
NIST Special Publication 500-288

Version 1

Specification for
WS-Biometric Devices (WS-BD)

Version 1

Ross J. Micheals

Kevin Mangold

Matt Aronoff

Kayee Kwong

Karen Marshall

NIST Special Publication 500-288
Version 1

Specification for
WS-Biometric Devices (WS-BD)
Version 1

Recommendations of the National Institute of
Standards and Technology

Ross J. Micheals
Kevin Mangold
Matt Aronoff
Kayee Kwong
Karen Marshall

I N F O R M A T I O N T E C H N O L O G Y

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8940

March 2012

US Department of Commerce
John E. Bryson, Secretary

National Institute of Standards and Technology
Patrick D. Gallagher, Director

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the

U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards

infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical

analysis to advance the development and productive use of information technology.

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an

experimental procedure or concept adequately. Such identification is not intended to imply recommendation or

endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities,

materials, or equipment are necessarily the best available for the purpose.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

i

Table of Contents

1 Introduction .. 1

1.1 Request for Feedback ... 1

1.2 Terminology .. 1

1.3 Documentation Conventions .. 2

 Quotations .. 2 1.3.1

 Machine-Readable Code .. 3 1.3.2

 Sequence Diagrams .. 3 1.3.3

1.4 Normative References .. 4

1.5 Informative References .. 5

2 Design Concepts and Architecture .. 7

2.1 Interoperability ... 7

2.2 Architectural Components .. 7

 Client .. 7 2.2.1

 Sensor .. 8 2.2.2

 Sensor Service .. 8 2.2.3

2.3 Intended Use .. 8

2.4 General Service Behavior .. 9

 Security Model ... 9 2.4.1

 HTTP Request-Response Usage .. 10 2.4.2

 Client Identity ... 11 2.4.3

 Sensor Identity ... 12 2.4.4

 Locking ... 13 2.4.5

 Operations Summary ... 14 2.4.6

 Idempotency .. 15 2.4.7

 Service Lifecycle Behavior .. 15 2.4.8

3 Data Dictionary ... 17

3.1 Namespaces ... 17

3.2 UUID ... 17

3.3 Dictionary ... 18

3.4 Parameter ... 18

3.5 Range .. 20

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

ii

3.6 Array ... 21

3.7 StringArray .. 22

3.8 UuidArray .. 22

3.9 Resolution ... 22

3.10 Status ... 23

3.11 Result .. 25

 Terminology Shorthand .. 25 3.11.1

 Required Elements ... 25 3.11.2

 Element Summary .. 26 3.11.3

3.12 Validation ... 26

4 Metadata ... 29

4.1 Service Information .. 29

4.2 Configuration .. 30

4.3 Captured Data .. 30

 Minimal Metadata .. 31 4.3.1

5 Operations .. 33

5.1 General Usage Notes .. 33

 Precedence of Status Enumerations .. 33 5.1.1

 Parameter Failures ... 35 5.1.2

 Visual Summaries ... 35 5.1.3

5.2 Documentation Conventions .. 38

 General Information ... 38 5.2.1

 Result Summary ... 39 5.2.2

 Usage Notes ... 39 5.2.3

 Unique Knowledge ... 39 5.2.4

 Return Values Detail ... 39 5.2.5

5.3 Register ... 41

 Result Summary ... 41 5.3.1

 Usage Notes ... 41 5.3.2

 Unique Knowledge ... 41 5.3.3

 Return Values Detail ... 41 5.3.4

5.4 Unregister ... 43

 Result Summary ... 43 5.4.1

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

iii

 Usage Notes ... 43 5.4.2

 Unique Knowledge ... 44 5.4.3

 Return Values Detail ... 44 5.4.4

5.5 Try Lock .. 47

 Result Summary ... 47 5.5.1

 Usage Notes ... 47 5.5.2

 Unique Knowledge ... 47 5.5.3

 Return Values Detail ... 47 5.5.4

5.6 Steal Lock ... 51

 Result Summary ... 51 5.6.1

 Usage Notes ... 51 5.6.2

 Unique Knowledge ... 52 5.6.3

 Return Values Detail ... 52 5.6.4

5.7 Unlock ... 55

 Result Summary ... 55 5.7.1

 Usage Notes ... 55 5.7.2

 Unique Knowledge ... 55 5.7.3

 Return Values Detail ... 55 5.7.4

5.8 Get Service Info .. 57

 Result Summary ... 57 5.8.1

 Usage Notes ... 57 5.8.2

 Unique Knowledge ... 59 5.8.3

 Return Values Detail ... 59 5.8.4

5.9 Initialize .. 61

 Result Summary ... 61 5.9.1

 Usage Notes ... 61 5.9.2

 Unique Knowledge ... 62 5.9.3

 Return Values Detail ... 62 5.9.4

5.10 Get Configuration ... 65

 Result Summary ... 65 5.10.1

 Usage Notes ... 65 5.10.2

 Unique Knowledge ... 66 5.10.3

 Return Values Detail ... 66 5.10.4

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

iv

5.11 Set Configuration .. 71

 Result Summary ... 71 5.11.1

 Usage Notes ... 71 5.11.2

 Unique Knowledge ... 72 5.11.3

 Return Values Detail ... 72 5.11.4

5.12 Capture ... 77

 Result Summary ... 77 5.12.1

 Usage Notes ... 77 5.12.2

 Unique Knowledge ... 78 5.12.3

 Return Values Detail ... 78 5.12.4

5.13 Download ... 83

 Result Summary ... 83 5.13.1

 Usage Notes ... 83 5.13.2

 Unique Knowledge ... 87 5.13.3

 Return Values Detail ... 87 5.13.4

5.14 Get Download Info.. 89

 Result Summary ... 89 5.14.1

 Usage Notes ... 89 5.14.2

 Unique Knowledge ... 89 5.14.3

 Return Values Detail ... 89 5.14.4

5.15 Thrifty Download .. 93

 Result Summary ... 93 5.15.1

 Usage Notes ... 93 5.15.2

 Unique Knowledge ... 94 5.15.3

 Return Values Detail ... 94 5.15.4

5.16 Cancel ... 97

 Result Summary ... 97 5.16.1

 Usage Notes ... 97 5.16.2

 Unique Knowledge ... 98 5.16.3

 Return Values Detail ... 99 5.16.4

Appendix A Parameter Details .. 101

A.1 Connections .. 101

A.1.1 Last Updated .. 101

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

v

A.1.2 Inactivity Timeout ... 101

A.1.3 Maximum Concurrent Sessions .. 101

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped ... 102

A.2 Timeouts ... 102

A.2.1 Initialization Timeout ... 102

A.2.2 Get Configuration Timeout ... 102

A.2.3 Set Configuration Timeout ... 103

A.2.4 Capture Timeout .. 103

A.2.5 Post-Acquisition Processing Time .. 103

A.2.6 Lock Stealing Prevention Period ... 103

A.3 Storage ... 104

A.3.1 Maximum Storage Capacity ... 104

A.3.2 Least-Recently Used Capture Data Automatically Dropped ... 104

A.4 Sensor ... 104

A.4.1 Modality ... 104

A.4.2 Submodality ... 105

Appendix B Content Type Data ... 107

B.1 General Type ... 107

B.2 Image Formats.. 107

B.3 Video Formats .. 107

B.4 General Biometric Formats ... 107

B.5 ISO / Modality-Specific Formats .. 108

Appendix C XML Schema ... 109

Appendix D Acknowledgments .. 111

Appendix E Revision History .. 113

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

vi

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

1

1 Introduction

The web services framework, has, in essence, begun to create a standard software “communications

bus” in support of service-oriented architecture. Applications and services can “plug in” to the bus and

begin communicating using standards tools. The emergence of this “bus” has profound implications

for identity exchange.

Jamie Lewis, Burton Group, February 2005
Forward to Digital Identity by Phillip J. Windley

As noted by Jamie Lewis, the emergence of web services as a common communications bus has “profound

implications.” The next generation of biometric devices will not only need to be intelligent, secure, tamper-

proof, and spoof resistant, but first, they will need to be interoperable.

These envisioned devices will require a communications protocol that is secure, globally connected, and free

from requirements on operating systems, device drivers, form factors, and low-level communications

protocols. WS-Biometric Devices is a protocol designed in the interest of furthering this goal, with a specific

focus on the single process shared by all biometric systems—acquisition.

1.1 Request for Feedback

In the spirit of continuous improvement, feedback on this specification is both welcomed and encouraged.

NIST and the authors extend an open invitation to participate in the development of this specification by

sending related comments to 500-288comments@nist.gov. This is a permanent email address; that is, it is not

necessary to wait until a formal call for comments. All feedback related to content in this document will be

considered as this specification is evolved and updated.

The latest version of this specification, along with related documents, can be found at http://bws.nist.gov/.

1.2 Terminology

This section contains terms and definitions used throughout this document. First time readers may desire to

skip this section and revisit it as needed.

biometric capture device

a system component capable of capturing biometric data in digital form

client

a logical endpoint that originates operation requests

HTTP

Hypertext Transfer Protocol. Unless specified, the term HTTP refers to either HTTP as defined in

[RFC2616] or HTTPS as defined in [RFC2660].

ISO

International Organization for Standardization

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

2

modality

a distinct biometric category or type of biometric—typically a short, high-level description of a

human feature or behavioral characteristic (e.g., “fingerprint,” “iris,” “face,” or “gait”)

payload

the content of an HTTP request or response. An input payload refers to the XML content of an HTTP

request. An output payload refers to the XML content of an HTTP response.

payload parameter

an operation parameter that is passed to a service within an input payload

profile

a list of assertions that a service must support

REST

Representational State Transfer

RESTful

a web service which employs REST techniques

sensor or biometric sensor

a single biometric capture device or a logical collection of biometric capture devices

SOAP

Simple Object Access Protocol

submodality

a distinct category or subtype within a biometric modality

target sensor or target biometric sensor

the biometric sensor made available by a particular service

URL parameter

a parameter passed to a web service by embedding it in the URL

Web service or service or WS

a software system designed to support interoperable machine-to-machine interaction over a network

[WSGloss]

XML

Extensible Markup Language [XML]

1.3 Documentation Conventions

The following documentation conventions are used throughout this document.

 Quotations 1.3.1

If the inclusion of a period within a quotation might lead to ambiguity as to whether or not the period should

be included in the quoted material, the period will be placed outside the trailing quotation mark. For example,

a sentence that ends in a quotation would have the trailing period “inside the quotation, like this quotation

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

3

punctuated like this.” However, a sentence that ends in a URL would have the trailing period outside the

quotation mark, such as “http://example.com”.

 Machine-Readable Code 1.3.2

With the exception of some reference URLs, machine-readable information will typically be depicted with a

mono‐spaced font, such as this.

 Sequence Diagrams 1.3.3

Throughout this document, sequence diagrams are used to help explain various scenarios. These diagrams

are informative simplifications and are intended to help explain core specification concepts. Operations are

depicted in a functional, remote procedure call style.

The following is an annotated sequence diagram that shows how an example sequence of HTTP request-

responses is typically illustrated. The level of abstraction presented in the diagrams, and the details that are

shown (or not shown) will vary according to the particular information being illustrated. First time readers

may wish to skip this section and return to it as needed.

Figure 1. Example of a sequence diagram used in this document.

1. Each actor in the sequence diagram (i.e., a client or a server) has a “swimlane” that chronicles their

interactions over time. Communication among the actors is depicted with arrows. In this diagram,

there are three actors: “Client A,” a WS-BD “Service,” and “Client B.”

2. State information notable to the example is depicted in an elongated diamond shape within the

swimlane of the relevant actor. In this example, it is significant that the initial “lock owner” for the

“Service” actor is “(none)” and that the “lock owner” changes to “{A1234567…}” after a

communication from Client A.

3. Unless otherwise noted, a solid arrow represents the request (initiation) of an HTTP request; the

opening of an HTTP socket connection and the transfer of information from a source to its

destination. The arrow begins on the swimlane of the originator and ends on the swimlane of the

destination. The order of the request and the operation name (§5.3 through §5.16) are shown above

the arrow. URL and/or payload parameters significant to the example are shown below the arrow. In

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

1

2 3

4

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

4

this example, the first communication occurs when Client A opens a connection to the Service,

initiating a “lock” request, where the “sessionId” parameter is “{A1234567…}.”

4. Unless otherwise noted, a dotted arrow represents the response (completion) of a particular HTTP

request; the closing of an HTTP socket connection and the transfer of information back from the

destination to the source. The arrow starts on the originating request’s destination and ends on the

swimlane of actor that originated the request. The order of the request, and the name of the

operation that being replied to is shown above the arrow. Significant data “returned” to the source is

shown below the arrow (§3.11.1). Notice that the source, destination, and operation name provide

the means to match the response corresponds to a particular request—there is no other visual

indicator. In this example, the second communication is the response to the “lock” request, where

the service returns a “status” of “success.”

In general, “{A1234567…}” and “{B890B123…}” are used to represent session ids (§2.4.3, §3.11.3, §5.3);

“{C1D10123...}” and “{D2E21234...}” represent capture ids (§3.11.3, §5.12).

1.4 Normative References

[CTypeImg] Image Media Types, http://www.iana.org/assignments/media-types/image/index.html, 6 June
2011.

[CTypeVideo] Video Media Types, http://www.iana.org/assignments/media-types/video/idex.html, 6 June
2011.

[RFC1737] K. Sollins, L. Masinter, Functional Requirements for Uniform Resource Names,
http://www.ietf.org/rfc/rfc1737.txt, IETC RFC 1737, December 1994.

[RFC2045] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies, http://www.ietf.org/rfc/rfc2045.txt, IETF RFC 2045, November
1996.

[RFC2046] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types, http://www.ietf.org/rfc/rfc2046.txt, IETF RFC 2045, November 1996.

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[RFC2141] R. Moats, URN Syntax, http://www.ietf.org/rfc/rfc2141.txt, IETF RFC 2141, May 1997

[RFC2616] R. Fielding, et al., Hypertext Tranfer Protocol—HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt,
IETF RFC 2616, June 1999.

