
UV radiation, redox-cycling drugs, carcinogenic com-
pounds, environmental pollutants, etc. [1]. Oxygen 
metabolism generates hydroxyl radical (  •  OH), super-
oxide radical (O 2  

 •�    ) and non-radical H 2 O 2 . Hydroxyl 
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 Abstract 
 Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mecha-
nisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-
controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, 
further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand 
breaks, 8,5 ′ -cyclopurine-2 ′ -deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction con-
ditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting 
evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. 
Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences 
of DNA damage products will be of outmost importance for disease prevention and treatment.  

  Keywords:   free radicals  ,   hydroxyl radical  ,   hydrated electron  ,   hydrogen atom  ,   mechanisms of product formation  ,   DNA base 
damage  ,   DNA sugar damage  ,   tandem lesions  ,   clustered lesions  ,   DNA-protein cross-links  

 Abbreviations:    •   OH, hydroxyl radical; O  2  
 •  �   , superoxide radical; e  aq  

 �   , hydrated electron; H    •   , H atom; k, reaction rate 
constant; Gua( – H)   •   , neutral guanine radical; Gua   •   �    , guanine radical cation; 8-OH-Gua, 8-hydroxyguanine; Fapy
Gua, 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 2,5-FapyGua, 2,5-diamino-4-hydroxy-6-formamidopyrimidine; 
Guo, guanosine; 8-OH-dG, 8-hydroxy-2  ′  -deoxyguanosine; 8-OH-Gua   •   �   , radical cation of 8-OH-Gua; ESCODD, European 
Standards Committee on Oxidative DNA Damage; 2-OH-Ade, 2-hydroxyadenine; Ade( – H)   •   , neutral adenine radical; 
Ade   •  �    , adenine radical cation; 8-OH-Ade, 8-hydroxyadenine; FapyAde, 4,6-diamino-5-formamidopyrimidine; dialuric acid, 
5-hydroxy-2,4,6(1H,3H,5H)-pyrimidinetrione; alloxan, 2,4,5,6(1H,3H)-pyrimidinetetrone; R-cdG and S-cdG, R- and 
S-diastereomers of 8,5′    -cyclopurine-2  ′  -deoxyguanosine; R-cdA and S-cdA, R- and S-diastereomers of 8,5  ′  -cyclopurine-
2  ′  -deoxyadenosine; 8-OH-Gua/Fo; 8-OH-Gua/formamido residue; Fo/8-OH-Gua; formamido residue/8-OH-Gua; Gua
[8,5-Me]Thy and Thy[5-Me,8]Gua, intrastrand cross-link between the C8 of Gua and the CH  2   group of thymine; Ade
[8,5-Me]Thy and Thy[5-Me,8]Ade, intrastrand cross-link between the C8 of adenine and the CH  2   group of thymine; 
Gua[8,5]Cyt, intrastrand cross-link between the C8 of Gua and the C5 of cytosine; Gua[8,5-Me]MeCyt, intrastrand cross-
link between the C8 of Gua and the CH  2   group of 5-methylcytosine; Ade[6N,5-Me]Thy, interstrand cross-link between the 
6NH of adenine on one strand and the CH  2   group of thymine on the opposing strand of DNA; DSBs, double-strand breaks; 
Thy-Tyr cross-link, 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-methyl]-L-tyrosine.  

  Introduction 

 Free radicals are continuously formed in aerobic liv-
ing organisms by normal intracellular metabolism 
and by exogenous sources such as ionizing radiations, 
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radical is highly reactive and reacts with biological 
molecules such as DNA, proteins, lipids, etc. near or 
at diffusion-controlled rates, causing chemical modi-
fi cations. Superoxide radical and H 2 O 2  do not react 
with most biological molecules. No reaction occurs 
between these two species, either, at a considerable 
reaction rate, which is close to zero [1]. Transition 
metal ions such as iron and copper ions catalyse the 
reaction between O 2  

 •�     and H 2 O 2 , generating   •  OH 
(Haber-Weiss reaction) [1]. The interaction of ioniz-
ing radiations with cellular water produces   •  OH, O 2  

 •  �  , 
H 2 O 2 , hydrated electron (e aq  

 �  ) and H atom (H  •  ), 
which is also a free radical [2]. Hydroxyl radical reacts 
with the constituents of DNA near or at diffusion-
controlled rates, causing damage to the heterocyclic 
DNA bases and the sugar moiety by a variety of 
mechanisms. Addition of e aq  

 �   and H  •   to double bonds 
of DNA bases also occur, causing damage [2]. In liv-
ing organisms, DNA damage is repaired by a variety 
of mechanisms. If free radical damage to DNA is not 
repaired, it may lead to genetic instability, thus to 
disease processes such as carcinogenesis [3 – 7]. This 
article reviews the mechanisms of free radical-induced 
damage to DNA.   

 Mechanisms of DNA base damage  

 Guanine 

 Among the DNA bases, Gua has the lowest reduction 
potential (1.29 V). Therefore, it is the best electron 
donor and is preferentially oxidized [2,8 – 10]. Hydroxyl 
radical reacts with Gua at a diffusion-controlled rate 
with a rate constant ( k ) of 8  �  10 9  dm 3  mol  � 1  s  � 1  
(measured using Guo at pH 7) [11]. A much later 
work reported a rate constant of  ∼ 5  �  10 9  dm 3  mol  � 1  
s  � 1  for Guo and dG [12,13]. Hydroxyl radical adds to 
the C4-, C5- and C8-positions, and also to the C2-
position of Gua to a much lesser extent [2,9,14] 
(Figure 1). An H  •   abstraction by   •  OH from the NH 2  
group attached to C2 (2-NH 2  group) has also been 
reported [12,13,15,16] (Figure 1). Due to the electro-
philic nature of   •  OH, additions preferentially occur at 
sites with high electron density. Addition reactions 
generate OH – adduct radicals (Figure 1), which pos-
sess different redox properties and are either reducing 
or oxidizing with the yields of both types being almost 
equal [9,14]. Thus, the C4-OH – adduct radical is oxi-
dizing, whereas the C5-OH – and the C8-OH – adduct 
radicals are predominantly reducing. However, these 
radicals can also exist in different mesomeric forms 
that may be oxidizing or reducing representing a 
 “ redox ambivalence ”  [9]. The C4-OH – adduct radical 
and the C8-OH – adduct radical are formed with yields 
of 65 – 70% and 17% (relative to   •  OH), respectively [17]. 
The yield of the C5-OH – adduct radical appears to be 
less than 10%. Upon formation of the C4-OH –  and 
C5-OH – adduct radicals, substantial conformational 

changes occur in the molecules [18]. The C4-OH – 
adduct radical eliminates water ( k   �    6  �  10 3  s  � 1  at 
pH 7), generating a neutral Gua radical [Gua( � H)  •  ], 
which subsequently protonates to give rise to the Gua 
radical cation (Gua  •   �   ), as shown in Figure 2 [9,17]. 
The C5-OH – adduct radical is also likely to undergo 
water elimination to yield Gua( � H)  •  , which would result 
in redox inversion [9] (Figure 2). The C2-OH – adduct 
radical may eliminate ammonia, the amount of which 
indicates that the yield of this radical must be no more 
than 1.5% [2]. The oxidation of this radical may result 
in the formation of xanthine. 

 In contrast to the fi ndings by O ’ Neil, Steenken 
et al., a recent work reported that the main reaction 
of   •  OH with Gua is not the addition to C4, but an H  •   
abstraction from the 2-NH 2  group of Gua to an extent 
of  ∼ 65%, as shown in Figure 1 [12,13]. According 
to this work, the thus-formed 2-N-centred radical 
(aminyl radical) subsequently undergoes tautomeriza-
tion ( k   �    2.3  �  10 4  s  � 1 ) to yield a neutral Gua radical 
[Gua( – H)  •  ] (Figure 2). This is the same radical that 
results from the water elimination of the C4-OH –
 adduct radical ( k   �    6  �  10 3  s  � 1 ), as Steenken et al. had 
reported more than two decades earlier [9,17] (Figure 
2). Apparently, the end result is the same, whether 
  •  OH adds to C4 or abstracts an H  •   from the 2-NH 2  
group. However, the proposed large extent of the H  •   
abstraction almost completely eliminates the addition 
of   •  OH to C4 despite the well-known high electron 
affi nity in purines [19], making the   •  OH addition an 
energetically favoured reaction. The H  •   abstraction 
from the 2-NH 2  group becomes the major reaction 
by the complete exclusion of the   •  OH addition to C4, 
when one takes into account the   •  OH addition to C8 
that occurs to an extent of only 17% [9,12,13,17]. 
The reaction of   •  OH with aromatic amines does not 
completely support this notion. In aniline for exam-
ple, the H  •   abstraction by   •  OH takes place to a large 
extent (36%); nevertheless, the   •  OH addition to dou-
ble bonds is still the predominant pathway (64%) 
[20]. The rate constant for   •  OH addition to the ortho-
position of aniline is approximately 50% greater than 
that for H  •   abstraction from the NH2 group [20]. A 
Car-Parrinello molecular dynamics study of   •  OH 
reactions with Gua found that the H  •   abstraction from 
the 2-NH 2  group is an energetically favoured reaction 
in the gas phase; however, in the aqueous phase, this 
reaction is less favoured than the H  •   abstraction from 
N9 and N2 [15,16]. Moreover, the same study showed 
that spontaneous hydroxylation at C8 and C4 occurs 
in accordance with experimental fi ndings. A recent 
extensive review also stated that the H  •   abstraction 
does not occur to any signifi cant extent [2].

