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1. Parameter estimation in meta-analysis: random effects model

In a simple random effects model of meta-analysis involving, say, p studies the data is supposed to consist of normally
distributed xi, i = 1, . . . , p, with an unknownmean µ and the variance τ 2

+ s2i . Here s
2
i represents the reported uncertainty

of the i-th study, and τ 2 is the variance of the between-study effect arising in the random effects model. In practice s2i are
often treated as given constants, and then the problembecomes one of estimating the commonmeanµ and the non-negative
heterogeneity variance τ 2. This problem is considered here.

If τ 2 is known, then the best linear unbiased estimator of µ is the weighted means statistic, µ̃ =


ω0
i xi, with the

normalized weights,

ω0
i =

1
τ 2 + s2i


j

1
τ 2 + s2j

−1

,


ω0
i = 1.

Under the normality assumption and also the maximum likelihood estimator, the best unbiased statistic is minimax and
admissible. In order to estimateµ by the traditionally used plug-in version of µ̃, say, x̃ =


i xi(τ̃

2
+s2i )

−1
[


i(τ̃
2
+s2i )

−1
]
−1,

one needs an estimate τ̃ 2, τ̃ 2
≥ 0.

DerSimonian and Laird (1986) have suggested such a procedurewith estimators of τ 2 and ofµ. The latter has becomevery
popular in meta-analysis but the estimator of τ 2 is known to have some undesirable features (e.g. Jackson et al., 2010). One
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of the goals of this note is to explain this phenomenon by investigating the relationship between the mean squared error
of µ-estimators and a special risk function for τ 2-estimation when p = 2. Another goal is to discuss admissible (Bayes)
estimators for each of the parameters.

2. Estimating heterogeneity variance

2.1. Quadratic estimators

In this section we introduce estimators of the form

τ̃ 2
(αβ) = max[0, α(x2 − x1)2/2 − βs2], (1)

where α and β are non-negative constants, s2 = (s21 + s22)/2. By using the fact that (x2 −x1)2 ∼ 2(τ 2
+ s2)χ2

1 , the expression
for their quadratic risk is derived next. Although the quadratic loss (τ̃ 2

− τ 2)2 may not be the most appropriate when
estimating a non-negative τ 2, we use it here mainly because many other loss functions which depend on the ratio τ̃ 2/τ 2

lead to infinite risks at τ 2
= 0.

Besides its simplicity, the class (1) can be motivated by the fact that it includes the restricted maximum likelihood
estimator,

τ̃ 2
(1 1) = max[0, (x2 − x1)2/2 − s2],

which coincideswith the DerSimonian–Laird procedure. Indeed, the negative logarithm of the restricted likelihood function,
say, L = (x2 − x1)2/[2(τ 2

+ s2)] + log 2(τ 2
+ s2), is maximized by τ̃ 2

(1 1).
We denote γ =

√
β/α, u2

= s2/(τ 2
+ s2), 0 < u ≤ 1, and by Φ and ϕ the standard normal distribution function and

density respectively. Then since τ̃ 2
(αβ) ∼ (τ 2

+ s2)max[αχ2
1 − βu2, 0],

E(τ̃ 2
(αβ) − τ 2)2 = τ 4Pr(χ2

1 ≤ γ 2u2) + (τ 2
+ s2)2E[αχ2

1 − 1 + (1 − β)u2
]
21

{χ2
1>γ 2u2}

= τ 4
[2Φ(γ u) − 1] + 2(τ 2

+ s2)2


∞

γ u
[αz2 − 1 + (1 − β)u2

]
2ϕ(z)dz

= τ 4
[2Φ(γ u) − 1] + 2(τ 2

+ s2)2 × {αγ u[(2 − β)u2
+ 3α − 2]ϕ(γ u)

+ [(1 − α − (1 − β)u2)2 + 2α2
][1 − Φ(γ u)]}. (2)

If β = 1, γ = 1/
√

α, and

E(τ̃ 2
(α1) − τ 2)2 = τ 4

[2Φ(γ u) − 1] + 2(τ 2
+ s2)2{

√
αu(u2

+ 3α − 2)ϕ(γ u) + (1 − 2α + 3α2)[1 − Φ(γ u)]}.