[RFC2660] E. Rescorla et al., The Secure HyperText Transfer Protocol, http://www.ietf.org/rfc/rfc2660.txt,
IETF RFC 2660, August 1999.

[RFC3001] M. Mealling, A URN Namespace of Object Identifiers, http://www.ietf.org/rfc/rfc3001.txt, IETF
RFC 3001, November 2000.

[RFC4122] P. Leach, M. Mealling, and R. Salz, A Universally Unique Identifier (UUID) URN Namespace,
http://www.ietf.org/rfc/rfc4122.txt, IETF RFC 4122, July 2005.

[WSGloss] H. Haas, A. Brown, Web Services Glossary, http://www.w3.org/TR/2004/NOTE-ws-gloss-
20040211/, February 11, 2004.

[XML] Tim Bray et al., Extensible Markup Language (XML) 1.0 (Fifth Edition),

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

5

http://www.w3.org/TR/xml/. W3C Recommendation. 26 November 2008.

[XMLNS] Tim Bray et al., Namespace in XML 1.0 (Third Edition), http://www.w3.org/TR/2009/REC-xml-
names-20091208/. W3C Recommendation. 8 December2009.

[XSDPart1] Henry Thompson et al., XML Schema Part 1: Structures Second Edition,
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/, W3C Recommendation. 28 October
2004.

[XSDPart2] P. Biron, A. Malhotra, XML Schema Part 2: Datatypes Second Edition,
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/, W3C Recommendation. 28 October
2004.

1.5 Informative References

[AN2K] Information Technology: American National Standard for Information Systems—Data Format
for the Interchange of Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=151453, 27 July 2000.

[AN2K7] R. McCabe, E. Newton, Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial, & Other Biometric
Information – Part 1, http://www.nist.gov/customcf/get_pdf.cfm?pub_id=51174, 20 April 2007.

[AN2K8] E. Newton et al., Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial, & Other Biometric
Information – Part 2: XML Version,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=890062, 12 August 2008.

[AN2K11] B. Wing, Information Technology: American National Standard for Information Systems—Data
Format for the Interchange of Fingerprint, Facial & Other Biometric Information,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=910136, November 2011.

[BDIF205] ISO/IEC 19794-2:2005/Cor 1:2009/Amd 1:2010: Information technology – Biometric data
interchange formats – Part 2: Finger minutia data

[BDIF306] ISO/IEC 19794-3:2006: Information technology – Biometric data interchange formats – Part 3:
Finger pattern spectral data

[BDIF405]

ISO/IEC 19794-4:2005: Information technology – Biometric data interchange formats – Part 4:
Finger image data

[BDIF505] ISO/IEC 19794-5:2005: Information technology – Biometric data interchange formats – Part 5:
Face image data

[BDIF605] ISO/IEC 19794-6:2005: Information technology – Biometric data interchange formats – Part 6:
Iris image data

[BDIF611] ISO/IEC 19794-6:2011: Information technology – Biometric data interchange formats – Part 6:
Iris image data

[BDIF707] ISO/IEC 19794-7:2007/Cor 1:2009: Information technology – Biometric data interchange
formats – Part 7: Signature/sign time series data

[BDIF806] ISO/IEC 19794-8:2006/Cor 1:2011: Information technology – Biometric data interchange
formats – Part 8: Finger pattern skeletal data

[BDIF907] ISO/IEC 19794-9:2007: Information technology – Biometric data interchange formats – Part 9:
Vascular image data

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

6

[BDIF1007] ISO/IEC 19794-10:2007: Information technology – Biometric data interchange formats – Part
10: Hand geometry silhouette data

[BMP] BMP File Format, http://www.digicamsoft.com/bmp/bmp.html

[CBEFF2010] ISO/IEC 19785-3:2007/Amd 1:2010: Information technology – Common Biometric Exchange
Formats Framework – Part 3: Patron format specifications with Support for Additional Data
Elements

[H264] Y.-K. Wang et al., RTP Payload Format for H.264 Video, http://www.ietf.org/rfc/rfc6184.txt, IETF
RFC 6184, May 2011.

[JPEG] E. Hamilton, JPEG File Interchange Format, http://www.w3.org/Graphics/JPEG/jfif3.pdf, 1
September 1992.

[MPEG] ISO/IEC 14496: Information technology – Coding of audio-visual objects

[PNG] D. Duce et al., Portable Network Graphics (PNG) Specification (Second Edition),
http://www.w3.org/TR/2003/REC-PNG-20031110, 10 November 2003.

[TIFF] TIFF Revision 6.0, http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf, 3 June 1992.

[WSQ] WSQ Gray-Scale Fingerprint Image Compression Specification Version 3.1,
https://fbibiospecs.org/docs/WSQ_Gray-scale_Specification_Version_3_1_Final.pdf, 4 October
2010.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

7

2 Design Concepts and Architecture

This section describes the major design concepts and overall architecture of WS-BD. The main purpose of a

WS-BD service is to expose a target biometric sensor to clients via web services.

This specification provides a framework for deploying and invoking core synchronous operations via

lightweight web service protocols for the command and control of biometric sensors. The design of this

specification is influenced heavily by the REST architecture; deviations and tradeoffs were made to

accommodate the inherent mismatches between the REST design goals and the limitations of devices that are

(typically) oriented for a single-user.

2.1 Interoperability

ISO/IEC 2382-1 (1993) defines interoperability as “the capability to communicate, execute programs, or

transfer data among various functional units in a manner that requires the user to have little to no knowledge

of the unique characteristics of those units.”

Conformance to a standard does not necessarily guarantee interoperability. An example is conformance to an

HTML specification. A HTML page may be fully conformant to the HTML 4.0 specification, but it is not

interoperable between web browsers. Each browser has its own interpretation of how the content should be

displayed. To overcome this, web developers add a note suggesting which web browsers are compatible for

viewing. Interoperable web pages need to have the same visual outcome independent of which browser is

used.

A major design goal of WS-BD is to maximize interoperability, by minimizing the required “knowledge of the

unique characteristics” of a component that supports WS-BD. The authors recognize that conformance to this

specification alone cannot guarantee interoperability; although a minimum degree of functionality is implied.

Sensor profiles and accompanying conformance tests will need to be developed to provide better guarantees

of interoperability, and will be released in the future.

2.2 Architectural Components

Before discussing the envisioned use of WS-BD, it is useful to distinguish between the various components

that comprise a WS-BD implementation. These are logical components that may or may not correspond to

particular physical boundaries. This distinction becomes vital in understanding WS-BD’s operational models.

 Client 2.2.1

A client is any software component that originates requests for biometric acquisition. Note that a client might

be one of many hosted in a parent (logical or physical) component, and that a client might send requests to a

variety of destinations.

This icon is used to depict an arbitrary WS-BD client. A personal digital assistant (PDA) is used
to serve as a reminder that a client might be hosted on a non-traditional computer.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

8

 Sensor 2.2.2

A biometric sensor is any component that is capable of acquiring a digital biometric sample. Most sensor

components are hosted within a dedicated hardware component, but this is not necessarily globally true. For

example, a keyboard is a general input device, but might also be used for a keystroke dynamics biometric.

This icon is used to depict a biometric sensor. The icon has a vague similarity to a fingerprint
scanner, but should be thought of as an arbitrary biometric sensor.

The term “sensor” is used in this document in a singular sense, but may in fact be referring to multiple

biometric capture devices. Because the term “sensor” may have different interpretations, practitioners are

encouraged to detail the physical and logical boundaries that define a “sensor” for their given context.

 Sensor Service 2.2.3

The sensor service is the “middleware” software component that exposes a biometric sensor to a client

through web services. The sensor service adapts HTTP request-response operations to biometric sensor

command & control.

This icon is used to depict a sensor service. The icon is abstract and has no meaningful form,
just as a sensor service is a piece of software that has no physical form.

2.3 Intended Use

Each implementation of WS-BD will be realized via a mapping of logical to physical components. A

distinguishing characteristic of an implementation will be the physical location of the sensor service

component. WS-BD is designed to support two scenarios:

1. Physically separated. The sensor service and biometric sensor are hosted by different physical

components. A physically separated service is one where there is both a physical and logical

separation between the biometric sensor and the service that provides access to it.

2. Physically integrated. The sensor service and biometric sensor are hosted within the same physical

component. A physically integrated service is one where the biometric sensor and the service that

provides access to it reside within the same physical component.

Figure 2 depicts a physically separated service. In this scenario, a biometric sensor is tethered to a personal

computer, workstation, or server. The web service, hosted on the computer, listens for communication

requests from clients. An example of such an implementation would be a USB fingerprint scanner attached to

a personal computer. A lightweight web service, running on that computer could listen to requests from local

(or remote) clients—translating WS-BD requests to and from biometric sensor commands.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

9

Figure 2. A physically separated WS-Biometric Devices (WS-BD) implementation.

Figure 3 depicts a physically integrated service. In this scenario, a single hardware device has an embedded

biometric sensor, as well as a web service. Analogous (but not identical) functionality is seen in many network

printers; it is possible to point a web browser to a local network address, and obtain a web page that displays

information about the state of the printer, such as toner and paper levels (WS-BD enabled devices do not

provide web pages to a browser). Clients make requests directly to the integrated device; and a web service

running within an embedded system translates the WS-BD requests to and from biometric sensor commands.

Figure 3. A physically integrated WS-Biometric Devices (WS-BD) implementation.

The “separated” versus “integrated” distinction is a simplification with a potential for ambiguity. For example,

one might imagine putting a hardware shell around a USB fingerprint sensor connected to a small form-factor

computer. Inside the shell, the sensor service and sensor are on different physical components. Outside the

shell, the sensor service and sensor appear integrated. Logical encapsulations, i.e., layers of abstraction, can

facilitate analogous “hiding”. The definition of what constitutes the “same” physical component depends on

the particular implementation and the intended level of abstraction. Regardless, it is a useful distinction in

that it illustrates the flexibility afforded by leveraging highly interoperable communications protocols. As

suggested in §2.2.2, practitioners may need to clearly define appropriate logical and physical boundaries for

their own context of use.

2.4 General Service Behavior

The following section describes the general behavior of WS-BD clients and services.

 Security Model 2.4.1

In this version of the specification, it is assumed that if a client is able to establish an HTTP (or HTTPS)

connection with the sensor service, then the client is fully authorized to use the service. This implies that all

successfully connected clients have equivalent access to the same service. Clients might be required to

Integrated Device

Clients

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

10

connect through various HTTP protocols, such as HTTPS with client-side certificates, or a more sophisticated

protocol such as Open Id (http://openid.net/) and/or OAuth.

Specific security measures are out of scope of this specification, but should be carefully considered when

implementing a WS-BD service. Some recommended solutions to general scenarios are outlined in the

following sections.

2.4.1.1 Development

During initial development stages, security may not be a concern—focusing on the design and

implementation of a high fidelity service may be the primary concern. Security measures shall be integrated

before deployment in a production environment.

2.4.1.2 Isolated Network

An isolated network is one where services running in such network are not accessible outside of a particular

subnet or domain. These restrictions could be enforced by firewalls, network address translation (NAT), or by

simply not being connected to an external network.

At minimum, the use of HTTP over a SSL/TLS connection, more commonly known as HTTPS, should be

implemented to secure communication between a service and any connected clients.

2.4.1.3 Publicly Accessibility

This scenario is where a service or services are accessible from any subnet or domain. In other words, anyone

from any location could access the service.

Mutual authentication should be implemented. Mutual authentication, or two-way authentication, is when

two parties authenticate themselves to each other. In other words, the client authenticates to the server via a

client-side certificate and validates the server by its server-side certificate. Any communication shall be

through HTTP over a mutual SSL/TLS connection.

 HTTP Request-Response Usage 2.4.2

Most biometrics devices are inherently single user—i.e., they are designed to sample the biometrics from a

single user at a given time. Web services, on the other hand, are intended for stateless and multiuser use. A

biometric device exposed via web services must therefore provide a mechanism to reconcile these competing

viewpoints.

Notwithstanding the native limits of the underlying web server, WS-BD services must be capable of handling

multiple, concurrent requests. Services must respond to requests for operations that do not require exclusive

control of the biometric sensor and must do so without waiting until the biometric sensor is in a particular

state.

Because there is no well-accepted mechanism for providing asynchronous notification via REST, each

individual operation must block until completion. That is, the web server does not reply to an individual HTTP

request until the operation that is triggered by that request is finished.

Individual clients are not expected to poll—rather they make a single HTTP request and block for the

corresponding result. Because of this, it is expected that a client would perform WS-BD operations on an

independent thread, so not to interfere with the general responsiveness of the client application. WS-BD

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

11

clients therefore must be configured in such a manner such that individual HTTP operations have timeouts

that are compatible with a particular implementation.

WS-BD operations may be longer than typical REST services. Consequently, there is a clear need to

differentiate between service level errors and HTTP communication errors. WS-BD services must pass-through

the status codes underlying a particular request. In other words, services must not use (or otherwise

‘piggyback’) HTTP status codes to indicate failures that occur within the service. If a service successfully

receives a well-formed request, then the service must return the HTTP status code 200 indicating such.

Failures are described within the contents of the XML data returned to the client for any given operation. The

exception to this is when the service receives a poorly-formed request (i.e., the XML payload is not valid), then

the service may return the HTTP status code 400, indicating a bad request.

This is deliberately different from REST services that override HTTP status codes to provide service-specific

error messages. Avoiding the overloading of status codes is a pattern that facilitates the debugging and

troubleshooting of communication versus client & service failures.

DESIGN NOTE: Overriding HTTP status codes is just one example of the rich set of features afforded by

HTTP; content negotiation, entity tags (e-tags), and preconditions are other features that could be

leveraged instead of “recreated” (to some degree) within this specification. However, the authors avoided

the use of these advanced HTTP features in this version of the specification for several reasons:

 To reduce the overall complexity required for implementation.

 To ease the requirements on clients and servers (particularly since the HTTP capabilities on

embedded systems may be limited).

 To avoid dependencies on any HTTP feature that is not required (such as entity tags).