Just recently, Phadatare et al. reported spectral 
characterization of the C4-OH–adduct radical using 
quantum chemical calculations, pulse radiolysis and 
product analysis [21]. Their data contrasted the large 
extent of H  •   abstraction by   •  OH from the 2-NH2 of 
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Gua as reported by Chatgilialoglu et al. [12, 13], and 
showed that the addition of   •  OH to C4 is the pre-
ferred reaction pathway. Moreover, this work con-
cluded that the H  •   abstraction from N1 and N9 of 
Gua were even energetically more favorable than that 
from 2-NH2, in agreement with the fi ndings by 
Mundy, Wu et al. [15, 16], but in contrast to the claim 
by Chatgilialoglu et al. [12, 13]. Furthermore, the 
diffusion-controlled reaction of   •  OH with Gua is a 
testament to addition reactions when compared to H  •   
abstraction reactions, the rates of which are expected 
to be lower as in the case of aniline (see above). In 

the same context, one should point out that the 
N1-centered radical is a mesomeric form of 6-O–
centered Gua(–H)  •  ; however, the aminyl radical must 
undergo tautomerization to yield this radical (Figure 
2) [21].

In H  •   abstraction reactions by   •  OH, one should also 
take into account the bond dissociation energies 
(bond enthalpies) of N – H and O – H bonds. The bond 
enthalpy of an N – H bond in the 2-NH 2  group should 
amount to  ∼ 452 kJ mol  � 1 , which is close to the bond 
enthalpy of the O – H bond in water (498 kJ mol  � 1 ) 
[22]. Therefore, it is quite unlikely that   •  OH would 
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Figure 1.     Reactions of   •  OH with Gua. dR denotes 2 ′ -deoxyribose here and in all other relevant fi gure legends. (Adapted from [9, 14]).  
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readily abstract an H  •   from the 2-NH 2  group rather 
than adding to C4 with the highest electron density 
in the molecule. This situation is similar to that in 
Thy, where   •  OH mainly adds to C5 with the highest 
electron density (60%) and to C6 (30%), and abstracts 
an H  •   from the CH 3  group (10%) (see below for more 
details). A comparative quantum chemical and Car-
Parrinello molecular dynamics study supported these 
fi ndings [16]. The bond enthalpy of a C – H bond in 
the CH 3  group amounts to  ∼ 460 kJ mol  � 1  [22], which 
is almost equal to that of the N – H bond in the 2-NH 2  
group, and slightly less than the bond enthalpy of the 
O – H bond in water (498 kJ mol  � 1 ). Thus, the H  •   
abstraction from the CH 3  group should be energeti-
cally less favourable than   •  OH addition to the C5  �  C6 
double bond of Thy. Experimental results and fi nal 
products unequivocally support this notion (see 
below). For the reasons outlined above, the so-called 
revised mechanism of the reaction of   •  OH with 
Gua [12,13] should be taken into consideration with 

caution, perhaps until the H  •   abstraction by   •  OH from 
the 2-NH 2  group with the complete exclusion of the 
  •  OH addition to C4 is confi rmed by other laboratories 
using different techniques. In the same context, it 
should be pointed out that the same authors, in an 
earlier paper, described the   •  OH addition to C4 of 
Gua as the main reaction [23]. Thus far, available 
evidence suggests that the H  •   abstraction from the 
2-NH 2  group of Gua is not the predominant reaction 
and that the   •  OH addition to C4 cannot be entirely 
excluded from   •  OH reactions with Gua. At best, both 
reactions may occur simultaneously, as the present 
data on other molecules with C  �  C double bonds, 
and 2-NH 2  and CH 3  groups suggest, albeit perhaps 
to different extents, leading to Gua( – H)  •   (Figure 2). 

 Gua( – H)  •   and Gua  •   �    are strong oxidants with a 
reduction potential of 1.29 V [10,17]. Gua( – H)  •   may 
be reduced reconstituting Gua, whereas the hydration 
of Gua  •   �    (addition of HO  �  ) may take place to gener-
ate the 8-OH – adduct radical as previously proposed 
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Figure 2. Reactions of C4-OH– and C5-OH–adduct radicals and N1-centred radical of Gua.
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[24 – 29] (Figure 2). Faster hydration of Gua  •   �    in 
ds-DNA than in monomeric Gua  •   �    has been sug-
gested [17]. According to the density functional the-
ory calculations, the addition of H 2 O on the C8-site 
of Gua  •   �    is exothermic by  – 315.2 kJ mol  � 1 , whereas 
the energy of this reaction for Gua( – H)  •   amounts 
to  �    123.1 kJ mol  � 1 , which is endothermic [30]. The 
presence of the proton on the N1-site of Gua  •   �    
appears to be crucial for H 2 O addition. The positive 
charge density is higher on the C8 of Gua  •   �    than that 
on the C8 of Gua( – H)  •  ; therefore, the nucleophilic 
attack of H 2 O on the former is likely to have a lower 
activation energy than the attack on the latter. Gua  •   �    
is also formed when ionization of Gua in DNA occurs, 
for example by direct effect of ionizing radiation 
(Figure 3). The positive charge generated by this ion-
ization is able to migrate in DNA over a long distance 
until it is trapped probably at Gua [31 – 33]. Since 
Gua  •   �    can generate the 8-OH – adduct radical upon 
H 2 O addition as discussed above, the direct effect and 
indirect effect of ionizing radiation may lead to the 
same products of Gua [34,35]. Furthermore, UV-ra-
diation, photosensitization and singlet oxygen can 
generate Gua  •   �    (reviewed in [2]). The formation of 
8-OH-Gua and 2,6-diamino-4-hydroxy-5-formami-
dopyrimidine (FapyGua) in DNA by UV-irradiation 
and by photosensitization with visible light plus meth-
ylene blue or ribofl avin supports this mechanism 
[25 – 27,36 – 38]. In contrast to Gua  •   �   , Gua( – H)  •   does 
not give rise to 8-OH-Gua; however, it is likely to react 
with 2 ′ -deoxyribose in DNA by an H  •   abstraction with 
an estimated  k   �    4  �  10 3  dm 3  mol  � 1  s  � 1  (measured 
using ribose) [17]. This H  •   abstraction can generate 
C-centred radicals of 2 ′ -deoxyribose such as the C4 ′ -

radical, which is known give rise to strand breaks and 
formation of 2 ′ -deoxyribose lesions (see below for 
more details) [39,40]. Indeed, there is evidence for 
the strand break formation in DNA originating from 
H  •   abstraction at 2 ′ -deoxyribose by Gua( – H)  •   [41]. 