In particular, when α = β = 1, γ = 1, corresponding to the DerSimonian–Laird procedure,

E(τ̃ 2
(11) − τ 2)2 = τ 4

[2Φ(u) − 1] + 2(τ 2
+ s2)2[u(u2

+ 1)ϕ(u) + 2(1 − Φ(u))].

This fact is confirmed by the formula for α = β, γ = 1,

E(τ̃ 2
(αα) − τ 2)2 = τ 4

[2Φ(u) − 1] + 2(τ 2
+ s2)2{αu[(2 − α)u2

+ 3α − 2]ϕ(u)

+ [(1 − α)2(1 − u2)2 + 2α2
][1 − Φ(u)]}.

If β = 0, γ = 0, so that

E(τ̃ 2
(α0) − τ 2)2 = (τ 2

+ s2)2[(1 − α − u2)2 + 2α2
] = (1 − 2α + 3α2)τ 4

− 2α(1 − 3α)s2τ 2
+ 3α2s4.

When τ 2
= 0, u = 1, (2) gives

Eτ̃ 4
(αβ)/s

4
= 2α2

{γ (3 − γ 2)ϕ(γ ) + [(γ 2
− 1)2 + 2][1 − Φ(γ )]}.

The function, γ (3 − γ 2)ϕ(γ ) + [(γ 2
− 1)2 + 2][1 − Φ(γ )], of non-negative γ monotonically decreases from 1.5 to zero.

Thus, unsurprisingly, α = 0 is optimal for small τ 2, and for a fixed α, a larger β gives a smaller value of the quadratic risk at
the origin.

When β = 0, τ 2
= 0, γ = 0, and

Eτ̃ 4
(α0)/s

4
= 3α2.

The risk at zero of the DerSimonian–Laird estimator is 4[ϕ(1) + 1 − Φ(1)]s4 ≈ 1.6025s4. The quadratic risk of τ̃ 2
(1/3 1/3) at

τ 2
= 0 is 9 times smaller, 4[ϕ(1) + 1 − Φ(1)]s4/9 ≈ 0.1781s4. Under the quadratic loss the latter estimator as well as the

estimator τ̃ 2
(1/3 0) = (x2 − x1)2/6, whose risk is (2τ 4

+ s4)/3, are substantially better than the DerSimonian–Laird estimator
for all τ 2. The estimator τ̃ 2

(1/2 0) = (x2 − x1)2/4, with risk (3τ 4
−2s2τ 2

+ s4)/4, is less competitive under this criterion, being
worse than τ̃ 2

(1/3 0), but providing an improvement over τ̃ 2
(1 1).
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Fig. 1. Plots of ratios of quadratic risk functions of estimators based on τ̃ 2
(1/2 0) (line marked by squares), τ̃ 2

(1/3 1/3) (continuous line), τ̃
2
(1/3 0) (line marked

by diamonds), τ̃ 2
0 (line marked by ∗), τ̃ 2

1 (line marked by triangles), τ̃ 2
2 (line marked by +) to the mean squared error of τ̃ 2

(1 1) .

According to (2), when τ 2
→ ∞,

E(τ̃ 2
(αβ)/τ

2
− 1)2 ∼ 1 − 2α + 3α2, (3)

which shows that the asymptotically optimal choice is α = 1/3. This fact suggested to look at τ̃ 2
(1/3 0) and τ̃ 2

(1/3 1/3).
Fig. 1 plots the ratios of the mean squared errors of these estimators and τ̃ 2

(1/2 0) to the mean squared error of the
DerSimonian–Laird procedure τ̃ 2

(1 1) The estimator τ̃ 2
(1/3 1/3) is slightly better than τ̃ 2

(1/3 0) for small τ 2. For large τ 2 the
situation is reversed.