In summary, the goal for this initial version of the specification is to provide common functionality across

the broadest set of platforms. As this standard evolves, the authors will continue to evaluate the

integration of more advanced HTTP features, as well as welcome feedback on their use from users and/or

implementers of the specification.

 Client Identity 2.4.3

Before discussing how WS-BD balances single-user vs. multi-user needs, it is necessary to understand the WS-

BD model for how an individual client can easily and consistently identify itself to a service.

HTTP is, by design, a stateless protocol. Therefore, any persistence about the originator of a sequence of

requests must be built in (somewhat) artificially to the layer of abstraction above HTTP itself. This is

accomplished in WS-BD via a session—a collection of operations that originate from the same logical

endpoint. To initiate a session, a client performs a registration operation and obtains a session identifier (or

“session id”). During subsequent operations, a client uses this identifier as a parameter to uniquely identify

itself to a server. When the client is finished, it is expected to close a session with an unregistration operation.

To conserve resources, services may automatically unregister clients that do not explicitly unregister after a

period of inactivity (see §5.4.2.1).

This use of a session id directly implies that the particular sequences that constitute a session are entirely the

responsibility of the client. A client might opt to create a single session for its entire lifetime, or, might open

(and close) a session for a limited sequence of operations. WS-BD supports both scenarios.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

12

It is possible, but discouraged, to implement a client with multiple sessions with the same service

simultaneously. For simplicity, and unless otherwise stated, this specification is written in a manner that

assumes that a single client maintains a single session id. (This can be assumed without loss of generality,

since a client with multiple sessions to a service could be decomposed into “sub-clients”—one sub- client per

session id.)

Just as a client might maintain multiple session ids, a single session id might be shared among a collection of

clients. By sharing the session id, a biometric sensor may then be put in a particular state by one client, and

then handed-off to another client. This specification does not provide guidance on how to perform multi-

client collaboration. However, session id sharing is certainly permitted, and a deliberate artifact of the

convention of using of the session id as the client identifier. Likewise, many-to-many relationships (i.e.,

multiple session ids being shared among multiple clients) are also possible, but should be avoided.

 Sensor Identity 2.4.4

In general, implementers should map each target biometric sensor to a single endpoint (URI). However, just

as it is possible for a client to communicate with multiple services, a host might be responsible for controlling

multiple target biometric sensors.

Independent sensors should be exposed via different URIs.

EXAMPLE: Figure 4 shows a physically separate implementation where a single host machine

controls two biometric sensors—one fingerprint scanner and one digital camera. The devices act

independently and are therefore exposed via two different services—one at the URL

http://wsbd/fingerprint and one at http://wsbd/camera.

Figure 4. Independent sensors controlled by separate services

A service that controls multiple biometric devices simultaneously (e.g., an array of cameras with synchronized

capture) should be exposed via the same endpoint.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

13

Figure 5. A sensor array controlled by a single service

EXAMPLE: Figure 5 shows a physically separate implementation where a single host machine controls a pair

of cameras used for stereo vision. The cameras act together as a single logical sensor and are both exposed

via the same service, http://wsbd/camera_array.

 Locking 2.4.5

WS-BD uses a lock to satisfy two complementary requirements:

1. A service must have exclusive, sovereign control over biometric sensor hardware to perform a

particular sensor operation such as initialization, configuration, or capture.

2. A client needs to perform an uninterrupted sequence of sensor operations.

Each WS-BD service exposes a single lock (one per service) that controls access to the sensor. Clients obtain

the lock in order to perform a sequence of operations that should not be interrupted. Obtaining the lock is an

indication to the server (and indirectly to peer clients) that (1) a series of sensor operations is about to be

initiated and (2) that server may assume sovereign control of the biometric sensor.

A client releases the lock upon completion of its desired sequence of tasks. This indicates to the server (and

indirectly to peer clients) that the uninterruptable sequence of operations is finished. A client might obtain

and release the lock many times within the same session or a client might open and close a session for each

pair of lock/unlock operations. This decision is entirely dependent on a particular client.

The statement that a client might “own” or “hold” a lock is a convenient simplification that makes it easier to

understand the client-server interaction. In reality, each sensor service maintains a unique global variable

that contains a session id. The originator of that session id can be thought of as the client that “holds” the

lock to the service. Clients are expected to release the lock after completing their required sensor operations,

but there is lock stealing—a mechanism for forcefully releasing locks. This feature is necessary to ensure that

one client cannot hold a lock indefinitely, denying its peers access to the biometric sensor.

As stated previously (see §2.4.3), it is implied that all successfully connected clients enjoy the same access

privileges. Each client is treated the same and are expected to work cooperatively with each other. This is

critically important, because it is this implied equivalence of “trust” that affords a lock stealing operation.

DESIGN NOTE: In the early development states of this specification, the authors considered having a single,

atomic sensor operation that performed initialization, configuration and capture. This would avoid the need

for locks entirely, since a client could then be ensured (if successful), the desired operation completed as

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

14

requested. However, given the high degree of variability of sensor operations across different sensors and

modalities, the explicit locking was selected so that clients could have a higher degree of control over a

service and a more reliable way to predict timing. Regardless of the enforcement mechanism, it is undesirable

if once a “well-behaved” client started an operation and a “rogue” client changed the internal state of the

sensor midstream.

2.4.5.1 Pending Operations

Changing the state of the lock must have no effect on pending (i.e., currently running) sensor operations. That

is, a client may unlock, steal, or even re-obtain the service lock even if the target biometric sensor is busy.

When lock ownership is transferred during a sensor operation, overlapping sensor operations are prevented

by sensor operations returning sensorBusy.

 Operations Summary 2.4.6

All WS-BD operations fall into one of eight categories:

1. Registration

2. Locking

3. Information

4. Initialization

5. Configuration

6. Capture

7. Download

8. Cancellation

Of these, the initialization, configuration, capture, and cancellation operations are all sensor operations (i.e.,

they require exclusive sensor control) and require locking. Registration, locking, and download are all non-

sensor operations. They do not require locking and (as stated earlier) must be available to clients regardless

of the status of the biometric sensor.

Download is not a sensor operation as this allows for a collection of clients to dynamically share acquired

biometric data. One client might perform the capture and hand off the download responsibility to a peer.

The following is a brief summary of each type of operation:

 Registration operations open and close (unregister) a session.

 Locking operations are used by a client to obtain the lock, release the lock, and steal the lock.

 Information operations query the service for information about the service itself, such as the

supported biometric modalities, and service configuration parameters.

 The initialization operation prepares the biometric sensor for operation.

 Configuration operations get or set sensor parameters.

 The capture operation signals to the sensor to acquire a biometric.

 Download operations transfer the captured biometric data from the service to the client.

 Sensor operations can be stopped by the cancellation operation.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

15

 Idempotency 2.4.7

The W3C Web Services glossary [WSGloss] defines idempotency as:

[the] property of an interaction whose results and side-effects are the same whether it is done one or

multiple times.

When regarding an operation’s idempotence, it should be assumed no other operations occur in between

successive operations, and that each operation is successful. Notice that idempotent operations may have

side-effects—but the final state of the service must be the same over multiple (uninterrupted) invocations.

The following example illustrates idempotency using an imaginary web service.

EXAMPLE: A REST-based web service allows clients to create, read, update, and delete customer

records from a database. A client executes an operation to update a customer’s address from “123

Main St” to “100 Broad Way.”

Suppose the operation is idempotent. Before the operation, the address is “123 Main St”. After one

execution of the update, the server returns “success”, and the address is “100 Broad Way”. If the

operation is executed a second time, the server again returns “success,” and the address remains

“100 Broad Way”.

Now suppose that when the operation is executed a second time, instead of returning “success”, the

server returns “no update made”, since the address was already “100 Broad Way.” Such an operation

is not idempotent, because executing the operation a second time yielded a different result than the

first execution.

The following is an example in the context of WS-BD.

EXAMPLE: A service has an available lock. A client invokes the lock operation and obtains a “success”

result. A subsequent invocation of the operation also returns a “success” result. The operation being

idempotent means that the results (“success”) and side-effects (a locked service) of the two

sequential operations are identical.

To best support robust communications, WS-BD is designed to offer idempotent services whenever possible.

 Service Lifecycle Behavior 2.4.8

The lifecycle of a service (i.e., when the service starts responding to requests, stops, or is otherwise

unavailable) must be modeled after an integrated implementation. This is because it is significantly easier for

a physically separated implementation to emulate the behavior of a fully integrated implementation than it is

the other way around. This requirement has a direct effect on the expected behavior of how a physically

separated service would handle a change in the target biometric sensor.

Specifically, on a desktop computer, hot-swapping the target biometric sensor is possible through an

operating system’s plug-and-play architecture. By design, this specification does not assume that it is possible

to replace a biometric sensor within an integrated device. Therefore, having a physically separated

implementation emulate an integrated implementation provides a simple means of providing a common level

of functionality.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

16

By virtue of the stateless nature of the HTTP protocol, a client has no simple means of detecting if a web

service has been restarted. For most web communications, a client should not require this—it is a core

capability that constitutes the robustness of the web. Between successive web requests, a web server might

be restarted on its host any number of times. In the case of WS-BD, replacing an integrated device with

another (configured to respond on the same endpoint) is an effective restart of the service. Therefore, by the

emulation requirement, replacing the device within a physically separated implementation must behave

similarly.

A client may not be directly affected by a service restart, if the service is written in a robust manner. For

example, upon detecting a new target biometric sensor, a robust server could quiesce (refusing all new

requests until any pending requests are completed) and automatically restart.

Upon restarting, services should return to a fully reset state—i.e., all sessions should be dropped, and the

lock should not have an owner. However, a high-availability service may have a mechanism to preserve state

across restarts, but is significantly more complex to implement (particularly when using integrated

implementations!). A client that communicated with a service that was restarted would lose both its session

and the service lock (if held). With the exception of the get service info operation, through various fault

statuses a client would receive indirect notification of a service restart. If needed, a client could use the

service’s common info timestamp (§A.1.1) to detect potential changes in the get service info operation.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

17

3 Data Dictionary

This section contains descriptions of the data elements that are contained within the WS-BD data model. Each

data type is described via an accompanying XML Schema type definition [XSDPart1, XSDPart2].

Refer to Appendix A for a complete XML schema containing all types defined in this specification.

3.1 Namespaces

The following namespaces, and corresponding namespace prefixes are used throughout this document.

Prefix Namespace Remarks

xs http://www.w3.org/2001/XMLSchema The xs namespace refers to the XML Schema
specification. Definitions for the xs data types
(i.e., those not explicitly defined here) can be
found in [XSDPart2].

xsi http://www.w3.org/2001/XMLSchema‐instance The xsi namespace allows the schema to refer
to other XML schemas in a qualified way.

wsbd urn:oid:2.16.840.1.101.3.9.3.1 The wsbd namespace is a uniform resource
name [RFC1737, RFC2141] consisting of an
object identifier [RFC3001] reserved for this
specification’s schema. This namespace can be
written in ASN.1 notation as {joint‐iso‐
ccitt(2) country(16) us(840)
organization(1) gov(101) csor(3)

biometrics(9) wsbd(3) version1(1)}.

All of the datatypes defined in this section (§3) belong to the wsbd namespace defined in the above table. If a

datatype is described in the document without a namespace prefix, the wsbd prefix is assumed.

3.2 UUID

A UUID is a unique identifier as defined in [RFC4122]. A service must use UUIDs that conform to the following

XML Schema type definition.

<xs:simpleType name="UUID">
 <xs:restriction base="xs:string">
 <xs:pattern value="[\da‐fA‐F]{8}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{12}"/>
 </xs:restriction>
</xs:simpleType>

EXAMPLE: Each of the following code fragments contains a well-formed UUID. Enclosing tags (which may

vary) are omitted.

E47991C3‐CA4F‐406A‐8167‐53121C0237BA

10fa0553‐9b59‐4D9e‐bbcd‐8D209e8d6818

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

18

161FdBf5‐047F‐456a‐8373‐D5A410aE4595

3.3 Dictionary

A Dictionary is a generic container used to hold an arbitrary collection of name-value pairs.

<xs:complexType name="Dictionary">
 <xs:sequence>
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" type="xs:string" nillable="true"/>
 <xs:element name="value" type="xs:anyType" nillable="true"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

EXAMPLE: A query to get the metadata of a capture returns a dictionary of supported settings and the values

at the time of capture. Enclosing tags (which may vary) are omitted.

<item>
 <key>imageWidth</key>
 <value>640</value>
</item>
<item>
 <key>imageHeight</key>
 <value>640</value>
</item>
<item>
 <key>captureDate</key>
 <value>2011‐01‐01T01:23:45Z</value>
</item>

Dictionary instances are nestable—i.e., the value element of one Dictionary can contain another Dictionary.

The use of xs:anyType allows for an XML element of any structure or definition to be used. Using types not

defined in this document or types defined in W3’s XML Schema recommendations [XSDPart1, XSDPart2]

might require a client to have unique knowledge about the service. Because the requirement of unique

knowledge negatively impacts interoperability, using such elements is discouraged.

3.4 Parameter

A Parameter is a container used to describe the parameters or settings of a service or sensor.

<xs:complexType name="Parameter">
 <xs:sequence>
 <xs:element name="name" type="xs:string" nillable="true"/>
 <xs:element name="type" type="xs:QName" nillable="true"/>
 <xs:element name="readOnly" type="xs:boolean" minOccurs="0"/>
 <xs:element name="supportsMultiple" type="xs:boolean" minOccurs="0"/>
 <xs:element name="defaultValue" type="xs:anyType" nillable="true"/>
 <xs:element name="allowedValues" nillable="true" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="allowedValue" type="xs:anyType" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

19

 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

See §4 for more information on metadata and the use of Parameter.

3.4.1.1 Element Summary

The following is a brief informative description of each Parameter element.

Element Description

name The name of the parameter.

type The fully qualified type of the parameter.

readOnly Whether or not this parameter is read-only.

supportsMultiple Whether or not this parameter can support multiple values for this parameter
(§3.4.1.2).

defaultValue The default value of this parameter.

allowedValues A list of allowed values for this parameter (§3.4.1.3).