 The OH – adduct radicals of Gua possess different 
reactivity toward O 2 . Thus, the 4-OH – adduct radical 
practically does not react with O 2  ( k   �    10 6  dm 3  mol  � 1  
s  � 1 ), whereas the reaction between the 8-OH – adduct 
radical and O 2  is diffusion-controlled ( k   �    4  �  10 9  
dm 3  mol  �    1  s  �    1 ) [17]. Cadet et al. proposed that the 
reaction of O 2  with Gua( – H)  •   as the initial step for 
the formation of experimentally observed 2,5-diami-
no-4 H -imidazol-4-one and 2,2,4-triamino-5(2 H )-
oxazolone as the fi nal products of Gua oxidation 
[42,43]. However, this has not been confi rmed by 
pulse radiolysis experiments and a kinetically more 
favoured mechanism has been put forward that 
includes the addition of O 2  

 •  �   to Gua( – H)  •  , followed 
by protonation to give rise to a Gua hydroperoxide 
(Figure 4). The addition of O 2  

 •  �    to Gua( – H)  •   readily 
takes place with  k   �    3  �  10 9  dm 3  mol  � 1  s  � 1  and 
 k   �    4.7  �  10 9  dm 3  mol  � 1  s  � 1  for nucleosides and ds-
DNA, respectively [17,44,45]. The addition of O 2  

 •  �   
can occur at both the C5- and C8-positions. Subse-
quently, the Gua hydroperoxide undergoes elimina-
tion of CO 2 , nucleophilic addition of water across the 
7,8-double bond and loss of HCONH 2  generating 
2,5-diamino-4 H -imidazol-4-one. This is slowly hydro-
lysed with a half-life of about 10 hours, giving rise to 
2,2,4-triamino-5(2 H )-oxazolone [42, 45 – 47] (Figure 4). 
This compound has been detected in DNA  in vitro  
and  in vivo  under various experimental conditions 
(reviewed in [47]). 

direct effect

(ionization)

HN

N
N

N

H

H
2
N

O

dR

H
2
O

– e
─

indirect effect

(addition)

HN

N
N

N

H
2
N

OH

O

H

dR

●

guanine

C8-OH–adduct radical

●
OH

–H
≈

N

N
N

N

H

H
2
N

O

dR

●

– H
≈

guanine(–H)
●

+ H
≈

N

N
N

N

H

H
2
N

O

dR

H

guanine
●

●

Figure 3. Direct and indirect effects of ionizing radiation on Gua.
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 The C8-OH – adduct radical produces the major 
products of Gua in DNA. Its one-electron oxidation 
leads to 8-hydroxyguanine (8-OH-Gua) (enol form) 
[9] (Figure 5). In a exothermic reaction by  � 60.3 kJ 
mol   �1  [30,48], the tautomerization of the enol form 
leads to its keto form, which has been shown theo-
retically and experimentally to be the predominant 
form [49 – 51]. In the early 1980s, 8-OH-Gua has been 
identifi ed in DNA damaged by different damaging 
agents including ionizing radiation [52 – 57]. Since 
then, there has been a vast amount of literature on the 
formation of 8-OH-Gua in DNA  in vitro  and  in vivo  
under a large variety of experimental conditions. 
Because of its easy measurement and strong mutagen-
icity, this compound has been the mostly investigated 
DNA product, perhaps at the expense of other equally 
important DNA products in terms of understanding 
their mechanistic aspects and biological effects. For 
more detailed information, the reader is referred to 
extensive review articles on 8-OH-Gua (see e.g., 
[5,58,59]). In the absence of O 2 , the C8-OH – adduct 

radical undergoes a reversible  β -fragmentation leading 
to unimolecular ring opening with  k   �    2  �  10 5  s  � 1  
(Figure 5) [9,17]. The one-electron reduction of the 
ring-opened radical yields FapyGua. A 1,2-H – shift, 
which is typical of for heteroatom-centred radicals [2], 
may take place followed by one electron-reduction, 
leading to 7-hydro-8-hydroxyguanine. Being a hemi-
orthoamide, this compound is then readily converted 
into FapyGua (Figure 5). Since the ring opening is 
unimolecular, it can compete with the bimolecular 
oxidation or direct reduction. In a cellular environ-
ment, the ring opening in this competition may be 
favoured by the low O 2  concentration in the cell 
nucleus [60,61]. This notion is supported by the fact 
that FapyGua is formed in DNA with yields compa-
rable to those of 8-OH-Gua under numerous  in vitro  
or  in vivo  conditions (reviewed in [62]). It should be 
pointed out that formamidopyrimidines such as Fapy-
Gua and its Ade-derived counterpart (see below) dif-
fer from other pyrimidines such as Cyt and Thy in 
that they are attached to the sugar moiety of DNA 
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through the amino group at the C6-position of the 
pyrimidine ring. Furthermore, these compounds are 
chemically and mechanistically distinct from the 
methylation products of purines, which are formed 
under harsh experimental conditions by treatment 
with methylating agents followed by alkali treatment 
[63 – 65]. Moreover, biological effects of formami-
dopyrimidines are substantially different from those 
of their methylated counterparts (reviewed in [62]). 

 In nucleosides, 8-OH-Gua and FapyGua exist in 
both  anti  and  syn  conformations; however, both com-
pounds retain the  anti -conformation in ds-DNA 
[66,67]. In contrast, 8-OH-Gua assumes the  syn  con-
formation in ss-DNA. The rotation around C5 – N7 
and C8 – N7 bonds indicates the possibility of four 
rotameric forms of FapyGua [68]. However, only two 
rotamers exist in solution, with the  cis -conformation 
predominating over the  trans -conformation, as found 
by NMR measurements [66,69,70]. This is supported 
by the ratio of the two rotameric ring-opened forms 
of N7-Me-FapyGua found in poly(dGdC) [63]. In 

DNA  in vivo , the  cis -confi rmation has been suggested 
to dominate because of its stabilization by an hydrogen 
bond between the hydrogen atom at N9 and the oxygen 
atom of the formamido group [70]. Using density 
functional methods, the enol form of the ring-opened 
C8-OH adduct radical has been proposed to yield 
FapyGua by undergoing either one-electron reduction 
followed by tautomerization (as shown in Figure 5) 
or tautomerization followed by one-electron reduc-
tion with the former being favoured over the latter 
[71]. Two additional pathways have been proposed, 
leading to two formamidopyrimidine isomers, 
namely FapyGua and 2,5-diamino-4-hydroxy-6-
formamidopyrimidine (2,5-FapyGua) [67]. In one 
pathway, the hemiorthoamide (Figure 5) undergoes 
ring opening and tautomerization to yield FapyGua 
and 2,5-FapyGua. In the other pathway, a proton 
transfer from the hydroxyl group to N7 of the 
C8-OH-adduct radical occurs. Subsequently, ring 
opening in two different directions takes place, 
 followed by one-electron reduction of the two 
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 ring-opened radicals to give rise to FapyGua in one 
case and to 2,5-FapyGua in the other case. The 
latter pathway having the lowest energy appears to 
be more favoured over the other three pathways. 
Thermodynamically, 2,5-FapyGua is less stable 
than FapyGua, although it may be formed initially 
and then converted into FapyGua  via  the hemi-
orthoamide [67]. The formation of FapyGua in 
nucleosides and DNA  in vitro , and in DNA  in vivo  
under numerous experimental conditions has 
extensively been studied and reported in the past 
fi ve decades. In most cases, the yields of FapyGua 
were comparable to, if not, greater than those of 
8-OH-Gua. A recent extensive review of this fi eld 
can be found elsewhere [62]. 

 The reduction potential of 8-OH-Gua amounts to 
0.74 V as compared to 1.29 V for Gua [72]. It is there-
fore prone to oxidation, giving rise to a radical cation 
(8-OH-Gua  •   �   ), which hydrates (addition of HO  �  ) 
producing the 5-OH – adduct radical of 8-OH-Gua as 
shown in Figure 6. The oxidation can be caused by a 
number of oxidizing agents such as ionizing radiations, 
singlet oxygen, metal ions, peroxynitrate, IrCl 6  

2 �  , 
among others. Upon one-electron oxidation, this radi-
cal forms 5-OH-8-hydoxyguanine, the isomerization of 

which results in the formation of spiroiminodihydan-
toin and also in that of 5-guanidinohydantoin by loss 
of CO 2  depending on reaction conditions [73]. For 
almost 20 years, the structure of spiroiminodihydan-
toin has been misassigned by Cadet et al. as 4,8-
dihydro-4-hydroxy-8-oxoguanine [74 – 78]. Moreover, 
this product has been routinely used for a marker of 
single oxygen-induced damage to Gua [77]. However, 
the use of various analytical techniques and the syn-
thesis of the authentic material revealed the correct 
structure of this compound as spiroiminodihydantoin, 
which is a diastereomeric mixture [73,79 – 82]. The 
oxidation of 8-OH-Gua leading to spiroiminodihydan-
toin also occurs by triplet states [82 – 85]. Singlet oxy-
gen reacts with 8-OH-Gua yielding oxaluric acid, 
parabanic acid and other products [86,87]. Moreover, 
8-OH-Gua  •   �    [and also its the deprotonated form 
8-OH-Gua( – H  •  )] reacts with O 2  

