functional_unit

network_node_definition

Functional_unit_terminal

Scalar_terminal_definition

definition

relating_product_definition

product_definition_relationship

related_product_definition

property_definition

relating_property_definition

property_definition_relationship

related_property_definition

.name = ‘functional unit terminal node assignment’

property_definition

component_functional_terminal

definition

component_functional_unit

product_definition_shape

of_shape

definition

relating_shape_aspect

shape_aspect_relationship

related_shape_aspect

.name = ‘instantiated terminal’

functional_unit_terminal_definition

functional_unit

of_shape

.name = ‘functional unit network node’

Figure 5. A representative network (Clapp.asc) provided with the LTspice IV installation to illustrate
the representation and mapping concepts.

N001

N002

N003
N004

0 0 0 0

0

* Clapp.net extracted from C:\Program Files
(x86)\LTC\LTspiceIV\examples\Educational\Clapp.asc
J1 N001 N002 N003 2N5484
V1 N001 0 10.
L4 N003 0 1mH Rser=100
C1 N002 N003 750p
C2 N004 0 50p
C3 N003 0 750p
L1 N002 N004 100µ
D2 0 N002 1N4148
.model 1N4148 D(Is=2.52n Rs=.568 N=1.752 Cjo=4p M=.4 tt=20n Iave=200m Vpk=75
mfg=OnSemi type=silicon)
.model 2N5484 NJF(Is=.25p Alpha=1e-4 Vk=80 Vto=-1.5 Vtotc=-3m Beta=3.0m
Lambda=10m Betatce=-.5 Rd=10 Rs=10 Cgs=4p Cgd=4p Kf=3e-17 mfg=Siliconix)
.model NJF NJF
.model PJF PJF
.tran 250µ startup
.options method=trap
* This example schematic is supplied for informational/educational purposes
only.
.backanno
.end

Figure 6. ARM AOs (top) and corresponding MIM mappings (below) for the grouping and association
of model parameters.

External_source_identification

Classification_system

Classification_attribute

Class_with_attributes

used_classification_system
Class

characerized_class

Classification_attribute

characerized_class

attribute_definition attribute_definition

Document_assignment

assigned_document

is_assigned_to

Document_assignment

assigned_document

is_assigned_to

Model_parameter Model_parameter

Digital_document_definition

Class_with_attributes

Classification_attribute

characterized_class

property_definition

characerized_class
Document_assignment

assigned_document

items [i]

Model_parameter

Digital_document_definition

general_property_association

model_parameter

{.name = ‘attribute definition’}

base_definition

derived_definition

applied_document_reference

product_definition

product_definition_context

{.name = ‘digital document definition’}

frame_of_reference

document

items [i]

document_product_equivalence

related_product

relating_document

document_type

{.product_data_type =
‘configuration controlled
document definition’}

kind

{.name = ‘equivalence’}

applied_external_identification_
assignment

identification_role external_source

source role

items [i]

{.name = ‘URL’} {.source_id = ‘http:// ….’}

External_source_
identification

item

Figure 7. ARM AOs and relationships involved in the representation of a Parameter_assignment.

Derived_unit

Derived_unit_element

elements S[1:?]

Unit

Mass_unit

Thermodynamic_temperature_unit

Electric_current_unit

Time_unit

…
…

.

Unit

REAL

base_unit

exponent

Model_parameter

Parameter_assignment

Class_with_attributes

Classification_attribute

characerized_class

attribute_definition

Representation

rep

Numerical_item_with_unit

items [1:?]

definition

Representation_context

context_of_items

Measure_item

Value_with_unit

Unit

measure_value

unit

value_component

Figure 8. MIM mapping of Parameter_assignment and Numerical_item_with_unit.

parameter_assignment

definition

model_parameter
definition

property_definition

.description =
‘assigned parameter’

property_definition_
representation

definition

used_representation
representation

representation_items

items S[1:1]

used_representation

component_functional_unit

measure_representation_item

measure_with_unit

capacitance_measure_with_unit

time_measure_with_unit

representation_item

measure_representation_item+time_measure_with_unit

…
.

value_component
measure_value

unit
unit_component

si_unit

 electric_current_unit

time_unit

named_unit

si_unit+time_unit

…
.

Figure 9. A representative parameter_assignment with a derived_unit associated with a product.

derived_unit

dimensional_exponents
(DER)dimensions

derived_unit_element

derived_unit_element

 unit
.exponent = 1.0 si_electric_potential_unit

unit
si_unit+thermodynamic_temperature_unit.exponent = -1.0

 [1]

derived_unit named_unit

 [2]

.DEGREE_CELSIUS.

si_unit_name

elements S[1:?]

name

si_prefixprefix

si_unit_namename

.VOLT.

.MILLI.

measure_representation_item+
measure_with_unit

unit_component
measure_value

value_component

product

product_specific_parame
ter_value_assignment

products [1:?]

parameter_assignment

definition

model_parameter
definition

property_definition

.description =
‘assigned parameter’

property_definition_
representation

definition

used_representation

representation

items S[1:1]

used_representation

.id = ‘Vtotc’
.description = ‘Threshold voltage

temperature coefficient’

.id = ‘2N5484’
.name = ‘NJF’

APPENDIX A: Representative SPICE netlists generated from AP210 functional
models.

Figure A1. The LTspice netlist generated from the MC168.stp test case. The corresponding schematic is
provided for reference.