3.4.1.2 Supports Multiple

In some cases, a parameter might require multiple values. This flag specifies whether the parameter is

capable of multiple values.

When supportsMultiple is true, communicating values must be done through a defined array type. If a type-

specialized array is defined in this specification, such as a StringArray (§3.7) for xs:string, such type should

be used. The generic Array (§3.6) type must be used in all other cases.

The parameter’s type element must be the qualified name of a single value. For example, if the parameter

expects multiple strings during configuration, then the type must be xs:string and not StringArray.

EXAMPLE: An iris scanner might have the ability to capture a left iris, right iris, and/or frontal face image

simultaneously. This example configures the scanner to capture left and right iris images together. The first

code block is what the service exposes to the clients. The second code block is how a client would configure

this parameter. The client configures the submodality by supplying a StringArray with two elements: left and

right—this tells the service to capture both the left and right iris. It is important to note that in this example,

submodality exposes values for two modalities: iris and face. The resulting captured data must specify the

respective modality for each captured item in its metadata. In both examples, enclosing tags (which may vary)

are omitted.

<name>submodality</name>
<type>xs:string</type>
<readOnly>false</readOnly>
<supportsMultiple>true</supportsMultiple>
<defaultValue xsi:type="wsbd:StringArray">
 <element>leftIris</element>
 <element>rightIris</element>
</defaultValue>
<allowedValues>
 <allowedValue>leftIris</allowedValue>
 <allowedValue>rightIris</allowedValue>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

20

 <allowedValue>frontalFace</allowedValue>
</allowedValues>

<item>
 <key>submodality</key>
 <value xsi:type="wsbd:StringArray">
 <element>leftIris</element>
 <element>rightIris</element>
 </value>
</item>

3.4.1.3 Allowed Values

For parameters that are not read-only and have restrictions on what values it may have, this allows the

service to dynamically expose it to its clients.

EXAMPLE: The following code block demonstrates a parameter, “CameraFlash”, with only three valid values.

Enclosing tags (which may vary) are omitted.

<name>cameraFlash</name>
<type>xs:string</type>
<readOnly>false</readOnly>
<supportsMultiple>false</supportsMultiple>
<defaultValue>auto</defaultValue>
<allowedValues>
 <allowedValue xsi:type="xs:string">on</allowedValue>
 <allowedValue xsi:type="xs:string">off</allowedValue>
 <allowedValue xsi:type="xs:string">auto</allowedValue>
</allowedValues>

Parameters requiring a range of values should be described by using Range (§3.5). Because the allowed type

is not the same as its parameter type, a service must have logic to check for a Range and any appropriate

validation.

EXAMPLE: The following code block demonstrates a parameter, “CameraZoom”, where the allowed value is

of type Range and consists of integers. Enclosing tags (which may vary) are omitted.

<name>cameraZoom</name>
<type>xs:integer</type>
<readOnly>false</readOnly>
<supportsMultiple>false</supportsMultiple>
<defaultValue>0</defaultValue>
<allowedValues>
 <allowedValue xsi:type="wsbd:Range">
 <minimum>0</minimum>
 <maximum>100</maximum>
 </allowedValue>
</allowedValues>

Configurable parameters with no restrictions on its value must not include this element.

3.5 Range

A Range is a container used to describe a range of data, and whether the upper and lower bounds are

exclusive. The upper and lower bounds must be inclusive by default.

<xs:complexType name="Range">

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

21

 <xs:sequence>
 <xs:element name="minimum" type="xs:anyType" nillable="true" minOccurs="0"/>
 <xs:element name="maximum" type="xs:anyType" nillable="true" minOccurs="0"/>
 <xs:element name="minimumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/>
 <xs:element name="maximumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

EXAMPLE: An example range of numbers from 0 to 100. The minimum is exclusive while the maximum is

inclusive. Enclosing tags (which may vary) are omitted.

 <minimum>0</minimum>
 <maximum>100</maximum>
 <minimumIsExclusive>true</minimumIsExclusive>
 <maximumIsExclusive>false</maximumIsExclusive>

3.5.1.1 Element Summary

The following is a brief informative description of each Range element.

Element Description

minimum The lower bound of the range.

maximum The upper bound of the range.

minimumIsExclusive Boolean indicating whether the lower bound is exclusive or not. This is true by
default.

maximumIsExclusive Boolean indicating whether the upper bound is exclusive or not. This is true by
default.

3.6 Array

An Array is a generic container used to hold a collection of elements.

<xs:complexType name="Array">
 <xs:sequence>
 <xs:element name="element" type="xs:anyType" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

EXAMPLE: Each of the following code fragments is an example of a valid Array. Enclosing tags (which may

vary) are omitted.

<element>flatLeftThumb</element><element>flatRightThumb</element>

In this fragment (above), the values “flatLeftThumb” and “flatRightThumb” are of type xs:anyType,

(and are likely to be deserialized as a generic “object.”

<element xsi:type="xs:boolean">false</element><element xsi:type="xs:int">1024</element>

Notice that in this fragment (above) the two values are of different types

<element xsi:type="xs:decimal">2.0</element>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

22

In this fragment (above) the array contains a single element.

3.7 StringArray

A StringArray is a generic container used to hold a collection of strings.

<xs:complexType name="StringArray">
 <xs:sequence>
 <xs:element name="element" type="xs:string" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

EXAMPLE: Each of the following code fragments is an example of a valid StringArray. Enclosing tags (which

may vary) are omitted.

<element>flatLeftThumb</element><element>flatRightThumb</element>

<element>value1</element><element>value2</element>

<element>sessionId</element>

3.8 UuidArray

A UuidArray is a generic container used to hold a collection of UUIDs.

<xs:complexType name="UuidArray">
 <xs:sequence>
 <xs:element name="element" type="wsbd:UUID" nillable="true" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

EXAMPLE: The following code fragment is an example of a single UuidArray with three elements. Enclosing

tags (which may vary) are omitted.

<element>E47991C3‐CA4F‐406A‐8167‐53121C0237BA</element>
<element>10fa0553‐9b59‐4D9e‐bbcd‐8D209e8d6818</element>
<element>161FdBf5‐047F‐456a‐8373‐D5A410aE4595</element>

3.9 Resolution

Resolution is a generic container to describe values for a width and height and optionally a description of the

unit.

<xs:complexType name="Resolution">
 <xs:sequence>
 <xs:element name="width" type="xs:decimal"/>
 <xs:element name="height" type="xs:decimal"/>
 <xs:element name="unit" type="xs:string" nillable="true" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

23

3.9.1.1 Element Summary

The following is a brief informative description of each Size element.

Element Description

width The decimal value of the width

height The decimal value of the height

unit A string describing the units of the width and height values

3.10 Status

The Status represents a common enumeration for communicating state information about a service.

<xs:simpleType name="Status">
 <xs:restriction base="xs:string">
 <xs:enumeration value="success"/>
 <xs:enumeration value="failure"/>
 <xs:enumeration value="invalidId"/>
 <xs:enumeration value="canceled"/>
 <xs:enumeration value="canceledWithSensorFailure"/>
 <xs:enumeration value="sensorFailure"/>
 <xs:enumeration value="lockNotHeld"/>
 <xs:enumeration value="lockHeldByAnother"/>
 <xs:enumeration value="initializationNeeded"/>
 <xs:enumeration value="configurationNeeded"/>
 <xs:enumeration value="sensorBusy"/>
 <xs:enumeration value="sensorTimeout"/>
 <xs:enumeration value="unsupported"/>
 <xs:enumeration value="badValue"/>
 <xs:enumeration value="noSuchParamter"/>
 <xs:enumeration value="preparingDownload"/>
 </xs:restriction>
</xs:simpleType>

3.10.1.1 Definitions

The following table defines all of the potential values for the Status enumeration.

Value Description

success The operation completed successfully.

failure The operation failed. The failure was due to a web service (as opposed to a
sensor error).

invalidId The provided id is not valid. This can occur if the client provides a (session or
capture) id that is either:

unknown to the server (i.e., does not correspond to a known registration or
capture result), or

the session has been closed by the service (§5.4.2.1)

(See §5.1.2 for information on parameter failures.)

canceled The operation was canceled.

NOTE: A sensor service may cancel its own operation, for example, if an
operation is taking too long. This can happen if a service maintains its own

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

24

internal timeout that is shorter than a sensor timeout.

canceledWithSensorFailure The operation was canceled, but during (and perhaps because of)
cancellation, a sensor failure occurred.

This particular status accommodates for hardware that may not natively
support cancellation.

sensorFailure The operation could not be performed because of a biometric sensor (as
opposed to web service) failure.

NOTE: Clients that receive a status of sensorFailure should assume that the
sensor will need to be reinitialized in order to restore normal operation.

lockNotHeld The operation could not be performed because the client does not hold the
lock.

NOTE: This status implies that at the time the lock was queried, no other
client currently held the lock. However, this is not a guarantee that any
subsequent attempts to obtain the lock will succeed.

lockHeldByAnother The operation could not be performed because another client currently holds
the lock.

initializationNeeded The operation could not be performed because the sensor requires
initialization.

configurationNeeded The operation could not be performed because the sensor requires
configuration.

sensorBusy The operation could not be performed because the sensor is currently
performing another task.

NOTE: Services may self-initiate an activity that triggers a sensorBusy result.
That is, it may not be possible for a client to trace back a sensorBusy status to
any particular operation. An automated self-check, heartbeat, or other activity
such as a data transfer may place the target biometric sensor into a “busy”
mode. (See §5.13.2.2 for information about post-acquisition processing.)

sensorTimeout The operation was not performed because the biometric sensor experienced a
timeout.

NOTE: The most common cause of a sensor timeout would be a lack of
interaction with a sensor within an expected timeframe.

unsupported The service does not support the requested operation. (See §5.1.2 for
information on parameter failures.)

badValue The operation could not be performed because a value provided for a
particular parameter was either (a) an incompatible type or (b) outside of an
acceptable range. (See §5.1.2 for information on parameter failures.)

noSuchParameter The operation could not be performed because the service did not recognize
the name of a provided parameter. (See §5.1.2 for information on parameter
failures.)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

25

preparingDownload The operation could not be performed because the service is currently
preparing captured data for download. (See §5.13.2.2)

Many of the permitted status values have been designed specifically to support physically separate

implementations—a scenario where it is easier to distinguish between failures in the web service and failures

in the biometric sensor. This is not to say that within an integrated implementation such a distinction is not

possible, only that some of the status values are more relevant for physically separate versions.

For example, a robust service would allow all sensor operations to be canceled with no threat of a failure.

Unfortunately, not all commercial, off-the-shelf (COTS) sensors natively support cancellation. Therefore, the

canceledWithSensorFailure status is offered to accommodate this. Implementers can still offer cancellation,

but have a mechanism to communicate back to the client that sensor initialization might be required.

3.11 Result

Unless a service returns with an HTTP error, all WS-BD operations must reply with an HTTP message that

contains an element of a Result type that conforms to the following XML Schema snippet.

<xs:element name="result" type="wsbd:Result" nillable="true"/>

<xs:complexType name="Result">
 <xs:sequence>
 <xs:element name="status" type="wsbd:Status"/>
 <xs:element name="badFields" type="wsbd:StringArray" nillable="true" minOccurs="0"/>
 <xs:element name="captureIds" type="wsbd:UuidArray" nillable="true" minOccurs="0"/>
 <xs:element name="metadata" type="wsbd:Dictionary" nillable="true" minOccurs="0"/>
 <xs:element name="message" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="sensorData" type="xs:base64Binary" nillable="true" minOccurs="0"/>
 <xs:element name="sessionId" type="wsbd:UUID" nillable="true" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

 Terminology Shorthand 3.11.1

Since a Result is the intended outcome of all requests, this document may state that an operation “returns” a

particular status value. This is shorthand for a Result output payload with a status element containing that

value.

EXAMPLE: The following result payload “returns success”. A result might contain other child elements

depending on the specific operation and result status—see §1 for operations and their respective details.

<result xmlns="urn:oid:2.16.840.1.101.3.9.3.1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance">
 <status>success</status>
</result>

Likewise, the same shorthand is implied by a client “receiving” a status, or an operation “yielding” a status.

 Required Elements 3.11.2

Notice that from a XML Schema validation perspective [XSDPart1], a schema-valid Result must contain a

status element, and may contain any of the remaining elements.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

26

The specific permitted elements of a Result are determined via a combination of (a) the operation, and (b) the

result’s status. That is, different operations will have different requirements on which elements are

permitted or forbidden, depending on that operation’s status.

EXAMPLE: As will be detailed later (§5.3.4.1 and §5.5.4.1), a register operation returning a status of

success must also populate the sessionId element. However, a try lock operation that returns a

status of success cannot populate any element other than status.

DESIGN NOTE: An XML inheritance hierarchy could have been used to help enforce which elements are

permitted under which circumstances. However, a de-normalized representation (in which all of the possible

elements are valid with respect to a schema) was used to simplify client and server implementation. Further,

this reduces the burden of managing an object hierarchy for the sake of enforcing simple constraints.

 Element Summary 3.11.3

The following is a brief informative description of each Result element.

Element Description

status The disposition of the operation. All Result elements must contain a status
element. (Used in all operations.)

badFields The list of fields that contain invalid or ill-formed values. (Used in almost all
operations.)

captureIds Identifiers that may be used to obtain data acquired from a capture operation
(§5.12, §5.13).

metadata This field may hold

a) metadata for the service (§5.8), or

b) a service and sensor’s configuration (§5.10, §5.11), or

c) metadata relating to a particular capture (§5.13, §5.14, §5.15)

(See §4 for more information regarding metadata)

message A string providing informative detail regarding the output of an operation.
(Used in almost all operations.)

sensorData The biometric data corresponding to a particular capture identifier (§5.13,
§5.15).

sessionId A unique session identifier (§5.3).

3.12 Validation

The provided XML schemas may be used for initial XML validation. It should be noted that these are not strict

schema definitions and were designed for easy consumption of web service/code generation tools. Additional

logic should be used to evaluate the contents and validity of the data where the schema falls short. For

example, additional logic will be necessary to verify the contents of a Result are accurate as there is not a

different schema definition for every combination of optional and mandatory fields.