 •  �   ( k   �    3  �  10 9  dm 3  
mol  � 1  s  � 1 ) to give rise to 5-hydroperoxide of 8-OH-
Gua, which decomposes to form oxaluric acid and 
parabanic acid [88]. Spiroiminodihydantoin has also 
been identifi ed in  E. coli  treated with potassium dichro-
mate [89]. Sequence-dependent variation in the reac-
tivity of 8-OH-Gua toward oxidation has also been 
reported [90]. Extensive reviews of this fi eld can be 
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found elsewhere [91,92]. Obviously, there has been 
mounting evidence for the facile oxidation of 8-OH-
Gua by a large number of oxidants to yield numerous 
products. All this evidence puts in doubt the validity 
of claims by the European Standards Committee on 
Oxidative DNA Damage (ESCODD) about the  “ cor-
rect ”  value of the background level of 8-OH-Gua in 
living cells, and the validity of its advice and recom-
mendation to editors and reviewers of manuscripts 
not to accept reported values of the 8-OH-Gua level 
exceeding a certain range of level  “ established ”  
by ESCODD [93 – 95]. Contrasting the claims by 
ESCODD, the so-called  “ established median value ”  
has been obtained with an exceptionally wide range 
of 120  �  (by chromatographic methods) and 83  �  (by 
enzymatic methods) between the highest and lowest 
estimates of the 8-OH-Gua level among participating 
laboratories. 

 The reaction between e aq  
 �   and Gua nucleosides is 

diffusion-controlled ( k   �    6  �  10 9  dm 3  mol  � 1  s  � 1 ) 
[11,96]. Later, a similar rate constant of 3.3  �  10 9  dm 3  
mol  � 1  s  � 1  has been reported [97]. The high rate of this 
reaction is likely due to many N atoms with high elec-
tron affi nity in purines [19]. The addition of e aq  

 �   to 
Gua gives rise to a radical anion (Gua  •  �  ), which is read-
ily protonated at a heteroatom (O6, N3 or N7) in reaction 
with H 2 O ( k   �    1  �  10 7  s  � 1 ) followed by water-assisted tau-
tomerization ( k   �    1.2  �  10 6  s  � 1 ) to yield a neutral 
C8-H – adduct radical (Figure 7). A subsequent work 
confi rmed this mechanism and reported a similar rate 
for tautomerization ( k   ≈  1.5  �  10 �6  s  � 1 ) [97]. H  •   also 
reacts with guanine nucleosides ( k   �    5  �  10 8  dm 3  
mol  � 1  s  � 1 ) by addition at C8 and generates the same 
adduct radical [96]. The C8-H – adduct radical of Gua 

is a weak oxidant. No products of this radical have 
been found so far in DNA.   

 Adenine 

 The reduction potential of Ade (1.56 V) is consider-
ably greater than that of Gua (1.29 V) [2,8], and thus 
it is not as readily oxidized. As with Gua,   •  OH reacts 
with Ade by addition to its double bonds as shown in 
Figure 8. However, the distribution of additions is 
somewhat different. Thus, the addition at the C4 and 
C8 amounts to 50% and 37%, respectively, forming 
the C4-OH –  and C8-OH – adduct radicals [9,98,99]. 
The tendency of   •  OH addition to C5 yielding the 
reducing C5-OH – adduct radical amounts to  �    5%, 
whereas the addition at C2 is likely to be no more than 
2% due to the low electron density at this position 
[99]. The C4-OH – radical is weakly oxidizing (due to 
the unpaired spin density on N1 and N3) and under-
goes H 2 O elimination ( k   �    1.9  �  10 4  s  � 1 ) to give rise 
to a strongly oxidizing Ade( – H)  •   [98] (Figure 9). The 
reduction potential of this radical is  ∼ 1.6 V and may 
reconstitute Ade upon one-electron reduction [10]. 
Similar to Gua( – H)  •  , Ade( – H)  •   may protonate to give 
Ade  •   �   , which would generate the C8-OH – radical 
upon hydration (Figure 9). Unlike its Gua-derived 
counterpart, the C4-OH – radical readily reacts with 
O 2  ( k   �    1  �  10 9  dm 3  mol  � 1  s  � 1 ; measured using 2 ′ -
deoxyadenosine) [99]. The C2-OH – adduct radical 
may give rise to 2-hydroxyadenine (2-OH-Ade) by 
one-electron oxidation (Figure 9). The identifi cation 
of 2-OH-Ade in DNA  in vitro  and  in vivo  supports 
this notion [100,101]. 
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 The one-electron oxidation of the C8-OH – adduct 
radical produces 8-hydroxyadenine (8-OH-Ade) 
(Figure 10). In competition with oxidation, this radi-
cal undergoes ring opening ( k   �    1  �  10 5  s  � 1 ), followed 
by one-electron reduction, producing 4,6-diamino-5-
formamidopyrimidine (FapyAde). The reduction 
without ring opening can also occur, resulting in 
the formation of the hemiorthoamide (7-hydro-8-
hydroxyadenine), which is sensitive to hydrolysis and 
is converted into FapyAde. 7-Hydro-8-hydroxyade-
nine may also dehydrate to reconstitute Ade (Figure 
10). Oxygen reacts with the C8-OH – adduct radical 
more effi ciently ( k   ≈  4  �  10 9  dm 3  mol  � 1  s  � 1 ) than 
with the C4-OH – adduct radical [99]. At low O 2  con-
centrations (20 – 30  μ M), this reaction and ring open-
ing may be equally effi cient and thus competitive 
[99]. The abundant formation of FapyAde and 8-OH-
Ade in DNA  in vitro  and  in vivo  confi rms this notion 
(reviewed in [5,58,62,102]). 

 Adenine reacts with e aq  
 �   at a diffusion-controlled rate 

( k   �    6  �  10 9  dm 3  mol  � 1  s  � 1 ; measured using adenosine) 

[11]. The thus-formed radical anion (Ade  •  �  ) is rapidly 
protonated by H 2 O at a heteroatom (nitrogen) 
( k   �    1.4  �  10 8  s  � 1 ; measured using adenosine) as 
shown in Figure 11 [9,103 – 105]. The neutral N-
protonated radical [Ade(H)  •  ] may exist in an equilib-
rium mixture with its mesomeric forms. These 
mesomers and Ade  •  �   possess strong reducing proper-
ties. Ade(H)  •   is converted into the carbon-protonated 
C8-H – adduct radical either spontaneously ( k   �    1  �  10 4  
s  � 1 ) or by catalysts such as phosphate ( k   �    2  �  10 6  s  � 1 ) 
[105] (Figure 11). The reaction of Ade(H)  •   with H   �    
( k   �    4  �  10 10  dm 3  mol  � 1  s  � 1 ) yields the carbon-proto-
nated C2-H – adduct radical. Catalysis by phosphate 
converts this radical into the C8-H – adduct radical 
( k   �    6.1  �  10 5  dm 3  mol  � 1  s  � 1 ). The C8-H – adduct 
radical is thermodynamically more stable than the 
C2-H – adduct radical, probably because the aromatic 
character of the pyrimidine ring is kept in the former. 
The addition of H  •   to the C8-position of Ade may also 
produce the C8-H – adduct radical (Figure 11). All 
these radicals of Ade may give rise to fi nal products; 
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positions [2]. The reactions of   •  OH produce the 
C5-OH –  and C6-OH – adduct radicals, and an allyl 
radical of Thy (Figure 12). The C5-OH – adduct radi-
cal has reducing properties, whereas the C6-OH –
 adduct radical is a strong oxidant.  Ab initio  molecular 
orbital calculations showed that the C6-OH – adduct 
radical is the most oxidizing among all OH – adduct 
radicals of DNA bases [18]. The allyl radical has no 
oxidizing or reducing properties. Thy radicals are oxi-
dized or reduced depending on their redox properties, 
the presence or absence of oxygen and redox environ-
ment, producing a variety of products with different 
yields (reviewed in [2,5,58,102]). In the absence of 
O 2 , the C5-OH –  and C6-OH – adduct radicals undergo 
oxidation and H 2 O addition (HO  �   addition) to yield 
Thy glycol ( cis –   and  trans –  ) (Figure 13). The C5-OH –
 adduct radical may also abstract an H  •   from the neigh-
bouring 2 ′ -deoxyribose, leading to DNA strand breaks 
[108,109]. The reduction of the C5-OH –  and 
C6-OH – adduct radicals takes place, giving rise to 
5-hydroxy-6-hydrothymine and 6-hydroxy-5-hydro-
thymine, respectively. The oxidation of the allyl radical 
followed by H 2 O addition (HO  �   addition) results in 
5-(hydroxymethyl)uracil (Figure 13). The formation 

however, no such products have been identifi ed in 
DNA. It may well be that the C2-H –  and C8-H – 
adduct radicals rapidly transfer electron to other DNA 
bases such as Thy, thus disappearing before formation 
of fi nal products [105].   