2.2. Bayes estimators

Under the uniform (non-informative) prior for µ, and a prior distribution Π for τ 2, the Bayes estimator of τ 2 has the
form,

τ̃ 2
= τ̃ 2(x1, x2) =


∞

0


∞

−∞
τ 2  e−(xi−µ)2/[2(τ2+s2i )]

τ2+s2i
dµdΠ(τ 2)


∞

0


∞

−∞

 e−(xi−µ)2/[2(τ2+s2i )]
τ2+s2i

dµdΠ(τ 2)

=


∞

0 τ 2e−(x2−x1)2/[4(τ2
+s2)] dΠ(τ2)√

τ2+s2
∞

0 e−(x2−x1)2/[4(τ2+s2)] dΠ(τ2)√
τ2+s2

. (4)

In our situation the Bayes estimators corresponding to the uniform prior for µ can be interpreted as the solutions based on
the restricted likelihood function.

The prior density

π(τ 2) =
e−β/[4(τ2

+s2)]

(τ 2 + s2)ρ+3/2
(5)

with hyper-parameters β and ρ provides a tractable estimator. The case when β = 0, ρ = −1/2 in (5) corresponds to the
Jeffreys prior evaluated from the mentioned restricted likelihood. Indeed EL′′

= −(τ 2
+ s2)−2.

Let P(x, a) =
 x
0 e−t ta−1 dt/Γ (a) denote the incomplete gamma-function, v = [(x2 − x1)2 + β]/2. Then for β = 0,

τ̃ 2
B =

vP(v/(2s2), ρ)

2ρP(v/(2s2), ρ + 1)
− s2.

A choice of the hyper-parameter ρ can be motivated by the asymptotic risk behavior of τ̃ 2
B when τ 2

→ ∞. Indeed if
v → ∞, τ̃ 2

B ∼ v/(2ρ), so that (3) with ρ = 1/(2α) gives the asymptotically optimal choice, ρ = 3/2.
When ρ = 3/2, we put

τ̃ 2
0 =

vP(v/(2s2), 1.5)
3P(v/(2s2), 2.5)

− s2. (6)

The quadratic risk of τ̃ 2
0 at τ 2

= 0 can be readily found,

Eτ̃ 4
0 =

2s4

3
.
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Indeed, when τ 2
= 0, the random variable v/s2 has the distribution χ2

1 , so that

Eτ̃ 2
0 =

2s2

3
√

π


∞

0

√
yP(y, 1.5)e−ydy

P(y, 2.5)
− s2.

Recognizing
√
ye−yP(y, 1.5)/Γ (1.5) as the derivative of P2(y, 1.5)/2 and integrating by parts, we obtain

1
Γ (1.5)


∞

0

√
yP(y, 1.5)e−ydy

P(y, 2.5)
=

1
2

+
1

2Γ (2.5)


∞

0

y3/2P2(y, 1.5)e−ydy
P2(y, 2.5)

.

Therefore,

Eτ̃ 4
0 =

4s4

9
√

π


∞

0

y3/2P2(y, 1.5)e−ydy
P2(y, 2.5)

− 2s2(Eτ̃ 2
a + s2) + s4

=
s4

3


4

√
π


∞

0

√
yP(y, 1.5)e−ydy

P(y, 2.5)
− 1


−

4s4

3
√

π


∞

0

√
yP(y, 1.5)e−ydy

P(y, 2.5)
+ s4

=
2s4

3

which is smaller than the risk at zero of the DerSimonian–Laird estimator or of τ̃ 2
(1/2 0), but larger than that of τ̃ 2

(1/3 1/3)

or τ̃ 2
(1/3 0).
To remedy this fact, one may be interested in prior distributions Π(τ 2) with a possible atom at 0, and a density π(τ 2)

for τ 2 > 0. If similar previous studies are available, the probability of the zero value of τ 2 can be taken to be the proportion
of cases when τ 2 was estimated by 0.