A service must have separate logic validating parameters and their values during configuration. The type of

any allowed values might not correspond with the type of the parameter. For example, if the type of the

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

27

parameter is an integer and an allowed value is a Range, the service must handle this within the service as it

cannot be appropriately validated using XML schema.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

29

4 Metadata

Metadata can be broken down into three smaller categories: service information, sensor information or

configuration, and capture information. Metadata can be returned in two forms: as a key/value pair within a

Dictionary or a Dictionary of Parameter types.

4.1 Service Information

Service information includes read-only parameters unrelated to the sensor as well as parameters that can be

set. Updating the values of a parameter should be done in the set configuration operation.

Service information must include the required parameters listed in Appendix A; including the optional

parameters is highly recommended. Each parameter must be exposed as a Parameter (§3.4).

Parameters listed in §A.1, §A.2, and §A.3 must be exposed as read-only parameters.

Read-only parameters must specify its current value by populating the default value field with the value.

Additionally, read-only parameters must not provide any allowed values. Allowed values are reserved to

specify acceptable information which may be passed to the service for configuration.

EXAMPLE: An example snippet from a get service info call demonstrating a read-only parameter. Enclosing

tags (which may vary) are omitted.

<name>inactivityTimeout</name>
<type>xs:nonNegativeInteger</type>
<readOnly>true</readOnly>
<supportsMultiple>false</supportsMultiple>
<defaultValue>600</defaultValue>

Configurable parameters, or those which are not read only, must provide information for the default value as

well as allowed values. To specify that an allowed value is within range of numbers, refer to Range (§3.5).

EXAMPLE: An example snippet from a get service info call. The target service supports a configurable

parameter called “ImageWidth”. Enclosing tags (which may vary) are omitted.

<name>imageWidth</name>
<type>xs:positiveInteger</type>
<readOnly>false</readOnly>
<supportsMultiple>false</supportsMultiple>
<defaultValue>800</defaultValue>
<allowedValues>
 <allowedValue>640</allowedValue>
 <allowedValue>800</allowedValue>
 <allowedValue>1024</allowedValue>
</allowedValues>

In many cases, an exposed parameter will support multiple values (see §3.4.1.2). When a parameter allows

this capability, it must use a type-specific array, if defined in this specification, or the generic Array (§3.6)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

30

type. The type element within a parameter must be the qualified name of a single value’s type (see §3.4.1.2

for an example).

4.2 Configuration

A configuration consists of parameters specific to the sensor or post-processing related to the final capture

result. This must only consist of key/value pairs. It must not include other information about the parameters,

such as allowed values or read-only status.

Restrictions for each configuration parameter can be discovered through the get service info operation.

EXAMPLE: The following is an example payload to set configuration consisting of three parameters.

<configuration xmlns="urn:oid:2.16.840.1.101.3.9.3.1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance">
 <item>
 <key>imageHeight</key>
 <value xsi:type="xs:int">480</value>
 </item>
 <item>
 <key>imageWidth</key>
 <value xsi:type="xs:int">640</value>
 </item>
 <item>
 <key>frameRate</key>
 <value xsi:type="xs:int">20</value>
 </item>
</configuration>

4.3 Captured Data

Metadata related to a particular capture operation must include the configuration of the sensor at the time of

capture. Static parameters related to the service should not be included in the metadata for a capture result.

A service may perform post-processing steps on any captured information. This information should be added

to the particular capture result’s metadata.

EXAMPLE: Example metadata for a particular capture. Note that this includes parameters related to the

sensor. Enclosing tags (which may vary) are omitted.

<item>
 <key>serialNumber</key>
 <value xsi:type="xs:string">98A8N830LP332‐V244</value>
</item>
<item>
 <key>imageHeight</key>
 <value xsi:type="xs:string">600</value>
</item>
<item>
 <key>imageWidth</key>
 <value xsi:type="xs:string">800</value>
</item>
<item>
 <key>captureTime</key>
 <value xsi:type="xs:dateTime">2011‐12‐02T09:39:10.935‐05:00</value>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

31

</item>
<item>
 <key>contentType</key>
 <value xsi:type="xs:string">image/jpeg</value>
</item>
<item>
 <key>modality</key>
 <value xsi:type="xs:string">Finger</value>
</item>
<item>
 <key>submodality</key>
 <value xsi:type="xs:string">LeftIndex</value>
</item>

EXAMPLE: A service computes the quality score of a captured fingerprint (see previous example). This score

is added to the result’s metadata to allow other clients to take advantage of previously completed processes.

Enclosing tags (which may vary) are omitted.

<item>
 <key>quality</key>
 <value>78</value>
</item>
<item>
 <key>serialNumber</key>
 <value>98A8N830LP332‐V244</value>
</item>
<item>
 <key>captureDate</key>
 <value>2011‐01‐01T15:30:00Z</value>
</item>
<item>
 <key>modality</key>
 <value>Finger</value>
</item>
<item>
 <key>submodality</key>
 <value>leftIndex</value>
</item>
<item>
 <key>imageHeight</key>
 <value>600</value>
</item>
<item>
 <key>imageWidth</key>
 <value>800</value>
</item>
<item>
 <key>contentType</key>
 <value>image/bmp</value>
</item>

 Minimal Metadata 4.3.1

At a minimum, a sensor or service must maintain the following metadata fields for each captured result.

4.3.1.1 Capture Date

Formal Name captureDate

Data Type xs:dateTime [XSDPart2]

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

32

This value represents the date and time at which the capture occurred.

4.3.1.2 Modality

Formal Name modality

Data Type xs:string [XSDPart2]

The value of this field must be present in the list of available modalities exposed by the get service info

operation (§5.8) as defined in §A.4.1. This value represents the modality of the captured result.

4.3.1.3 Submodality

Formal Name submodality

Data Type xs:anyType [XSDPart2]

The value of this field must be present in the list of available submodalities exposed by the get service info

operation (§5.8) as defined in §A.4.2. This value represents the submodality of the captured result. If this

parameter supports multiple, then the data type must be a StringArray (§3.7) of values. If submodality does

not support multiple, the data type must be xs:string [XSDPart2].

4.3.1.4 Content Type

Formal Name contentType

Data Type xs:string [RFC2045, RFC2046]

The value of this field represents the content type of the captured data. See Appendix A for which content

types are supported.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

33

5 Operations

This section provides detailed information regarding each WS-BD operation.

5.1 General Usage Notes

The following usage notes apply to all operations, unless the detailed documentation for a particular

operation conflicts with these general notes, in which case the detailed documentation takes precedence.

1. Failure messages are informative. If an operation fails, then the message element may contain an

informative message regarding the nature of that failure. The message is for informational purposes

only—the functionality of a client must not depend on the contents of the message.

2. Results must only contain required and optional elements. Services must only return elements

that are either required or optional. All other elements must not be contained in the result, even if

they are empty elements. Likewise, to maintain robustness in the face of a non-conformant service,

clients should ignore any element that is not in the list of permitted Result elements for a particular

operation call.

3. Sensor operations must not occur within a non-sensor operation. Services should only perform

any sensor control within the operations:

a. initialize,

b. get configuration,

c. set configuration,

d. capture, and

e. cancel.

4. Sensor operations must require locking. Even if a service implements a sensor operation without

controlling the target biometric sensor, the service must require that a locked service for the

operation to be performed.

5. Content Type. Clients must make HTTP requests using a content type of application/xml [RFC2616,

§14].

6. Namespace. A data type without an explicit namespace or namespace prefix implies it is a member

of the wsbd namespace as defined in §3.1.

 Precedence of Status Enumerations 5.1.1

To maximize the amount of information given to a client when an error is obtained, and to prevent different

implementations from exhibiting different behaviors, all WS-BD services must return status values according

to a fixed priority. In other words, when multiple status messages might apply, a higher-priority status must

always be returned in favor of a lower-priority status.

The status priority, listed from highest priority (“invalidId”) to lowest priority (“success”) is as follows:

1. invalidId
2. noSuchParameter
3. badValue
4. unsupported
5. canceledWithSensorFailure
6. canceled

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

34

7. lockHeldByAnother
8. lockNotHeld
9. sensorBusy
10. sensorFailure
11. sensorTimeout
12. initializationNeeded
13. configurationNeeded
14. preparingDownload
15. failure
16. success

Notice that success is the lowest priority—an operation should only be deemed successful if no other kinds of

(non-successful) statuses apply.

The following example illustrates how this ordering affects the status returned in a situation in which multiple

clients are performing operations.

EXAMPLE: Figure 6 illustrates that client cannot receive a “sensorBusy” status if it does not hold the lock,

even if a sensor operation is in progress (recall from §2.4.5 that sensor operations require holding the

lock). Suppose there are two clients; Client A and Client B. Client A holds the lock and starts initialization

on (Step 1–3). Immediately after Client A initiates capture, Client B (Step 4) tries to obtain the lock while

Client A is still capturing. In this situation, the valid statuses that could be returned to Client B are

“sensorBusy” (since the sensor is busy performing a capture) and “lockHeldByAnother” (since Client A

holds the lock). In this case, the service returns “lockHeldByAnother” (Step 5) since “lockHeldByAnother”

is higher priority than “sensorBusy.”

Figure 6. Example illustrating how a client cannot receive a "sensorBusy" status if it does not hold the lock.

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

3:initialize

sessionId={A1234567...}

4:lock

sessionId={B890B123...}

5:lock

status=lockHeldByAnother

6:initialize

status=success

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

35

 Parameter Failures 5.1.2

Services must distinguish among badValue, invalidId, noSuchParameter, and unsupported according to the

following rules. These rules are presented here in the order of precedence that matches the previous

subsection.

1. Is a recognizable UUID provided? If the operation requires a UUID as an input URL parameter, and
provided value is not an UUID (i.e., the UUID is not parseable), then the service must return badValue.
Additionally, the Result’s badFields list must contain the name of the offending parameter
(sessionId or captureId).

…otherwise…

2. Is the UUID understood? If an operation requires an UUID as an input URL parameter, and the
provided value is a UUID, but service cannot accept the provided value, then the service must return
invalidId. Additionally, the Result’s badFields list must contain the name of the offending
parameter (sessionId or captureId).

…otherwise…

3. Are the parameter names understood? If an operation does not recognize a provided input
parameter name, then the service must return noSuchParameter. This behavior may differ from
service to service, as different services may recognize (or not recognize) different parameters. The
unrecognized parameter(s) must be listed in the Result’s badFields list.

…otherwise…

4. Are the parameter values acceptable? If an operation recognizes all of the provided parameter
names, but cannot accept a provided value because it is (a) and inappropriate type, or (b) outside the
range advertised by the service (§4.1), the then service must return badValue. The parameter names
associated with the unacceptable values must be listed in the Result’s badFields list. Clients are
expected to recover the bad values themselves by reconciling the Result corresponding to the
offending request.

…otherwise…

5. Is the request supported? If an operation accepts the parameter names and values, but the
particular request is not supported by the service or the target biometric sensor, then the service
must return unsupported. The parameter names that triggered this determination must be listed in
the Result’s badFields list. By returning multiple fields, a service is able to imply that a particular
combination of provided values is unsupported.

NOTE: It may be helpful to think of invalidId as a special case of badValue reserved for URL parameters of

type UUID.

 Visual Summaries 5.1.3

The following two tables provide informative visual summaries of WS-BD operations. These visual summaries

are an overview; they are not authoritative. (§5.3–5.16 are authoritative.)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

36

5.1.3.1 Input & Output

The following table represents a visual summary of the inputs and outputs corresponding to each operation.

Operation inputs are indicated in the “URL Fragment” and “Input Payload” columns. Operation inputs take the

form of either (a) a URL parameter, with the parameter name shown in “curly brackets” (“{“ and “}”) within

the URL fragment (first column), and/or, (b) a input payload (defined in §1.2).

Operation outputs are provided via Result, which is contained in the body of an operation’s HTTP response.

Summary of Operations Input/Output

Operation
URL Fragment

(Includes inputs)

M
e
th

o
d

In
p

u
t

p
a
yl

o
a
d

Id
e
m

p
o

te
n

t

S
e
n

so
r

O
p

e
ra

ti
o

n

Permitted Result Elements

 (within output payload)

D
et

ai
le

d
 D

o
cu

m
en

ta
ti

o
n

 (
§

)

st
a
tu

s

b
a
d

Fi
e
ld

s

se
ss

io
n

Id

m
e
ta

d
a
ta

ca
p

tu
re

Id
s

se
n

so
rD

a
ta

register /register POST none
 

  
 

 5.3

unregister /register/{sessionId} DELETE none 


 
  

 5.4

try lock

/lock/{sessionId}

POST none 


 
  

 5.5

steal lock PUT none 


 
  

 5.6

unlock DELETE none 


 
  

 5.7

get service info /info GET none 


 





 5.8

initialize /initialize/{sessionId} POST none    
  

 5.9

get configuration
/configure/{sessionId}

GET none    





 5.10

set configuration POST config    
  

 5.11

capture /capture/{sessionId} POST none


  
 

  5.12

download /download/{captureid} GET none 


 





 5.13

get download info /download/{captureid}/info GET none         5.14

thrifty download /download/{captureid}/{maxSize} GET none 


 





 5.15

cancel operation /cancel/{sessionId} POST none    
  

 5.16

Presence of a symbol in a table cell indicates that operation is idempotent (), a sensor operation (), and

which elements may be present in the operation's Result (). Likewise, the lack of a symbol in a table cell

indicates the operation is not idempotent, not a sensor operation, and which elements of the operation's

Result are forbidden.

EXAMPLE: The capture operation (fifth row from the bottom) is not idempotent, but is a sensor

operation. The output may contain the elements status, badFields, and/or captureIds in its Result.

The detailed information regarding the Result for capture, (i.e., which elements are specifically

permitted under what circumstances) is found in §5.12.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

37

The message element is not shown in this table for two reasons. First, when it appears, it is always optional.