 Thymine 

 Thy reacts with   •  OH and e aq  
 �   at diffusion-controlled 

rates ( k   �    6.4  �  10 9  dm 3  mol  � 1  s  � 1  and  k   �    1.8  �  10 10  
dm 3  mol  � 1  s  � 1 , respectively), and with H  •   at an order 
of magnitude slower rate ( k   �    6.8  �  10 8  dm 3  mol  � 1  
s  � 1 ) [11]. Hydroxyl radical adds to the C5 – C6-
double bond of Thy to the extent of 60% at C5 and 
30% at C6, and also abstracts an H  •   from the methyl 
group to a much lesser extent (10%) [106,107]. These 
reactions are exothermic to different extents accord-
ing to a Car – Parrinello molecular dynamics study 
[16]. However, the calculated reaction energies of the 
C5 – C6-additions and H  •   abstraction do not agree 
with the distribution of the   •  OH attack. The greater 
addition at C5 results from the higher electron den-
sity at C5 than at C6, and the ratio of the additions 
is on a par with that of the electron densities at these 
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of 5-hydroxy-6-hydrothymine and 6-hydroxy-5-hydro-
thymine is inhibited by O 2 , because Thy radicals react 
with O 2  at diffusion-controlled rates with  k ≈ 2   �  10 9  
dm 3  mol  � 1  s  � 1 , yielding peroxyl radicals (Figure 14) 
[110]. The C5-OH – peroxyl radical eliminates O 2  

 •  �   

followed by H 2 O addition and deprotonation to pro-
duce Thy glycol [2,106,111]. The C6-OH – peroxyl 
radical may undergo the same reactions. Peroxyl radi-
cals are also reduced and protonated, yielding hydroxy-
hydroperoxides, which further decompose to give rise 
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the C5-OH –  and C6-OH – adduct radicals (Figure 16). 
The distribution of   •  OH addition at Cyt substantially 
differs from that at Thy, with the addition taking place 
at C5 and C6 to the extent of 87% and  ∼ 10%, respec-
tively, because of the exceptionally high electron den-
sity at C5 compared to that at C6 [2,117]. The 
addition at N3 has also been considered; however, it 
is much less likely to occur than the other additions. 
With Cyt nucleosides, more than 80% of hydroxyl 
radicals have been estimated to react with the base 
and the rest with the sugar moiety. This estimate 
roughly agrees with that obtained using the rate con-
stants of   •  OH reactions with individual nucleoside 
components [11]. The C5-OH – radical has reducing 
properties, whereas the C6-OH – adduct radical is a 
weak oxidant. The former is a type of  α -aminoalkyl 
radicals that are powerful one-electron donors 
[118,119]. The C4-OH – radical would be oxidizing, 
but its formation is uncertain [117]. In the absence 
of O 2 , the oxidation of the C5-OH – adduct radical 
followed by hydration (HO  �   addition) yields Cyt gly-
col (Figure 17) (reviewed in [2,5,58]). The reduction 
of this adduct radical leads to 5-hydroxy-6-hydrocy-
tosine. Cyt products are unique in that they undergo 
dehydration and deamination. Thus, Cyt glycol pro-
duces 5-hydroxycytosine by dehydration, Ura glycol 
by deamination and 5-hydroxyuracil by deamination 
followed by dehydration (Figure 17) [111,120]. The 
deamination of 5-hydroxy-6-hydrothymine gives rise 
to 5-hydroxy-6-hydrouracil. However, these products 
may simultaneously exist in oxidatively damaged 
DNA as the evidence suggests [121,122]. 

 Oxygen reacts with the Cyt radicals at diffusion-
controlled rates ( k ≈    2  �  10 9  dm 3  mol  � 1  s  � 1 ), leading 
to peroxyl radicals [110,117] (Figures 18 and 19). 
Unimolecular elimination of O 2  

 •  �   and subsequent 
hydration (HO  �   addition) and deprotonation pro-
duces Cyt glycol [2,111,117,123], which then can 
dehydrate and deaminate leading to the products 
described above. However, 5-hydroxy-6-hydrocytosine 
and, consequently, 5-hydroxy-6-hydrouracil are not 
formed in the presence of O 2  because of the diffusion-
controlled reaction of O 2  with their precursor (see 
above). Peroxyl radicals of Cyt are also reduced and 
protonated, yielding hydroxyhydroperoxides [123]. 
These compounds readily decompose to give rise to 
4-amino-5-hydroxy-2,6(1H,5H)-pyrimidinedione 
from 5-OH-6-hydroperoxide (Figure 18) and 4-ami-
no-6-hydroxy-2,5(1H,6H)-pyrimidinedione from 
6-OH-5-hydroperoxide (Figure 19). The former dehy-
drates and deaminates to give rise to 5-hydroxy-2,
4,6(1H,3H,5H)-pyrimidinetrione (dialuric acid), 
which is readily oxidized in aqueous solution to give 
rise to 2,4,5,6(1H,3H)-pyrimidinetetrone (alloxan) 
[124,125], and subsequently to the ring-reduced prod-
uct 5-hydroxyhydantoin upon acidic treatment [126] 
(Figure 18). 5-OH-6-hydroperoxide undergoes intra-
molecular cyclization to give rise to  trans -1-carbamoyl-
2-oxo-4,5-dihydroxyimidazolidine as a major product 

to Thy glycol, 5-(hydroxymethyl)uracil, 5-formyluracil 
and the ring reduction product 5-hydroxy-5-methylhy-
dantoin (Figure 14) [111 – 113]. 

 Ionizing radiation-generated e aq  
 �   reacts with Thy v 

addition at a diffusion-controlled rate ( k   �    1.8  �  10 10  
dm 3  mol  � 1  s  � 1 ) [11], generating an anion radical, 
which yields the 5-H – adduct radical upon protonation 
(Figure 15). The reaction between H  •   and Thy is 
slower; nevertheless, it has an appreciable rate 
( k   �    6.8  �  10 8  dm 3  mol  � 1  s  � 1 ) [11], and also gives rise 
to the 5-H – adduct radical. Being an electrophilic 
radical, H  •   has a strong preference for addition at 
electron-rich sites, thus it preferentially adds to the 
C5-position [2,114]. The reduction of the 5-H – adduct 
radical results in the formation of 5,6-dihydrothymine 
(Figure 15). This product is not formed in the pres-
ence of O 2  because of the diffusion-controlled reaction 
of O 2  with both e aq  

 �   and H  •   ( k ≈    2  �  10 10  dm 3  mol  � 1  
s  � 1 ) [11]. However, a competition may take place 
between the reactions of these species with Thy and 
O 2  under the hypoxic conditions of the cell nucleus, 
allowing the formation of 5,6-dihydrothymine in DNA 
 in vivo . Two diastereomers of 5,6-dihydrothymine 
have been identifi ed in  γ -irradiated HeLa cells [115].   

 Cytosine 

 Hydroxyl radical reacts with Cyt at a diffusion-
controlled rate by addition to the C5 – C6 double bond 
( k   �    6.8  �  10 9  dm 3  mol  � 1  s  � 1 ) [11,116], generating 
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   DNA damage    395

s  � 1 ), generating an electron adduct (anion radical), 
which gives rise to the 5-H – adduct radical upon rapid 
protonation by H 2 O [104,128]. The reaction of H  •   
with Cyt has a slower rate ( k ≈    9.2  �  10 7  dm 3  mol  � 1  
s  � 1 ) and produces the same 5-H – adduct radical by 
addition to the electron-rich C5-position [11] 
(Figure 20). The one-electron reduction of the 5-H –
 adduct radical yields 5,6-dihydrocytosine, which is 
converted into 5,6-dihydrouracil upon deamination. In 
the presence of O 2 , the formation of these products is 

of Cyt (Figure 18); however, this compound is formed 
in DNA as a minor product only [111,122,123,127]. 
4-Amino-6-hydroxy-2,5(1H,6H)-pyrimidinedione 
deaminates to yield isodialuric acid. Both compounds 
may also exist in their enol forms 5,6-dihydroxycyto-
sine and 5,6-dihydroxyuracil, respectively (Figure 19). 
The simultaneous existence of these two products has 
been shown in damaged DNA [121,122]. 