* LTSpiceIV Netlist Generated from AP210 file: MC1648.stp
C1 AGC 0 0.1µ
C2 Bias 0 0.1µ
C3 Tank Bias 10p
D1 AGC N007 DD
D2 N011 0 DD
D3 Bias N011 DD
L1 Tank Bias 1µ
Q1 Vcc1 N001 OUT 0 NP
Q11 N004 Bias N008 0 NP
Q2 N001 N004 N005 0 NP
Q3 Vcc1 N003 N005 0 NP
Q4 N003 Tank N010 0 NP
Q5 AGC N010 N012 0 NP
Q6 Vcc1 Tank N006 0 NP
Q7 Tank Bias N006 0 NP
Q8 N009 N007 0 0 NP
Q9 Vcc1 N002 N004 0 NP
R1 OUT 0 300
R10 N002 N004 2k
R11 Vcc1 N002 2k
R12 Vcc1 Bias 1k
R13 Vcc1 AGC 25k
R2 Vcc1 N001 400
R3 N005 0 1k
R4 Vcc1 N003 2k
R5 N010 0 1k
R6 N012 0 600
R7 N007 0 25k
R8 N006 N009 200
R9 N008 0 1k
V1 Vcc1 0 5
.model DD D(Cjo=5p Rs=20)
.model NP NPN(Bf=150 Cjc=3p Cje=3p Rb=10)
* Appended dot commands extracted from input file.
.tran 0 1.9m 0 1u startup
.backanno
.end

* LTSpiceIV Netlist Generated from AP210 file: butter.stp
C1 N001 0 0.3396
C10 OUT2 0 0.3903
C11 N009 0 0.4714
C12 N010 N009 0.8103
C13 N011 0 1.526
C14 N012 N011 0.8103
C15 OUT3 0 0.4714
C16 N013 0 0.6177
C17 N014 N013 0.6177
C18 N015 0 2
C19 N016 N015 0.6177
C2 N002 N001 1.125
C20 OUT4 0 0.6177
C3 N003 0 1.099
C4 N004 N003 1.125
C5 OUT1 0 0.3396
C6 N005 0 0.3903
C7 N006 N005 0.9785
C8 N007 0 1.263
C9 N008 N007 0.9785
I1 0 N001 1 AC=1
I2 0 N005 1 AC=1
I3 0 N009 1 AC=1
I4 0 N013 1 AC=1
L1 N001 0 2.945
L10 OUT2 0 2.562
L11 N009 0 2.1213
L12 N010 N011 1.234
L13 N011 0 0.6553
L14 N012 OUT3 1.234
L15 OUT3 0 2.1213
L16 N013 0 1.617
L17 N014 N015 1.617
L18 N015 0 0.5
L19 N016 OUT4 1.617
L2 N002 N003 0.889
L20 OUT4 0 1.617
L3 N003 0 0.9099
L4 N004 OUT1 0.889
L5 OUT1 0 2.945
L6 N005 0 2.562
L7 N006 N007 1.022
L8 N007 0 0.7918
L9 N008 OUT2 1.022
R1 N001 0 1
R2 OUT1 0 1
R3 N005 0 1
R4 OUT2 0 1
R5 N009 0 1
R6 OUT3 0 1
R7 N013 0 1
R8 OUT4 0 1
* Appended dot commands extracted from input file.
.ac oct 50 .01 3
.backanno
.end

Figure A2. The LTspice netlist generated from the butter.stp test case. The corresponding schematic
is provided for reference.

* LTSpiceIV Netlist Generated from AP210 file: Clapp.stp
C1 N002 N003 750p
C2 N004 0 50p
C3 N003 0 750p
D2 0 N002 1N4148
J1 N001 N002 N003 2N5484
L1 N002 N004 100µ
L4 N003 0 1m Rser=100
V1 N001 0 10
.model 1N4148 D(Cjo=4p Iave=200m Is=2.52n M=0.4 N=1.752 Rs=0.568 Vpk=75 tt=20n)
.model 2N5484 NJF(Alpha=0.0001 Beta=3m Betatce=-0.5 Cgd=4p Cgs=4p Is=0.25p Kf=0
Lambda=10m Rd=10 Rs=10 Vk=80 Vto=-1.5 Vtotc=-3m)
* Appended dot commands extracted from input file.
.tran 250µ startup
.options method=trap
.backanno
.end

Figure A3. The LTspice netlists generated from the Clapp.stp and divider_with_subckt.stp test cases
(see Figure 5 for the Clapp schematic).

* LTSpiceIV Netlist Generated from AP210 file: divider_with_subckt.stp
C2 N004 0 50p
C3 N003 0 750p
V1 a 0 10
X1 a b 0 divider
X2 N003 b N004 divider
.subckt divider x1 x2 x3
r1 x1 x2 2k
r2 x2 x3 2k
.ends
* Appended dot commands extracted from input file.
.tran 3µ
.end

	NIST GCR 00-XXXX
	U.S. Department of Commerce
	National Institute of Standards and Technology
	Representation of functional networks in STEP AP210 with application to SPICE circuit simulation
	Notation
	Overview of the AP210 Functional Network Model
	SPICE circuit
	SPICE circuit element
	SPICE .model
	SPICE .subck
	Simulator Directives (Dot Commands)
	Case Study and Validation
	APPENDIX A: Representative SPICE netlists generated from AP210 functional models.