Second, to emphasize that the message content must only be used for informative purposes; it must not be

used as a vehicle for providing unique information that would inhibit a service’s interoperability.

5.1.3.2 Permitted Status Values

The following table provides a visual summary of the status values permitted.

Possible Status Values Per Operation

Status
Values

Operation
Description

su
cc

e
ss

fa
il

u
re

in
va

li
d

Id

ca
n

ce
le

d

ca
n

ce
le

d
W

it
h

S
e
n

so
rF

a
il

u
re

se
n

so
rF

a
il

u
re

lo
ck

N
o

tH
e
ld

lo
ck

H
e
ld

B
yA

n
o
th

e
r

in
it

ia
li

za
ti

o
n

N
ee

d
ed

co
n
fi

g
u

ra
ti

o
n

N
e
e
d

e
d

se
n

so
rB

u
sy

se
n

so
rT

im
e
o

u
t

u
n

su
p

p
o

rt
e
d

b
a
d

V
a
lu

e

n
o

S
u

ch
P

a
ra

m
e
te

r

p
re

p
a
ri

n
g
D

o
w

n
lo

a
d

register  
             

unregister   
      


 


 

try lock   
   


    


 

steal lock   
         


 

unlock   
   


    


 

get service info  
             

initialize        
 

 



 

get configuration            



 

set configuration         


    


capture            



 

download   
         






get download info                

thrifty download   
        

 




cancel   
  

 
    


 

The presence (absence) of a symbol in a cell indicates that the respective status may (may not) be returned

by the corresponding operation.

EXAMPLE: The register operation may only return a Result with a Status that contains either success

or failure. The unregister operation may only return success, failure, invalidId, sensorBusy, or

badValue.

The visual summary does not imply that services may return these values arbitrarily—the services must

adhere to the behaviors as specified in their respective sections.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

38

5.2 Documentation Conventions

Each WS-BD operation is documented according to the following conventions.

 General Information 5.2.1

Each operation begins with the following tabular summary:

Description A short description of the operation

URL Template The suffix used to access the operation. These take the form

/resourceName

or

/resourceName/{URL_parameter_1}/…/{URL_parameter_N}

Each parameter, {URL_parameter...} must be replaced, in-line with that
parameter’s value.

Parameters have no explicit names, other than defined by this document or
reported back to the client within the contents of a badFields element.

It is assumed that consumers of the service will prepend the URL to the service
endpoint as appropriate.

EXAMPLE: The resource resourceName hosted at the endpoint

http://example.com/Service

would be accessible via

http://example.com/Service/resourceName

HTTP Method The HTTP method that triggers the operation, i.e., GET, POST, PUT, or DELETE

URL Parameters A description of the URL-embedded operation parameters. For each parameter
the following details are provided:

 the name of the parameter

 the expected data type (§1)

 a description of the parameter

Input Payload A description of the content, if any, to be posted to the service as input to an
operation.

Idempotent Yes—the operation is idempotent (§2.4.7).

No—the operation is not idempotent.

Sensor Operation
(Lock Required)

Yes—the service may require exclusive control over the target biometric sensor.

No—this operation does not require a lock.

Given the concurrency model (§2.4.5) this value doubles as documentation as to
whether or not a lock is required

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

39

 Result Summary 5.2.2

This subsection summarizes the various forms of a Result that may be returned by the operation. Each row

represents a distinct combination of permitted values & elements associated with a particular status. An

operation that returns success may also provide additional information other than status.

success status="success"

failure status="failure"

message*=informative message describing failure

[status value] status=status literal

[required element name]=description of permitted contents of the element

[optional element name]*=description of permitted contents of the element

…

…

For each row, the left column contains a permitted status value, and the right column contains a summary of

the constraints on the Result when the status element takes that specific value. The vertical ellipses at the

bottom of the table signify that the summary table may have additional rows that summarize other permitted

status values.

Data types without an explicit namespace or namespace prefix are members of the wsbd namespace as

defined in §3.1.

Element names suffixed with a ‘*’ indicate that the element is optional.

 Usage Notes 5.2.3

Each of the following subsections describes behaviors & requirements that are specific to its respective

operation.

 Unique Knowledge 5.2.4

For each operation, there is a brief description of whether or not the operation affords an opportunity for the

server or client to exchange information unique to a particular implementation. The term “unique

knowledge” is used to reflect the definition of interoperability referenced in §2.1.

 Return Values Detail 5.2.5

This subsection details the various return values that the operation may return. For each permitted status

value, the following table details the Result requirements:

Status Value The particular status value

Condition The service accepts the registration request

Required Elements A list of the required elements. For each required element, the element name, its
expected contents, and expected data type is listed If no namespace prefix is
specified, then the wsbd namespace (§3.1) is inferred.

For example,
 badFields={"sessionId"} (StringArray, §3.7)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

40

Indicates that badFields is a required element, and that the contents of the
element must be a wsbd:StringArray containing the single literal "sessionId".

Optional Elements A list of the required elements. Listed for each optional element are the element
names and its expected contents.

Constraints and information unique to the particular operation/status combination may follow the table, but

some status values have no trailing explanatory text.

A data type without an explicit namespace or namespace prefix implies it is a member of the wsbd namespace

as defined in §3.1.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

41

5.3 Register

Description Open a new client-server session

URL Template /register

HTTP Method POST

URL Parameters None

Input Payload None

Idempotent No

Sensor Operation No

 Result Summary 5.3.1

success status="success"

sessionId=session id (UUID, §3.2)

failure status="failure"

message*=informative message describing failure

 Usage Notes 5.3.2

Register provides a unique identifier that can be used to associate a particular client with a server.

In a sequence of operations with a service, a register operation is likely one of the first operations performed

by a client (get service info being the other). It is expected (but not required) that a client would perform a

single registration during that client’s lifetime.

DESIGN NOTE: By using an UUID, as opposed to the source IP address, a server can distinguish among clients

sharing the same originating IP address (i.e., multiple clients on a single machine, or multiple machines

behind a firewall). Additionally, a UUID allows a client (or collection of clients) to determine client identity

rather than enforcing a particular model (§2.4.3).

 Unique Knowledge 5.3.3

As specified, the register operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.3.4

The register operation must return a Result according to the following constraints.

5.3.4.1 Success

Status Value success

Condition The service accepts the registration request

Required Elements status (Status, §3.10)

the literal “success”

sessionId (UUID, §3.2)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

42

an identifier that can be used to identify a session

Optional Elements None

The “register” operation must not provide a sessionId of 00000000-0000-0000-0000-000000000000.

5.3.4.2 Failure

Status Value failure

Condition The service cannot accept the registration request

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Registration might fail if there are too many sessions already registered with a service. The message element

must only be used for informational purposes. Clients must not depend on particular contents of the message

element to control client behavior.

See §4 and §A.1 for how a client can use sensor metadata to determine the maximum number of current

sessions a service can support.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

43

5.4 Unregister

Description Close a client-server session

URL Template /register/{sessionId}

HTTP Method DELETE

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session to remove

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.4.1

success status="success"

failure status="failure"

message*=informative message describing failure

sensorBusy status="sensorBusy"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.4.2

Unregister closes a client-server session. Although not strictly necessary, clients should unregister from a

service when it is no longer needed. Given the lightweight nature of sessions, services should support (on the

order of) thousands of concurrent sessions, but this cannot be guaranteed, particularly if the service is

running within limited computational resources. Conversely, clients should assume that the number of

concurrent sessions that a service can support is limited. (See §A.1 for details on connection metadata.)

5.4.2.1 Inactivity

A service may automatically unregister a client after a period of inactivity, or if demand on the service

requires that least-recently used sessions be dropped. This is manifested by a client receiving a status of

invalidId without a corresponding unregistration. Services should set the inactivity timeout to a value

specified in minutes. (See §A.1 for details on connection metadata.)

5.4.2.2 Sharing Session Ids

A session id is not a secret, but clients that share session ids run the risk of having their session prematurely

terminated by a rogue peer client. This behavior is permitted, but discouraged. See §2.4 for more information

about client identity and the assumed security models.

5.4.2.3 Locks & Pending Sensor Operations

If a client that holds the service lock unregisters, then a service must also release the service lock, with one

exception. If the unregistering client both holds the lock and is responsible for a pending sensor operation,

the service must return sensorBusy (See §5.4.4.3).

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

44

 Unique Knowledge 5.4.3

As specified, the unregister operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.4.4

The unregister operation must return a Result according to the following constraints.

5.4.4.1 Success

Status Value success

Condition The service accepted the unregistration request

Required Elements status (Status, §3.10)

the literal “success”

Optional Elements None

If the unregistering client currently holds the service lock, and the requesting client is not responsible for any

pending sensor operation, then successful unregistration must also release the service lock.

As a consequence of idempotency, a session id does not need to ever have been registered successfully in

order to unregister successfully. Consequently, the unregister operation cannot return a status of invalidId.

5.4.4.2 Failure

Status Value failure

Condition The service could not unregister the session.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

In practice, failure to unregister is expected to be a rare occurrence. Failure to unregister might occur if the

service experiences a fault with an external system (such as a centralized database used to track session

registration and unregistration)

5.4.4.3 Sensor Busy

Status Value sensorBusy

Condition The service could not unregister the session because the biometric sensor is
currently performing a sensor operation within the session being unregistered.

Required Elements status (Status, §3.10)

the literal “sensorBusy”

Optional Elements None

This status must only be returned if (a) the sensor is busy and (b) the client making the request holds the lock

(i.e., the session id provided matches that associated with the current service lock). Any client that does not

hold the session lock must not result in a sensorBusy status.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

45

EXAMPLE: The following sequence diagram illustrates a client that cannot unregister (Client A) and a

client that can unregister (Client B). After the initialize operation completes (Step 6), Client A can

unregister (Steps 7-8).

Figure 7. Example of how an unregister operation can result in sensorBusy.

5.4.4.4 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

Client A Service Client B

Lock owner = {A1234567...}

1:initialize

sessionId={A1234567...}

Client A, holding the lock, can start initialization.

2:unregister

sessionId={B890B123...}

3:unregister

status=success

Client B does not hold the lock, and can unregister, even though
the service is performing a sensor operation.

4:unregister

sessionId={A1234567...}

5:unregister

status=sensorBusy

On a separate thread, Client A makes an unregistration request.
Client A is not permitted to unregister, because Client A both (1)
holds the lock and (2) is responsible for a pending sensor
operation (initialization).

6:initialize

status=success

7:unregister

sessionId={A1234567...}

8:unregister

status=success

Now that initialization is finished, Client A can unregister.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

47

5.5 Try Lock

Description Try to obtain the service lock

URL Template /lock/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the service lock

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.5.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.5.2

The try lock operation attempts to obtain the service lock. The word “try” is used to indicate that the call

always returns immediately; it does not block until the lock is obtained. See §2.4.5 for detailed information

about the WS-BD concurrency and locking model.

 Unique Knowledge 5.5.3

As specified, the try lock cannot be used to provide or obtain knowledge about unique characteristics of a

client or service.

 Return Values Detail 5.5.4

The try lock operation must return a Result according to the following constraints.

5.5.4.1 Success

Status Value success

Condition The service was successfully locked to the provided session id.

Required Elements status (Status, §3.10)

the literal “success”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

48

Clients that hold the service lock are permitted to perform sensor operations (§2.4.5). By idempotency

(§2.4.7), if a client already holds the lock, subsequent try lock operations shall also return success.

5.5.4.2 Failure

Status Value failure

Condition The service could not be locked to the provided session id.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must reserve a failure status to report system or internal failures and prevent the acquisition of the

lock. Most try lock operations that do not succeed will not produce a failure status, but more likely a

lockHeldByAnother status (See §5.5.4.4 for an example).

5.5.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.5.4.4 Lock Held by Another

Status Value lockHeldByAnother

Condition The service could not be locked to the provided session id because the lock is held
by another client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

EXAMPLE: The following sequence diagram illustrates a client that cannot obtain the lock (Client B) because

it is held by another client (Client A).

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

49

Figure 8. Example of a scenario yielding a lockHeldByAnother result.

5.5.4.5 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

Client A Service Client B

Lock owner = (none)

1:lock

sessionId={A1234567...}

Lock owner = {A1234567...}

2:lock

status=success

3:lock

sessionId={B890B123...}

4:lock

status=lockHeldByAnother

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

51

5.6 Steal Lock

Description Forcibly obtain the lock away from a peer client

URL Template /lock/{sessionId}

HTTP Method PUT

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the service lock

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.6.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.6.2

The steal lock operation allows a client to forcibly obtain the lock away from another client that already holds

the lock. The purpose of this operation is to prevent a client that experiences a fatal error from forever

preventing another client access to the service, and therefore, the biometric sensor.

5.6.2.1 Avoid Lock Stealing

Developers and integrators should endeavor to reserve lock stealing for exceptional circumstances—such as

when a fatal error prevents a client from releasing a lock. Lock stealing should not be used as the primary

mechanism in which peer clients coordinate biometric sensor use.

5.6.2.2 Lock Stealing Prevention Period (LSPP)

To assist in coordinating access among clients and to prevent excessive lock stealing, a service may trigger a

time period that forbids lock stealing for each sensor operation. For convenience, this period of time will be

referred to as the lock stealing prevention period (LSPP).

During the LSPP, all attempts to steal the service lock will fail. Consequently, if a client experiences a fatal

failure during a sensor operation, then all peer clients need to wait until the service re-enables lock stealing.

All services should implement a non-zero LSPP. The recommended time for the LSPP is on the order of 100

seconds. Services that enforce an LSPP must start the LSPP immediately before sovereign sensor control is

required. Conversely, services should not enforce an LSPP unless absolutely necessary.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

52

If a request provides an invalid sessionId, then the operation should return an invalidId status instead of a

failure—this must be true regardless of the LSPP threshold and whether or not it has expired. A failure

signifies that the state of the service is still within the LSPP threshold and the provided sessionId is valid.

A service may reinitiate a LSPP when an operation yields an undesirable result, such as failure. This would

allow a client to attempt to resubmit the request or recover without worrying about whether or not the lock is

still owned by the client’s session.