 Hydrated electron reacts with Cyt by addition at a 
diffusion-controlled rate ( k   �    1.3  �  10 10  dm 3  mol  � 1  
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396  M. D i zdaroglu & P. Jaruga   

vivo  over the past fi ve decades. It is important to note 
that the types and yields of these products depend on 
the reaction conditions. For example, some products are 
produced in the absence of O 2  only, and others under 
both oxygenated and deoxygenated conditions, but with 
different yields. The presence of reducing or oxidizing 
agents profoundly affects the product yields as well. In 
living cells and tissues, the product yields also depend 
on redox environment, the type of treatment, disease 

inhibited because of diffusion-controlled reactions of 
O 2  with e aq

�  and H  •  . Nevertheless, hypoxic conditions 
of the cell nucleus may allow the formation of 5,6-di-
hydrocytosine and 5,6-dihydrouracil in DNA  in vivo .   

 Final products 

 The reactions discussed above yield a plethora of prod-
ucts in DNA that have been identifi ed  in vitro  and  in 
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   DNA damage    397

ignored in many papers in the literature, and a certain 
product has been presented almost always as the 
most important or the most abundant product, no mat-
ter what conditions had been used. Figure 21 illustrates 
the main products of free radical damage to the 
heterocyclic bases in DNA identifi ed  in vitro  and  in vivo  
under numerous conditions. More details on these 
products can be found elsewhere (see e.g., [2,5,47,58, 
102,129,130]).    

 Mechanisms of damage to the sugar moiety 
of DNA 

 Hydroxyl radical reacts with 2 ′ -deoxyribose in DNA by 
H  •   abstraction from all its carbons leading to 
fi ve C-centred radicals as shown in Figure 22. The over-
all rate constant of this reaction amounts to 2.5  �  10 9  
dm 3  mol  � 1  s  � 1  [11]. However, the rate may depend on 
the C-atoms. The extent of   •  OH attack on 
2 ′ -deoxyribose in DNA generally amounts to less than 
20% [2], although this amount may be different in the 
cell nucleus. In poly(U), for example, the amount of 
attack is 7% only [131]. However, the DNA strand 
breakage is greater than expected from the amount of 
  •  OH attack on 2 ′ -deoxyribose, indicating a possible 
radical transfer from a base radical to 2 ′ -deoxyribose. 
This in fact has been demonstrated using poly(U) 
[108,131 – 137]. Moreover, there is evidence for an intra-
molecular H  •   abstraction from 2 ′ -deoxyribose by the 
Thy C5-OH – adduct radical in poly(dT) [109]. The cal-
culated energies of H  •   abstractions by   •  OH from small 
molecules and 2-deoxyribose correlate with the strength 
of the C – H bonds [138,139]. However, the solvent 
accessibility plays a critical role when 2-deoxyribose 
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conditions, DNA repair defi ciency, availability of transi-
tion metal ions bound to DNA, radical-scavenger 
concentration, etc. Therefore, the yield of a given product 
is not a fi xed value under all possible experimental or  in 
vivo  conditions. Unfortunately, this fact has often been 
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398  M. D i zdaroglu & P. Jaruga   

context, deuterium kinetic isotope effects on the rate 
of various H  •   abstractions from 2 ′ -deoxyribose by 
  •  OH have been measured [143,144]. These fi ndings 
showed that   •  OH abstracts an H  •   from the fi ve carbons 
in the order H5 ′   �  H4 ′   �  H3 ′≈    H2 ′ ≈   H1 ′  and that the 
C4 ′ - and the C5 ′ -positions are the most accessible to 
solvent and from the minor groove. 

 Damage to 2 ′ -deoxyribose in DNA leads to prod-
ucts, strand breaks and abasic sites, and consequently 
to the release of unaltered DNA bases. The C-centred 
radicals undergo further reactions, yielding a variety 
of products of 2 ′ -deoxyribose. Some products are 
released from DNA, whereas others remain within 
DNA or constitute end groups of broken DNA 
strands. The mechanisms understood fi rst in detail 
have been those of the reactions of the C4 ′  radical in 
the absence of O 2 , leading to strand breaks and products 
[39]. This radical is an alkoxyalkyl radical with a 
phosphate group at the  β -position on both sites of the 
DNA chain. Such radicals readily lose the phosphate 
group as elucidated using model systems [145 – 148]. 
Heterolytic cleavage of the phosphate group at C3 ′  

is situated within DNA. H4 ′  and H5 ′  are more exposed 
to solvent and thus more accessible to H  •   abstraction by 
  •  OH than the other H atoms. The accessibility of H1 ′  is 
very low in the case of the double-stranded B-form of 
DNA. The C4 ′  radical appears to be the major radical 
produced by H  •   abstraction from 2 ′ -deoxyribose in 
DNA [139]. The accessibility to   •  OH attack on the 
H atoms at the fi ve carbons varies as calculated using 
a Monte-Carlo simulation and the RADACK proce-
dure, and by an  ab initio  study [140 – 142]. According 
to these calculations, the H  •   abstraction is most prob-
able from H4 ′  and H ′ 5 in DNA. The calculated acces-
sibility of the H4 ′  and H5 ′  atoms agreed well with 
experimentally determined DNA damage in terms of 
single-strand breaks. However, the accessibility to 
these sites exhibited a strong sequence dependency 
[140]. Reduced strand breakage occurred in sequences 
exhibiting low accessibility of H4 ′  and H5 ′ 2, leading 
to a low probability of abstraction by   •  OH due to a 
narrow, minor groove. Experimental results and calcu-
lations suggested that the C4 ′ - and C5 ′ -centred radicals 
cause strand breaks to roughly equal extents. In another 
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C4 ′ -radical without phosphate elimination leads to a 
cation that gives rise to 2-deoxypentos-4-ulose within 
DNA upon hydration (HO  �   addition) followed by 
unaltered base release (Figure 23). These three prod-
ucts are also released from DNA as free modifi ed 
sugars [39,149]. The formation of 2,3-dideoxypentos-
4-ulose and 2,5-dideoxypentos-4-ulose is inhibited in 

and C5 ′  with the former being predominant over 
the latter leads to strand breakage and formation of 
radical cations (Figure 23). Hydration (HO  �   addi-
tion) of the radical cations followed by reduction and 
unaltered base release yields 2,3-dideoxypentos-4-
ulose and 2,5-dideoxypentos-4-ulose as end groups 
in broken DNA chains [39,149]. The oxidation of the 
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6-OH–adduct radical
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as an end group with the unaltered base still attached 
to the altered sugar moiety [143,144]. Figure 27 illus-
trates the structures of the major products of 2 ′ -
deoxyribose of DNA.   

 Mechanisms of formation of tandem lesions  

 8,5 ¢ -Cyclopurine-2 ¢ -deoxynucleosides 

 One unique reaction of the C5 ′ -centred 2 ′ -deoxyribose 
radical in purine nucleosides is the highly stereospe-
cifi c attack at C8 of the purine ring within the same 
purine nucleoside in the absence of O 2 , leading to 
C5 ¢  – C8-intramolecular cyclization. The oxidation of 
the thus-formed N7-centred radical results in the for-
mation of 8,5 ¢ -cyclopurine-2 ¢ -deoxynucleosides with 
a covalent bond between the C5 ¢ - and C8-positions. 
Both  R - and  S -diastereomers of these compounds are 
formed. This reaction has been fi rst discovered by 
Keck to take place within adenosine-5 ¢ -monophosphate 

the presence of O 2 , which rapidly reacts with the 
C4 ′ -radical, leading to a peroxyl radical [40]. The C4 ′ -
peroxyl radical is also the precursor of 2-deoxypentos-
4-ulose formed in the presence of O 2 . In addition, the 
C4 ′ -peroxyl radical is converted into an oxyl radical, 
which undergoes  β -fragmentation and reaction with 
O 2 , yielding a 3 ′ -phosphoglycolate as an end group 
[2,144,150]. The C1 ′ -radical yields 2-deoxypentonic 
acid within DNA upon oxidation followed by hydra-
tion (HO  �   addition) and unaltered base release [151] 
(Figure 24). This compound is also formed in the 
presence of O 2 . The C2 ′ -radical reacts with O 2 , gen-
erating a peroxyl radical, which is converted into an 
oxyl radical. The  β -fragmentation of the latter fol-
lowed by reaction with O 2  and by base  �  C1 ′  release, 
yields erythrose within DNA [152] (Figure 25). In a 
similar mechanism, the C5 ′ -peroxyl radical generates 
2-deoxytetradialdose as an end group of a broken 
DNA chain [39] (Figure 26). Moreover, the C5 ′ -
peroxyl radical leads to the formation of 5 ′ -aldehyde 
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Figure 21. Structures of the major oxidatively induced products of DNA bases.
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Hydroxyl radical has been shown to be the initiating 
radical species of C5 ′  – C8-intramolecular cyclization. 
Both  R - and  S -diastereomers of 8,5 ′ -cyclo-2 ′ -deoxy 
guanosine (cdG) and cdA have subsequently been 
identifi ed in DNA upon exposure to ionizing radia-
tion in aqueous solution and to the antitumour agent 
3-amino-1,2,4-benzotriazine 1,4-dioxide (Tirapazamine) 