We denote by λ the odds ratio, λ = Pr(τ 2
= 0)/[1 − Pr(τ 2

= 0)], and put ξ = λ/Γ (ρ). Then

τ̃ 2
B =

vP(v/(2s2), ρ)/2 + ξ [v/(2s2)]ρ+1e−v/(2s2)

ρP(v/(2s2), ρ + 1) + ξ [v/(2s2)]ρ+1e−v/(2s2)/s2
− s2. (7)

The ratios of the quadratic risk functions of estimators τ̃ 2
i in (7) with i = 0, 1, 2 corresponding to λ = 0, λ = 0.5, and

λ = 1 respectively to that of τ̃ 2
(1 1) are also depicted in Fig. 1. Remarkably, both Bayes estimators τ̃ 2

1 and τ̃ 2
2 with a mass

point at τ 2
= 0 have a smaller mean squared error than the Bayes rule τ̃ 2

0 in the considered range, 0 ≤ τ 2
≤ 5. (Actually,

dominance of τ̃ 2
1 and τ̃ 2

2 holds for τ 2
≤ 15.) In this Figure s2 = 1. Similar results hold for other loss functions like the absolute

value loss.

3. Estimating the commonmean

3.1. New risk function for τ 2

The conclusions reached at in Section 2 are to be contrasted with the quadratic risk behavior of µ-estimators. Let Λ be a
prior distribution for τ 2 so that the Bayes estimator of µ has the form

x̃B = x̃B(x1, x2) =


∞

0


∞

−∞
µ

 e−(xi−µ)2/[2(τ2+s2i )]
τ2+s2i

dµdΛ(τ 2)


∞

0


∞

−∞

 e−(xi−µ)2/[2(τ2+s2i )]
τ2+s2i

dµdΛ(τ 2)

=


∞

0 [(τ 2
+ s22)x1 + (τ 2

+ s21)x2]e
−(x2−x1)2/[4(τ2

+s2)] dΛ(τ2)
(τ2+s2)3/2

2


∞

0 e−(x2−x1)2/[4(τ2+s2)] dΛ(τ2)
(τ2+s2)1/2

. (8)

With dΛ(τ 2) = (τ 2
+ s2)dΠ(τ 2),

x̃B =
(τ̃ 2

B + s22)x1 + (τ̃ 2
B + s21)x2

2(τ̃ 2
B + s2)

,

i.e., the Bayes estimator of µ is the weighted mean with weights inversely proportional to τ̃ 2
B + s2i . These Bayes weights

ω1, ω2 are invariant functions of x1, x2, depending only on x2 − x1.
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For any such estimator, say, x̃ =


ωixi,

E(x̃ − µ)2 =


i

1
τ 2 + s2i

−1

+ E


i

ωi(xi − µ̃)

2

=
(τ 2

+ s21)(τ
2
+ s22)

2(τ 2 + s2)
+

(s22 − s21)
2

16(τ 2 + s2)2
E
(x2 − x1)2(τ̃ 2

− τ 2)2

(τ̃ 2 + s2)2

=
τ 2

+ s2

2
+

(s22 − s21)
2

8(τ 2 + s2)
[R(τ̃ 2, τ 2) − 1]. (9)

Here

R(τ̃ 2, τ 2) = E
(x2 − x1)2(τ̃ 2

− τ 2)2

2(τ 2 + s2)(τ̃ 2 + s2)2
= E

(x2 − x1)2

2(τ 2 + s2)


1 −

τ 2
+ s2

τ̃ 2 + s2

2

,

is the new risk of the corresponding τ̃ 2 estimator which completely determines the variance of x̃. The resulting random loss
function,

(x2 − x1)2(τ 2
+ s2)

2


1

τ̃ 2 + s2
−

1
τ 2 + s2

2

,

is very different from the quadratic loss. Indeed it is designed to estimate (τ 2
+ s2)−1 rather than τ 2 itself. Arguably this

loss is most relevant for τ 2-estimators if their purpose is to provide the weights for the weighted means statistics for
µ-estimation. It explains why τ 2-estimators which give reasonably good weights for x̃ may have a large mean squared
error (or other risk) which discourages large values of such estimators.