An LSPP ends after a fixed amount of time has elapsed, unless another sensor operation restarts the LSPP.

Services should keep the length of the LSPP fixed throughout the service’s lifecycle. It is recognized, however,

that there may be use cases in which a variable LSPP timespan is desirable or required. Regardless, when

determining the appropriate timespan, implementers should carefully consider the tradeoffs between

preventing excessive lock stealing, versus forcing all clients to wait until a service re-enables lock stealing.

5.6.2.3 Cancellation & (Lack of) Client Notification

Lock stealing must have no effect on any currently running sensor operations. It is possible that a client

initiates a sensor operation, has its lock stolen away, yet the operation completes successfully. Subsequent

sensor operations would yield a lockNotHeld status, which a client could use to indicate that their lock was

stolen away from them. Services should be implemented such that the LSPP is longer than any sensor

operation.

 Unique Knowledge 5.6.3

As specified, the steal lock operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.6.4

The steal lock operation must return a Result according to the following constraints.

5.6.4.1 Success

Status Value success

Condition The service was successfully locked to the provided session id.

Required Elements status (Status, §3.10)

the literal “success”

Optional Elements None

See §2.4.5 for detailed information about the WS-BD concurrency and locking model. Cancellation must have

no effect on pending sensor operations (§5.6.2.3).

5.6.4.2 Failure

Status Value failure

Condition The service could not be locked to the provided session id.

Required Elements status (Status, §3.10)

the literal “failure”

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

53

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Most steal lock operations that yield a failure status will do so because the service receives a lock stealing

request during a lock stealing prevention period (§5.6.2.2). Services must also reserve a failure status for

other non-LSPP failures that prevent the acquisition of the lock.

Implementers may choose to use the optional message field to provide more information to an end-user as to

the specific reasons for the failure. However (as with all other failure status results), clients must not

depend on any particular content to make this distinction.

5.6.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.6.4.4 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

55

5.7 Unlock

Description Release the service lock

URL Template /lock/{sessionId}

HTTP Method DELETE

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session releasing the service lock

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.7.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.7.2

The unlock operation releases a service lock, making locking available to other clients.

See §2.4.5 for detailed information about the WS-BD concurrency and locking model.

 Unique Knowledge 5.7.3

As specified, the unlock operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.7.4

The steal lock operation must return a Result according to the following constraints.

5.7.4.1 Success

Status Value success

Condition The service returned to an unlocked state.

Required Elements status (Status, §3.10)

the literal “success”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

56

Upon releasing the lock, a client is no longer permitted to perform any sensor operations (§2.4.5). By

idempotency (§2.4.7), if a client already has released the lock, subsequent unlock operations should also

return success.

5.7.4.2 Failure

Status Value failure

Condition The service could not be transitioned into an unlocked state.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must reserve a failure status to report system or internal failures and prevent the release of the

service lock. The occurrence of unlock operations that fail is expected to be rare.

5.7.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.7.4.4 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

57

5.8 Get Service Info

Description Retrieve metadata about the service that does not depend on session-specific
information, or sovereign control of the target biometric sensor

URL Template /info

HTTP Method GET

URL Parameters None

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.8.1

success status="success"

metadata=dictionary containing service metadata (Dictionary, §3.3)

failure status="failure"

message*=informative message describing failure

 Usage Notes 5.8.2

The get service info operation provides information about the service and target biometric sensor. This

operation must return information that is both (a) independent of session, and (b) does not require sovereign

biometric sensor control. In other words, services must not control the target biometric sensor during a get

service info operation itself. Implementations may (and are encouraged to) use service startup time to query

the biometric sensor directly to create a cache of information and capabilities for get service info operations.

The service should keep a cache of sensor and service metadata to reduce the amount of operations that

query the sensor as this can be a lengthy operation.

The get service info operation does not require that a client be registered with the service. Unlike other

operations, it does not take a session id as a URL parameter.

See §4.1 for information about the metadata returned from this operation.

EXAMPLE: The following represents a ‘raw’ request to get the service’s metadata.

GET http://10.0.0.8:8000/Service/info HTTP/1.1
Content‐Type: application/xml
Host: 10.0.0.8:8000

EXAMPLE: The following is the ‘raw’ response from the above request. The metadata element of the result
contains a Dictionary (§3.3) of parameter names and parameter information represented as a Parameter
(§3.4).

HTTP/1.1 200 OK
Content‐Length: 4244
Content‐Type: application/xml; charset=utf‐8
Server: Microsoft‐HTTPAPI/2.0
Date: Tue, 03 Jan 2012 14:54:51 GMT

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

58

<result xmlns="urn:oid:2.16.840.1.101.3.9.3.1" xmlns:i="http://www.w3.org/2001/XMLSchema‐instance">
 <status>success</status>

 <metadata>
 <item>
 <key>width</key>
 <value i:type="Parameter">
 <name>width</name>
 <q:type xmlns:q="urn:oid:2.16.840.1.101.3.9.3.1"
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type>
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</defaultValue>
 <allowedValues>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">1280</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">960</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">640</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">424</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">416</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">352</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">320</allowedValue>
 </allowedValues>
 </value>
 </item>
 <item>
 <key>height</key>
 <value i:type="Parameter">
 <name>height</name>
 <q:type xmlns:q="urn:oid:2.16.840.1.101.3.9.3.1"
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type>
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</defaultValue>
 <allowedValues>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">720</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">544</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">480</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">448</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">360</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">288</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">240</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">144</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">120</allowedValue>
 </allowedValues>
 </value>
 </item>
 <item>
 <key>frameRate</key>
 <value i:type="Parameter">
 <name>frameRate</name>
 <q:type xmlns:q="urn:oid:2.16.840.1.101.3.9.3.1"
xmlns:a="http://www.w3.org/2001/XMLSchema">a:unsignedInt</q:type>
 <defaultValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">30</defaultValue>
 <allowedValues>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">30</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">15</allowedValue>
 <allowedValue i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">10</allowedValue>
 </allowedValues>
 </value>
 </item>
 <item>
 <key>modality</key>
 <value i:type="Parameter">
 <name>modality</name>
 <q:type xmlns:q="urn:oid:2.16.840.1.101.3.9.3.1"
xmlns:a="http://www.w3.org/2001/XMLSchema">a:string</q:type>
 <readOnly>true</readOnly>
 <defaultValue i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">face</defaultValue>
 </value>
 </item>
 <item>
 <key>submodality</key>
 <value i:type="Parameter">
 <name>submodality</name>
 <q:type xmlns:q="urn:oid:2.16.840.1.101.3.9.3.1"
xmlns:a="http://www.w3.org/2001/XMLSchema">a:string</q:type>
 <readOnly>true</readOnly>
 <defaultValue i:type="a:string" xmlns:a="http://www.w3.org/2001/XMLSchema">frontalFace</defaultValue>
 </value>
 </item>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

59

 </metadata>
</result>

 Unique Knowledge 5.8.3

As specified, the get service info can be used to obtain knowledge about unique characteristics of a service.

Through get service info, a service may expose implementation and/or service-specific configuration

parameter names and values that are not defined in this specification (see Appendix A for further information

on parameters).

 Return Values Detail 5.8.4

The get service info operation must return a Result according to the following constraints.

5.8.4.1 Success

Status Value success

Condition The service provides service metadata

Required Elements status (Status, §3.10)

the literal "success"

metadata (Dictionary, §3.3)

information about the service metadata

Optional Elements None

5.8.4.2 Failure

Status Value failure

Condition The service cannot provide service metadata

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

61

5.9 Initialize

Description Initialize the target biometric sensor

URL Template /initialize/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting initialization

Input Payload None

Idempotent Yes

Sensor Operation Yes

 Result Summary 5.9.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.9.2

The initialize operation prepares the target biometric sensor for (other) sensor operations.

Some biometric sensors have no requirement for explicit initialization. In that case, the service should

immediately return a success result.

Although not strictly necessary, services should directly map this operation to the initialization of the target

biometric sensor, unless the service can reliably determine that the target biometric sensor is in a fully

operational state. In other words, a service may decide to immediately return success if there is a reliable

way to detect if the target biometric sensor is currently in an initialized state. This style of “short circuit”

evaluation could reduce initialization times. However, a service that always initializes the target biometric

sensor would enable the ability of a client to attempt a manual reset of a sensor that has entered a faulty

state. This is particularly useful in physically separated service implementations where the connection

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

62

between the target biometric sensor and the web service host may be less reliable than an integrated

implementation.

 Unique Knowledge 5.9.3

As specified, the initialize operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.9.4

5.9.4.1 Success

Status Value success

Condition The service successfully initialized the target biometric sensor

Required Elements status

must be populated with the Status literal "success"

Optional Elements None

5.9.4.2 Failure

Status Value failure

Condition The service experienced a fault that prevented successful initialization.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A failure status must only be used to report failures that occurred within the web service, not within the

target biometric sensor (§5.9.4.5, §5.9.4.6)

5.9.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

63

5.9.4.4 Canceled

Status Value canceled

Condition The initialization operation was interrupted by a cancellation request.

Required Elements status (Status, §3.10)

the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation.

5.9.4.5 Canceled with Sensor Failure

Status Value canceledWithSensorFailure

Condition The initialization operation was interrupted by a cancellation request and the
target biometric sensor experienced a failure

Required Elements status (Status, §3.10)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the

target biometric sensor. Clients receiving this result may need to reattempt the initialization request to

restore full functionality. See §5.16.2.2 for information about what may trigger a cancellation.

5.9.4.6 Sensor Failure

Status Value sensorFailure

Condition The initialization failed due to a failure within the target biometric sensor

Required Elements status (Status, §3.10)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor,

not a failure within the web service (§5.9.4.2).

5.9.4.7 Lock Not Held

Status Value lockNotHeld

Condition Initialization could not be performed because the requesting client does not hold
the lock

Required Elements status (Status, §3.10)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

64

5.9.4.8 Lock Held by Another

Status Value lockHeldByAnother

Condition Initialization could not be performed because the lock is held by another client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

5.9.4.9 Sensor Busy

Status Value sensorBusy

Condition Initialization could not be performed because the service is already performing a
different sensor operation for the requesting client.

Required Elements status (Status, §3.10)

the literal “sensorBusy”

Optional Elements None

5.9.4.10 Sensor Timeout

Status Value sensorTimeout

Condition Initialization could not be performed because the target biometric sensor took too
long to complete the initialization request.

Required Elements status (Status, §3.10)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2

for information on how a client might determine timeouts.)

5.9.4.11 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

65

5.10 Get Configuration

Description Retrieve metadata about the target biometric sensor’s current configuration

URL Template /configure/{sessionId}

HTTP Method GET

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the configuration

Input Payload None

Idempotent Yes

Sensor Operation Yes

 Result Summary 5.10.1

success status="success"

metadata=current configuration of the sensor (Dictionary, §3.3)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.10.2

The get configuration operation retrieves the service’s current configuration.

EXAMPLE: The following represents a ‘raw’ request to retrieve the current configuration information of the

service.

GET http://10.0.0.8:8000/Service/configure/d745cd19‐facd‐4f91‐8774‐aac5ca9766a2 HTTP/1.1
Content‐Type: application/xml
Host: 10.0.0.8:8000

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

66

EXAMPLE: The following is the ‘raw’ response form the previous request. The metadata element in the result

contains a Dictionary (§3.3) of parameter names and their respective values.

HTTP/1.1 200 OK
Content‐Length: 554
Content‐Type: application/xml; charset=utf‐8
Server: Microsoft‐HTTPAPI/2.0
Date: Tue, 03 Jan 2012 14:57:29 GMT

<result xmlns="urn:oid:2.16.840.1.101.3.9.3.1"
 xmlns:i="http://www.w3.org/2001/XMLSchema‐instance">
 <status>success</status>
 <metadata>
 <item>
 <key>width</key>
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">800</value>
 </item>
 <item>
 <key>height</key>
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">600</value>
 </item>
 <item>
 <key>frameRate</key>
 <value i:type="a:int" xmlns:a="http://www.w3.org/2001/XMLSchema">15</value>
 </item>
 </metadata>
</result>

 Unique Knowledge 5.10.3

As specified, the get configuration can be used to obtain knowledge about unique characteristics of a service.

Through get configuration, a service may expose implementation and/or service-specific configuration

parameter names and values that are not explicitly described in this document.

 Return Values Detail 5.10.4

The get configuration operation must return a Result according to the following constraints.

5.10.4.1 Success

Status Value success

Condition The service provides the current configuration

Required Elements status (Status, §3.10)

the literal “success”

metadata (Dictionary, §3.3)

the target biometric sensor’s current configuration

Optional Elements None

See §4.2 for information regarding configurations.

5.10.4.2 Failure

Status Value failure

Condition The service cannot provide the current configuration due to service (not target
biometric sensor) error.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

67

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric

sensor (see §5.10.4.5, §5.10.4.6).

5.10.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.10.4.4 Canceled

Status Value canceled

Condition The get configuration operation was interrupted by a cancellation request.

Required Elements status (Status, §3.10)

the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation.

5.10.4.5 Canceled with Sensor Failure

Status Value canceledWithSensorFailure

Condition The get configuration operation was interrupted by a cancellation request during
which the target biometric sensor experienced a failure

Required Elements status (Status, §3.10)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

68

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the

target biometric sensor. Clients receiving this result may need to perform initialization to restore full

functionality. See §5.16.2.2 for information about what may trigger a cancellation.

5.10.4.6 Sensor Failure

Status Value sensorFailure

Condition The configuration could not be queried due to a failure within the target biometric
sensor.

Required Elements status (Status, §3.10)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor,

not a failure within the web service (§5.9.4.2).

5.10.4.7 Lock Not Held

Status Value lockNotHeld

Condition The configuration could not be queried because the requesting client does not
hold the lock.

Required Elements status (Status, §3.10)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock.

5.10.4.8 Lock Held by Another

Status Value lockHeldByAnother

Condition The configuration could not be queried because the lock is held by another client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

5.10.4.9 Initialization Needed

Status Value initializationNeeded

Condition The configuration could not be queried because the target biometric sensor has
not been initialized.