(AMP), giving rise to 8,5 ′ -cyclo-AMP [153]. The 
intramolecular cyclization is supported by the fact 
that the C8 of purines are particularly reactive toward 
radical attack [154]. Subsequent studies showed the 
formation of 8,5 ′ -cycloadenosine (cA) and 8,5 ′ -cyclo-
2 ′ -deoxyadenosine (cdA) in polyadenylic acid (polyA) 
and in 2 ′ -deoxyadenosine, respectively [155 – 164]. 
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regarded as tandem lesions in DNA. The rate con-
stants for the C5 ′  – C8-intramolecular cyclization 
amount to 1.6  �  10 5  s  � 1  for dA and  ∼ 1  �  10 6  s  � 1  for 
dG, respectively [169 – 171]. This reaction is inhibited 
by O 2  because of its reaction with the C5 ′ -centred 
radical at a near diffusion-controlled reaction rate ( k 
≈    1.9  �  10 9  dm 3  mol  � 1  s � 1) [2,155,169]. However, 
the formation of both diastereomers has been observed 
at low liquid-phase O 2  concentrations [172 – 174]. 

[165 – 167]. The formation of  R -cdG and  S -cdG has also 
been demonstrated in  γ -irradiated human cells [168]. 

 The mechanisms of formation of 8,5 ′ -cyclopurine-
2 ′ -deoxynucleosides is shown in Figure 28 in the case 
of dA. This fi gure also illustrates the structures of the 
 R - and  S -diastereomers of cdG, which are produced 
by analogous reactions of dG. These compounds rep-
resent a concomitant damage to both the base and 
sugar moieties of the same nucleoside, and thus, are 
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tions of the C5 ′ -radicals of dA and dG with glutathione 
by H  •   abstraction may also compete with the C5 ′  – C8-
cyclization because of the high intracellular concen-
tration of glutathione [175], and because of the rapid 
reaction of the C5 ′ -radical with glutathione ( k   �    5  �  10 7  
dm 3  mol  � 1  s  � 1 ; measured using dA) [173]. In general, 

This fact suggests that a competition may take place 
between the C5 ′  – C8-cyclization and the reaction of 
O 2  with the C5 ′ -centred radical depending on O 2  
concentration. Because of hypoxic conditions of the 
cell nucleus [60,61], and possible steric hindrances, 
this competition may occur in living cells. Reac-
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in 1987 [168]. Since then, these compounds have 
been identifi ed in cultured mammalian cells, human 
and animal tissues  in vivo , and in human urine in a 
variety of conditions such as disease states, gene 
knockouts and exposure to ionizing radiation or envi-
ronmental pollutants [182,187 – 202]. A more exten-
sive review of these fi ndings can be found elsewhere 
[203]. 

 Pyrimidine 2 ′ -deoxynucleosides also undergo intra-
molecular cyclization upon exposure to ionizing radi-
ation in frozen or liquid aqueous solution. 
5 ′ ,6-Cyclo-5,6-dihydro-2 ′ -deoxythymidine and 5 ′ ,6-
cyclo-5,6-dihydro-2 ′ -deoxyuridine have been identi-
fi ed in frozen aqueous solutions of dT and dC exposed 
to ionizing radiation [204]. The direct effect of ion-
izing radiation produces these products. The mecha-
nism involves an H atom removal from C5 ′  by 
radiation followed by intramolecular attack of the 
thus-formed C5 ′ -centred radical at C6 leading to 
C5 ′  – C6-cyclization and a 5-yl radical, and subsequent 
electron transfer and protonation. In another instance, 
two diastereomers of 5 ′ ,6-cyclo-5-hydroxy-5,6-
dihydro-2 ′ -deoxyuridine have been identifi ed in aer-
ated aqueous solutions of 2 ′ -deoxycytidine exposed to 
 γ -radiation [205]. The proposed mechanism involves 
H  •   abstraction by   •  OH from C5 ′  followed by C5 ′  – C6-
cyclization, reaction with O 2  and then deamination. 
Thus far, 5 ′ ,6-cyclo-5,6-dihydro-2 ′ -deoxythymidine, 
5 ′ ,6-cyclo-5,6-dihydro-2 ′ -deoxyuridine and 5 ′ ,6-
cyclo-5-hydroxy-5,6-dihydro-2 ′ -deoxyuridine have 

such radicals rapidly react with thiols ( k ≈    1  �  10 8  
dm 3  mol  � 1  s  � 1 ) [2,11]. 

 The substrate, experimental conditions and DNA 
conformation substantially affect the ratio of the  
R - and  S -diastereomers of cA, cdA and cdG [156,160, 
161,163,165,166,169,170,176 – 185]. The  R -diastere-
omers predominate over the  S -diastereomers in ss-
DNA, whereas the formation of the  S -diastereomers 
is favoured over that of the  R -diastereomers in 
ds-DNA [166]. These data are on a par with the 
results of quantum chemical calculations [179]. The 
C5 ′  – C8-cyclization causes an unusual puckering of 
the sugar moiety [158,171,177,179,186]. The length 
of the C2 ′  – C3 ′ -, C3 ′  – C4 ′ - and C4 ′  – C5 ′ -bonds 
become longer than those in the nucleoside and O4 ′  
is located closer to the atoms of the purine ring when 
compared to normal nucleosides. The C5 ′  – C8-
cyclization requires the purine ring to rotate around 
the glycosidic bond, bringing C5 ′  and C8 close 
enough to form the C5 ′  – C8-covalent bond. More-
over, it causes large changes in backbone torsion 
angles, resulting in weakening the hydrogen bonds 
and substantial perturbations of the double helix near 
the lesion [179]. The  R - and  S -diastereomers cause 
an equal degree of DNA distortion. 

 8,5 ′ -Cyclopurine-2 ′ -deoxynucleosides exist in liv-
ing cells  in vivo  at background levels and are also 
formed under a variety of conditions. The formation 
and identifi cation of  R -cdG and  S -cdG in cultured 
human exposed to ionizing radiation was fi rst reported 
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Figure 27.     Structures of the major oxidatively induced products of the 2 ′ -deoxyribose moiety of DNA.  

not been identifi ed in DNA exposed to ionizing radi-
ation or any other DNA-damaging agents.   

 Adjacent, interstrand and intrastrand base-base tandem 
lesions 

 Besides the lesions discussed above, three other types 
of tandem lesions have been identifi ed in oligodeoxy-
nucleotides and DNA exposed to ionizing radiation 
or other   •  OH-generating systems: (1) Two adjacent 
damaged bases on the same strand; (2) An intrastrand 
cross-link between two adjacent DNA bases on the 
same strand; (3) An interstrand cross-link between 

two DNA bases on opposite strands. A tandem lesion 
consisting of an 8-OH-Gua and a formamido residue 
(8-OH-Gua/Fo) has been identifi ed in d(GpT) 
exposed to   •  OH in the presence of O 2  [206]. Subse-
quent work observed the same type of reactions with 
d(GpC), d(TpG), d(CpG) and d(CpGpTpA), indi-
cating Fo is also formed from Cyt next to 8-OH-Gua 
[178,206 – 210]. These lesions have been suggested to 
be formed from a single radical event initiated by 
ionizing radiation or other   •  OH-producing systems. 
The formation of 8-OH-Gua/Fo has also been shown 
in DNA exposed to ionizing radiation or to Fe 2  �   /
H 2 O 2 , but as two types, namely 8-OH-Gua/Fo and 
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Fo/8-OH-Gua with the yield of the former being con-
siderably greater than that of the latter [211 – 216]. 
Cadet et al. originally suggested a mechanism that 
involved the one-electron oxidation of a neighbouring 
Gua by the C5-OH-C6-peroxyl radical of Thy fol-
lowed by hydration of Gua  •   �    and oxidation to form 
8-OH-Gua and the decomposition of the C5-OH-
C6-oxyl radical of Thy yielding Fo [214]. However, 
this mechanism has been dismissed as a very unlikely 
one because of the signifi cantly lower reduction poten-
tial of a peroxyl radical than that of Gua rendering 
this reaction endothermic [2]. Subsequent work pro-
posed a mechanism that involves   •  OH addition to the 
C5 of Thy (or Cyt) followed by a peroxyl radical for-
mation in reaction with O 2 . The C5-OH-C6-peroxyl 