Under notation of Section 2.1, when 0 < β ≤ 1, one has for an estimator of the form (1),

R(τ̃ 2
(αβ), τ

2) =
τ 4

s4
Eχ2

1 1{χ2
1≤γ 2u2} + Eχ2

1


1 −

1
αχ2

1 + (1 − β)u2

2

1
{χ2

1>γ 2u2}

=
τ 4

s4
[2Φ(γ u) − 1 − 2γ uϕ(γ u)] + 2


1 −

2
α


[1 − Φ(γ u) + γ uϕ(γ u)]

+
2(1 − β)u2

+ 1
α2

E
1

{χ2
1>γ 2u2}

χ2
1 + (1 − β)u2/α

−
(1 − β)u2

α3
E

1
{χ2

1>γ 2u2}

[χ2
1 + (1 − β)u2/α]2

. (10)

If β > 1, the R-risk is infinite. When β = 1,

R(τ̃ 2
(α1), τ

2) =
τ 4

s4
[2Φ(γ u) − 1 − 2γ uϕ(γ u)] + 2


1 +

γ 2

u2


γ uϕ(γ u)

+ 2(1 − 2γ 2
− γ 4)[1 − Φ(γ u)]. (11)

Indeed integration by parts easily shows that

E
1

{χ2
1>u2}

χ2
1

= 2


ϕ(u)
u

− 1 + Φ(u)


.

For the DerSimonian–Laird procedure, γ = 1, so that

R(τ̃ 2
(11), τ

2) = τ 4s−4
[2Φ(u) − 1 − 2uϕ(u)] + 2(u−1

+ u)ϕ(u) − 4[1 − Φ(u)].

When β = 0, γ = 0,

R(τ̃ 2
(α0), τ

2) = Eχ2
1


1 −

1
αχ2

1 + u2

2

= 1 −
2
α

−
1

2α2
+

[u2(4α + 1) + α]

2α5/2u
M


u

√
α


. (12)

HereM(u) = [1 − Φ(u)]/ϕ(u) is Mill’s ratio, which appears because of the formulas,

E
u

χ2
1 + u2

= M(u),

E
2u2

(χ2
1 + u2)2

= 1 +
(1 − u2)M(u)

u
.
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The first well-known identity is a consequence of the Parceval theorem and can be found in Erdelyi et al. (1953, Sec. 9.3 (3)).
The second follows from the first one by differentiation in u.

For τ 2
= 0, u = 1,

R(τ̃ 2
(α0), 0) = 1 −

2
α

−
1

2α2
+

5α + 1
2α5/2

M


1
√

α


,

which is an increasing function of α. Thus as for the quadratic loss, smaller values of α are preferable to keep the risk at the
origin small. When α < 0.567 . . . , R(τ̃ 2

(α 0), 0) < R(τ̃ 2
(11), 0) = 4[ϕ(1) − 1 + Φ(1)] = 0.333 . . ..

An explicit expression through functions Φ and ϕ can be also obtained when β = 1/2 by using the formulas,

E
a1

{χ2
1>a2}

χ2
1 + a2

=
[1 − Φ(a)]2

ϕ(a)
, a > 0,

E
a21

{χ2
1>a2}

(χ2
1 + a2)2

=
(1 − a2)[1 − Φ(a)]2

2aϕ(a)
−

ϕ(a)
2a

+ 1 − Φ(a).