radical then attacks the C8 of Gua and gives rise to 
an N-centred radical, which does not react with O 2  
and undergoes a 1,2-shift reaction yielding a C8-cen-
tred radical. A  β -cleavage then takes place generating 
8-OH-Gua and an oxyl radical at Thy or Cyt, which 
decomposes yielding Fo [215]. These studies also 
showed that these two lesions may contribute about 
10% to the overall yield of 8-OH-Gua in DNA. In 
contrast, another study found an order of magnitude 
higher yield for Fo/8-OH-Gua, the formation of which 
has also been observed in the absence of O 2 , albeit 
with a much lower yield [212]. However, such lesions 
have not yet been identifi ed in cellular DNA [130]. 

 In the absence of O 2 , an intrastrand cross-link for-
mation between the C8 of Gua and the CH 3  group 
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of Thy (Gua[8,5-Me]Thy) has been detected in 
d(CpGpTpA) and similar oligomers exposed to ion-
izing radiation [210,217,218]. The proposed mecha-
nism consists of the addition of the allyl 
radical of Thy to the C8 of Gua forming an N7-cen-
tred, followed by oxidation. Additional intrastrand 
covalent cross-links have been observed between the 
C5 of Thy and the C8 of Gua, and between the C5 
of Cyt and the C8 of Gua [210,218]. Subsequent 
studies identifi ed Gua[8,5-Me]Thy and an analo-
gous Thy-Gua cross-link (Thy[5-Me,8]Gua) in 
DNA with the former generated at a much higher 
yield than the latter, indicating that cross-linking is 
favoured when the purine is located at the 5 ′ -end of 
the pyrimidine 2 ′ -deoxynucleoside [211,219 – 224]. 
In addition, Ade-Thy (Ade[8,5-Me]Thy) and 
Thy-Ade (Thy[5-Me,8]Ade) cross-links have been 
identifi ed in  γ -irradiated DNA [220,225]. As in the 
case of Gua-Thy cross-links, Ade[8,5-Me]Thy was 
generated in a greater yield than Thy[5-Me,8]Ade. 
Cross-links between the allyl radical of 5-Me-Cyt 

and the C8 of purines have also been observed 
[226 – 228]. Gua[8,5-Me]Thy and another cross-link 
between Gua and Cyt (Gua[8,5]Cyt) have been 
identifi ed in  γ -irradiated living cells [229,230]. Sim-
ilar to the Cyt-Gua crosslink identifi ed in oligomers 
[218], the proposed formation mechanism of 
Gua[8,5]Cyt involves the addition of the C6-OH –
 adduct radical of Cyt to the C8 of adjacent Gua on 
the 5 ′ -end forming an N7-centred, followed by oxi-
dation and dehydration. In addition, an interstrand 
cross-link has been reported to occur between the 
allyl radical of Thy on one strand and the amino 
group of Ade on the other strand of DNA exposed 
to   •  OH [231 – 234]. The mechanism has been worked 
out using isotopic labelling and consists of the addi-
tion of the allyl radical to the N1-position of Ade 
followed by rearrangement leading to a covalent 
bond between the CH 2  of Thy and the 6-NH of Ade 
[234]. This interstrand cross-link has been observed 
in the presence and absence of O 2 , although the yield 
was lower in the latter case. This is surprising, because 
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on the type of lesions, distance between lesions, pres-
ence of strand breaks, etc. For example, bistranded or 
tandem clusters may be resistant to repair by DNA 
glycosylases or endonucleases, and thus persist in cells 
for a signifi cant time period [244]. Two closely spaced 
DNA lesions may generate DSBs during DNA repair 
processes. A greater accumulation of clustered lesions 
may occur depending on the mutation frequency, DNA 
repair capacity and genomic instability.    

 Mechanisms of DNA-protein cross-linking 

 Free radical reactions with chromatin cause forma-
tion of covalent DNA-protein cross-links in mamma-
lian cells [250 – 255]. There is evidence for the 
involvement of   •  OH in the formation of DNA-protein 
cross-links induced by ionizing radiation or by H 2 O 2 /
metal ions [253 – 256]. A Thy-Tyr cross-link has been 
found as a major product in  γ -irradiated mixtures of 
Thy and Tyr in deoxygenated aqueous solution 
[257,258]. Subsequent work elucidated the structure 

O 2  would react with the allyl radical at a diffusion-
controlled rate. However, the close proximity of Ade 
and Thy in the double helix, which is required for 
cross-linking, and steric hindrances may prevent the 
reaction of O 2  with the allyl radical of Thy. Figures 29 
and 30 illustrate the structures of the tandem lesions 
discussed above.   

 Clustered DNA damage 

 Another type of tandem lesions is the clustered damage 
in DNA produced by ionizing radiation. These lesions 
are also known as locally multiply damaged sites [235]. 
Clustered lesions can be tandem on the same strand 
or on opposite strands of DNA within one or two heli-
cal turns of DNA and are distinct from DNA double-
strand breaks (DSBs) [235 – 247]. These lesions are 
produced almost exclusively by ionizing radiations 
[248,249]. Endogenously induced damage to DNA 
appears to be a quite unlikely source for them. Process-
ing of diverse clustered lesions in living cells depends 
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radical of Tyr is also formed by a reaction between 
Gua•� and Tyr via charge transport leading to DNA-
protein cross-links [265,266]. The fi rst mechanism 
requires the close proximity of the allyl radical of Thy 
to a Tyr molecule in the DNA-protein complex. Hen-
dry et al. reported the possible formation of a unique 
H-bond between the OH group of Tyr and the oxygen 
at the C4 of Thy [267]. This may permit the close 
proximity of the methyl group of Thy to the C3- of 
Tyr. The fi nal product of both mechanisms is the 
same. Therefore, these two mechanisms cannot be 
distinguished from each other by the fi nal product. 
However, the mechanism initiated by one radical 
(allyl radical) is more likely to be valid than the rad-
ical-radical combination mechanism, because the latter 

of this cross-link and showed that the covalent cross-
linking takes place between the allyl radical of Thy 
and the C3 of the Tyr ring [259 – 262]. The Thy-Tyr 
cross-link 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-
methyl]-L-tyrosine) has also been found in mamma-
lian chromatin upon exposure to ionizing radiation in 
deoxygenated aqueous solution [263]. Two different 
mechanisms have been proposed for its formation: (1) 
The addition of the allyl radical of Thy to the C3 of 
the Tyr ring forming a C-centred radical, followed by 
oxidation; (2) The combination of the allyl radical of 
Thy with the phenoxyl radical of Tyr as shown in 
Figure 31. The latter radical is well known to be 
formed by addition of   •  OH to the C3 of the Tyr ring 
followed by H 2 O elimination [264]. The phenoxyl 
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 Concluding remarks 

 This review shows that free radical-induced damage 
to DNA is rather complex and includes a large vari-
ety of different mechanisms and fi nal products. The 
fi ndings are the result of extensive investigations by 
many researchers and laboratories around the world 
that had been conducted for the past 50 years or so. 
Of course, this fi eld of research also includes the 
measurement, cellular repair, biological consequences 
and role in disease processes of the fi nal products. 
The present article deals with the mechanistic aspects 
only. The other articles in this series will no doubt 
deal with the mechanisms as well and the remaining 
aspects of free radical-induced damage to DNA. Evi-
dence accumulated over many years point to an 
important role of free radical-induced DNA damage 
in the etiology of cancer and other diseases. There 
are still many unknowns in this fi eld. More research 
will lead to our enhanced understanding of cellular 
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cesses, to the discovery of disease biomarkers of 
DNA damage for risk assessment, early detection 
and therapy monitoring, and to the development of 
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