The first of these equalities follows from Erdelyi et al. (1953, Sec. 9.9 (15)). Their application shows that with a2 = u2/(2α),

R(τ̃ 2
(α1/2), τ

2) =
τ 4

s4
[2Φ(a) − 1 − 2aϕ(a)] +


2a −

4a
α

+
1

2aα2


ϕ(a)

+


2 −

4
α

−
1
α2

+
[(4α + 1)a2 + 1]M(a)

2α2a


[1 − Φ(a)]. (13)

When τ 2
→ ∞, u → 0, for 0 ≤ β < 1,

R(τ̃ 2
(αβ), τ

2) ≈
2γ 3u3τ 4

3
√
2πs4

+ E
χ2
1 1{χ2

1>(γ u)2}

[αχ2
1 + (1 − β)u2]2

≈
τ

√
2πα3/2s


2β3/2

3
+

1
√
1 − β


∞

β/(1−β)

√
tdt

(1 + t)2



=
τ

√
2πα3/2s


2β3/2

3
+


β +

arcsin
√
1 − β

√
1 − β


.

Thus, there is no optimal choice of α for large τ 2: the larger α, the smaller is the risk of µ-estimator. For a fixed α,
limτ2→∞

√
2πα3/2sR(τ̃ 2, τ 2)/τ as a function of β, 0 ≤ β ≤ 1, is monotonically increasing from π/2 to 8/3. Indeed for

β = 1,

R(τ̃ 2
(α1), τ

2) ≈
8τ

3
√
2πα3/2s

.

For an estimator τ̃ 2
(αβ) to improve upon the restricted maximum likelihood estimator for large τ 2, one must have

α3/2
≥

3
8


2β3/2

3
+


β +

arcsin
√
1 − β

√
1 − β


.

However the values of α and β satisfying this condition cannot give a smaller value of the risk at τ 2
= 0. Thus there are no

uniform improvements in the class (1) upon the DerSimonian–Laird estimator. This fact and the asymptotics of R(τ̃ 2, τ 2)
for more general (e.g. Bayes) estimators, are discussed in the next section.

3.2. Permissible estimators

To simplify the expression for R-risk,

R(τ̃ 2, τ 2) = (τ 2
+ s2)E

(x2 − x1)2

2


1

τ̃ 2 + s2
−

1
τ 2 + s2

2

,

we use integration by parts formula according to which

E
vg(v)

τ 2 + s2
= 2Evg ′(v) + Eg(v),

v = (x2 − x1)2/2, v ∼ (τ 2
+ s2)χ2

1 . Thus if g(v) = [τ̃ 2(v) + s2]−1 is continuous and piecewise differentiable, one has

R(τ̃ 2, τ 2) = 1 + (τ 2
+ s2)Ev


g2(v) − 4g ′(v) −

2g(v)

v


.
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Fig. 2. Plots of ratios of risk functions R(τ̃ 2, τ 2) for τ̃ 2
(1/2 0) (line marked by squares), τ̃ 2

(1/31/3) (continuous line), τ̃
2
(1/30) (line marked by diamonds), τ̃ 2

0 (line
marked by *), τ̃ 2

1 (line marked by +), to the risk of the DerSimonian–Laird estimator based on τ̃ 2
(1 1) .

We seek conditions under which the estimator x̃ cannot be improved in terms of the risk above, namely, when there is no
estimator x̂with the corresponding function h(v) = (τ̂ 2

+ s2)−1 such that for all v > 0,

g2(v) − 4g ′(v) −
2g(v)

v
≥ h2(v) − 4h′(v) −

2h(v)

v

with a strict inequality for some v0. Rukhin (1995) calls a function g permissible if this inequality does not have any
continuous, piecewise differentiable solutions h. In our situation the class of positive functions h is restricted to those which
are bounded by s−2.

By putting f (v) = h − g, |f | ≤ s−2, one obtains a differential inequality,

f 2 + 2f

g −

1
v


− 4f ′

≤ 0,

which is more conveniently written for y = 1/f as

y′
+

y
2


g −

1
v


+

1
4

≤ 0.

In our situation an estimator x̃ (or a function g) is permissible if for any v0,
∞

v0

exp

−

1
2

 v1

0
g(v)dv


dv1
√

v1
= ∞,

(cf. Ghosh and Sinha, 1981), and discussion in Section 5, (Rukhin, 1995). This shows that all estimators τ̃ 2
(αβ) for α ≥ 0, 0 ≤

β ≤ 1 lead to permissible functions g . Thus it is difficult to find an explicit improvement over the DerSimonian–Laird
estimator and other quadratic estimators with β > 0.

One has for τ 2
→ ∞,

R(τ̃ 2, τ 2) ∼ (τ 2
+ s2)E

v

(τ̃ 2 + s2)2
∼


2(τ 2 + s2)

√
πs


∞

0

√
vg2(v)dv.

This formula can be used to find behavior of R(τ̃ 2, τ 2) for the Bayes estimators τ̃ 2
0 and τ̃ 2

1 when τ 2 is large. In this case with
ξ defined as in (7),

g(v) =
ρP(v/(2s2), ρ + 1) + ξ [v/(2s2)]ρ+1e−v/(2s2)/s2

vP(v/(2s2), ρ)/2 + ξ [v/(2s2)]ρ+1e−v/(2s2)
.

The integral,

g2(v)v1/2 dy, is an increasing function of ξ . Values of ρ smaller than 3/2 for large τ 2 give smaller values of

R(τ̃ 2, τ 2), but larger risk R(τ̃ 2, 0). Fig. 2 depicts the ratios of R(τ̃ 2, τ 2) for the estimators τ̃ 2 considered above to R(τ̃ 2
(1,1), τ

2)

(i.e., to the risk of the DerSimonian–Laird estimator). The Bayes µ-estimators based on τ̃ 2
1 and τ̃ 2

2 (not shown in Fig. 2) for
large τ 2 demonstrate poor performance.

The explicit formulas (11)–(13) enable estimation of the quadratic risk of the corresponding µ-estimators, which is
required in some applications.
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Table 1
Summary of risk function values.

Estimator E(τ̃ /s)4 limτ2→∞ E(τ̃ 2/τ 2
−1)2 R(τ̃ 2, 0) limτ2→∞ sR(τ̃ 2, τ 2)/τ

τ̃ 2
(1 1) 1.602 2 0.333 1.064

τ̃ 2
(1/2 0) 0.750 0.750 0.314 1.772

τ̃ 2
(1/3 0) 0.334 0.667 0.221 3.256

τ̃ 2
(1/3 1/3) 0.178 0.667 0.155 3.888

τ̃ 2
0 0.667 0.667 0.665 3.628

τ̃ 2
1 0.193 0.667 0.142 4.411

τ̃ 2
2 0.101 0.667 0.068 5.013

3.3. Admissibility results

We discuss here some admissibility results referring to this concept understood within the class of all invariant
procedures. The estimator τ̄ 2

= ∞ has a constant risk, R(τ̄ 2, τ 2) ≡ 1, is admissible for this risk and is minimax which
implies admissibility under the quadratic loss of the corresponding µ-estimator x̄ = (x1 + x2)/2. This fact can be proven
by the Blyth method considering the Bayes estimators for the prior densities (5) when β → ∞, (e.g. Lehmann and Casella,
1998, Ex 2.8, p 325.)

The Bayes estimator for the prior density (τ 2
+ s2)−3 dτ 2, i.e., when τ̃ 2

= τ̃ 2
0 , is admissible. Indeed, τ̃ 2

0 is admissible for
both risk functions: the quadratic in Section 2.2 and R(τ̃ , τ 2). It has finite Bayes risk in the second case, and in the first case
its risk is well approximated by that of the Bayes rules against (5) with β = 0 and ρ ↓ 3/2 (which have finite Bayes risks.)
As a matter of fact, under R(τ̃ , τ 2) the densities (5) lead to admissible estimators when β ≥ 0 and ρ ≥ 1.

Another classical admissible procedure is the Graybill-Deal estimator, µ̃GD = 0.5(s22x1 + s21x2)/s
2, which corresponds to

the prior distribution concentrated at τ 2
= 0. Its admissibility in the setting with random s21, s

2
2, τ

2
= 0, remains an open

problem despite a body of work (Sinha and Mouquadem, 1982; Kubokawa, 1987).

4. Conclusions

We summarize our main findings in the form of Table 1.
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