Required Elements status (Status, §3.10)

the literal “initializationNeeded”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

69

Services should be able to provide the sensors configuration without initialization; however, this is not strictly

necessary. Regardless, robust clients should assume that configuration will require initialization.

5.10.4.10 Configuration Needed

Status Value configurationNeeded

Condition The configuration could not be queried because the target biometric sensor has
not been initialized.

Required Elements status (Status, §3.10)

the literal “configurationNeeded”

Optional Elements None

Services may require configuration to be set before a configuration can be retrieved if a service does not

provide a valid default configuration.

5.10.4.11 Sensor Busy

Status Value sensorBusy

Condition The configuration could not be queried because the service is already performing
a different sensor operation for the requesting client.

Required Elements status (Status, §3.10)

the literal “sensorBusy”

Optional Elements None

5.10.4.12 Sensor Timeout

Status Value sensorTimeout

Condition The configuration could not be queried because the target biometric sensor took
too long to complete the request.

Required Elements status (Status, §3.10)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2

for information on how a client might determine timeouts.)

5.10.4.13 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

70

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

71

5.11 Set Configuration

Description Set the target biometric sensor’s configuration

URL Template /configure/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the configuration

Input Payload Desired sensor configuration (Dictionary, §3.3)

Idempotent Yes

Sensor Operation Yes

 Result Summary 5.11.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

unsupported status="unsupported"

badFields={field names} (StringArray, §3.7)

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 (or)

status="badValue"

badFields={field names} (StringArray, §3.7)

noSuchParameter status="unsupported"

badFields={field names} (StringArray, §3.7)

 Usage Notes 5.11.2

The set configuration operation sets the configuration of a service’s target biometric sensor.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

72

5.11.2.1 Input Payload Information

The set configuration operation is the only operation that takes input within the body of the HTTP request. The

desired configuration must be sent as a single Dictionary (§3.3) element named configuration. See §4.2 for

information regarding configurations. See Appendix A for a complete XML Schema for this specification. The

root element of the configuration data must conform to the following XML definition:

<xs:element name="configuration" type="wsbd:Dictionary" nillable="true"/>

EXAMPLE: The following represents a ‘raw’ request to configure a service at http://10.0.0.8:8000/Sensor

such that width=800, height=600, and frameRate=15. (In this example, each value element contains fully

qualified namespace information, although this is not necessary.)

POST http://10.0.0.8:8000/Service/configure/d745cd19‐facd‐4f91‐8774‐aac5ca9766a2 HTTP/1.1
Content‐Type: application/xml
Host: 10.0.0.8:8000
Content‐Length: 459
Expect: 100‐continue

<configuration xmlns:i="http://www.w3.org/2001/XMLSchema‐instance"
xmlns="urn:oid:2.16.840.1.101.3.9.3.1">
 <item>
 <key>width</key>
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">800</value>
 </item>
 <item>
 <key>height</key>
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">600</value>
 </item>
 <item>
 <key>frameRate</key>
 <value xmlns:d3p1="http://www.w3.org/2001/XMLSchema" i:type="d3p1:int">15</value>
 </item>
</configuration>

More information regarding the use of the xmlns attribute can be found in [XMLNS].

 Unique Knowledge 5.11.3

The set configuration can be used to provide knowledge about unique characteristics to a service. Through set

configuration, a client may provide implementation and/or service-specific parameter names and values that

are not defined in this specification (see Appendix A for further information on parameters).

 Return Values Detail 5.11.4

The set configuration operation must return a Result according to the following constraints.

5.11.4.1 Success

Status Value success

Condition The service was able to successfully set the full configuration

Required Elements status (Status, §3.10)

the literal “success”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

73

5.11.4.2 Failure

Status Value failure

Condition The service cannot set the desired configuration due to service (not target
biometric sensor) error.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric

sensor (see §5.11.4.5, §5.11.4.6).

5.11.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

5.11.4.4 Canceled

Status Value canceled

Condition The set configuration operation was interrupted by a cancellation request.

Required Elements status (Status, §3.10)

the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation.

5.11.4.5 Canceled with Sensor Failure

Status Value canceledWithSensorFailure

Condition The set configuration operation was interrupted by a cancellation request during
which the target biometric sensor experienced a failure

Required Elements status (Status, §3.10)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

74

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the

target biometric sensor. Clients receiving this result may need to perform initialization to restore full

functionality. See §5.16.2.2 for information about what may trigger a cancellation.

5.11.4.6 Sensor Failure

Status Value sensorFailure

Condition The configuration could not be set due to a failure within the target biometric
sensor.

Required Elements status (Status, §3.10)

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor,

not a failure within the web service (§5.11.4.2). Errors with the configuration itself should be reported via an

unsupported (§5.11.4.12), badValue (§5.11.4.13), or badValue status (§5.11.4.14).

5.11.4.7 Lock Not Held

Status Value lockNotHeld

Condition The configuration could not be queried because the requesting client does not
hold the lock.

Required Elements status (Status, §3.10)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock.

5.11.4.8 Lock Held by Another

Status Value lockHeldByAnother

Condition The configuration could not be set because the lock is held by another client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

5.11.4.9 Initialization Needed

Status Value initializationNeeded

Condition The configuration could not be set because the target biometric sensor has not
been initialized.

Required Elements status (Status, §3.10)

the literal “initializationNeeded”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

75

Services should be able to set the configuration without initialization; however, this is not strictly necessary.

Similarly, clients should assume that setting configuration will require initialization.

5.11.4.10 Sensor Busy

Status Value sensorBusy

Condition The configuration could not be set because the service is already performing a
different sensor operation for the requesting client.

Required Elements status (Status, §3.10)

the literal “sensorBusy”

Optional Elements None

5.11.4.11 Sensor Timeout

Status Value sensorTimeout

Condition The configuration could not be set because the target biometric sensor took too
long to complete the request.

Required Elements status (Status, §3.10)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See A.2 for

information on how a client might determine timeouts.)

5.11.4.12 Unsupported

Status Value unsupported

Condition The requested configuration contains one or more values that are syntactically
and semantically valid, but not supported by the service.

Required Elements status (Status, §3.10)

the literal “unsupported”

badFields (StringArray, §3.7)

an array that contains the field name(s) that corresponding to the
unsupported value(s)

Optional Elements None

Returning multiple fields allows a service to indicate that a particular combination of parameters is not

supported by a service. See §5.1.2 for additional information on how services must handle parameter

failures.

EXAMPLE: A WS-BD service utilizes a very basic off-the-shelf web camera with limited capabilities. This

camera has three parameters that are all dependent on each other: ImageHeight, ImageWidth, and

FrameRate. The respective allowed values for each parameter might look like: {240, 480, 600, 768}, {320,

640, 800, 1024}, and {5, 10, 15, 20, 30}. Configuring the sensor will return unsupported when the client

tries to set ImageHeight=768, ImageWidth=1024, and FrameRate=30; this camera might not support capturing

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

76

images of a higher resolution at a fast frame rate. Another example is configuring the sensor to use

ImageHeight=240 and ImageWidth=1024; as this is a very basic web camera, it might not support capturing

images at this resolution. In both cases, the values provided for each parameter are individually valid but the

overall validity is dependent on the combination of parameters

5.11.4.13 Bad Value

Status Value badValue

Condition Either:

(a) The provided session id is not a well-formed UUID, or,
(b) The requested configuration contains a parameter value that is either

syntactically (e.g., an inappropriate data type) or semantically (e.g., a
value outside of an acceptable range) invalid.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains either

(a) the single field name, “sessionId”, or
(b) the field name(s) that contain invalid value(s)

Optional Elements None

Notice that for the set configuration operation, an invalid URL parameter or one or more invalid input payload

parameters can trigger a badValue status.

See §5.1.2 for general information on how services must handle parameter failures.

5.11.4.14 No Such Parameter

Status Value noSuchParameter

Condition The requested configuration contains a parameter name that is not recognized by
the service.

Required Elements status (Status, §3.10)

the literal “noSuchParameter”

badFields (StringArray, §3.7)

an array that contains the field name(s) that are not recognized by the
service

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

77

5.12 Capture

Description Capture biometric data

URL Template /capture/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting the configuration

Input Payload None

Idempotent No

Sensor Operation Yes

 Result Summary 5.12.1

success status="success"

captureIds={identifiers of captured data} (UuidArray, §3.8)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"sessionId"} (StringArray, §3.7)

canceled status="canceled"

canceledWithSensorFailure status="canceledWithSensorFailure"

sensorFailure status="sensorFailure"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

initializationNeeded status="initializationNeeded"

configurationNeeded status="configurationNeeded"

sensorBusy status="sensorBusy"

sensorTimeout status="sensorTimeout"

badValue status="badValue"

badFields={"sessionId"} (StringArray, §3.7)

 Usage Notes 5.12.2

The capture operation triggers biometric acquisition. On success, the operation returns one or more

identifiers, or capture ids. Naturally, the capture operation is not idempotent. Each capture operation returns

unique identifiers—each execution returning references that are particular to that capture. Clients then can

retrieve the captured data itself by passing a capture id as a URL parameter to the download operation.

Multiple capture ids are supported to accommodate sensors that return collections of biometric data. For

example, a multi-sensor array might save an image per sensor. A mixed-modality sensor might assign a

different capture id for each modality.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

78

IMPORTANT NOTE: The capture operation may include some post-acquisition processing. Although post-

acquisition processing is directly tied to the capture operation, its effects are primarily on data transfer, and is

therefore discussed in detail within the download operation documentation (§5.13.2.2)

5.12.2.1 Providing Timing Information

Depending on the sensor, a capture operation may take anywhere from milliseconds to tens of seconds to

execute. (It is possible to have even longer running capture operations than this, but special accommodations

may need to be made on the server and client side to compensate for typical HTTP timeouts.) By design, there

is no explicit mechanism for a client to determine how long a capture operation will take. However, services

can provide “hints” through capture timeout information (A.2.4), and clients can automatically adjust their

own timeouts and behavior accordingly.

 Unique Knowledge 5.12.3

As specified, the capture operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

 Return Values Detail 5.12.4

The capture operation must return a Result according to the following constraints.

5.12.4.1 Success

Status Value success

Condition The service successfully performed a biometric acquisition

Required Elements status (Status, §3.10)

the literal “success”

captureIds (UuidArray, §3.8)

one more UUIDs that uniquely identify the data acquired by the operation

Optional Elements None

See the usage notes for capture (§5.12.2) and download (§5.13.2) for full detail.

5.12.4.2 Failure

Status Value failure

Condition The service cannot perform the capture due to a service (not target biometric
sensor) error.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must only use this status to report failures that occur within the web service, not the target biometric

sensor (see §5.12.4.5, §5.12.4.6). A service may fail at capture if there is not enough internal storage

available to accommodate the captured data (§A.3).

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

79

5.12.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not registered with the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.12.4.4 Canceled

Status Value canceled

Condition The capture operation was interrupted by a cancellation request.

Required Elements status (Status, §3.10)

the literal “canceled”

Optional Elements None

See §5.16.2.2 for information about what may trigger a cancellation.

5.12.4.5 Canceled with Sensor Failure

Status Value canceledWithSensorFailure

Condition The capture operation was interrupted by a cancellation request during which the
target biometric sensor experienced a failure

Required Elements status (Status, §3.10)

the literal “canceledWithSensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services must return a canceledWithSensorFailure result if a cancellation request caused a failure within the

target biometric sensor. Clients receiving this result may need to perform initialization to restore full

functionality. See §5.16.2.2 for information about what may trigger a cancellation.

5.12.4.6 Sensor Failure

Status Value sensorFailure

Condition The service could perform the capture due to a failure within the target biometric
sensor.

Required Elements status (Status, §3.10)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

80

the literal “sensorFailure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A sensorFailure status must only be used to report failures that occurred within the target biometric sensor,

not a failure within the web service (§5.12.4.2).

5.12.4.7 Lock Not Held

Status Value lockNotHeld

Condition The service could not perform a capture because the requesting client does not
hold the lock.

Required Elements status (Status, §3.10)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock.

5.12.4.8 Lock Held by Another

Status Value lockHeldByAnother

Condition The service could not perform a capture because the lock is held by another
client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

5.12.4.9 Initialization Needed

Status Value initializationNeeded

Condition The service could not perform a capture because the target biometric sensor has
not been initialized.

Required Elements status (Status, §3.10)

the literal “initializationNeeded”

Optional Elements None

Services should be able perform capture without explicit initialization. However, the specification recognizes

that this is not always possible, particularly for physically separated implementations. Regardless, for

robustness, clients should assume that setting configuration will require initialization.

5.12.4.10 Configuration Needed

Status Value configurationNeeded

Condition The capture could not be set because the target biometric sensor has not been
configured.

Required Elements status (Status, §3.10)

the literal “configurationNeeded”

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

81

Optional Elements None

A service should offer a default configuration to allow capture to be performed without an explicit

configuration. Regardless, for robustness, clients should assume that capture requires configuration.

5.12.4.11 Sensor Busy

Status Value sensorBusy

Condition The service could not perform a capture because the service is already performing
a different sensor operation for the requesting client.

Required Elements status (Status, §3.10)

the literal “sensorBusy”

Optional Elements None

5.12.4.12 Sensor Timeout

Status Value sensorTimeout

Condition The service could not perform a capture because the target biometric sensor took
too long to complete the request.

Required Elements status (Status, §3.10)

the literal “sensorTimeout”

Optional Elements None

A service did not receive a timely response from the target biometric sensor. Note that this condition is

distinct from the client’s originating HTTP request, which may have its own, independent timeout. (See §A.2

for information on how a client might determine timeouts.)

5.12.4.13 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

83

5.13 Download

Description Download the captured biometric data

URL Template /download/{captureId}

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to download

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.13.1

success status="success"

metadata=sensor configuration at the time of capture (Dictionary, §3.3)
sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"captureId"} (StringArray, §3.7)

preparingDownload status="preparingDownload"

 Usage Notes 5.13.2

The download operation allows a client to retrieve biometric data acquired during a particular capture.

5.13.2.1 Capture and Download as Separate Operations

WS-BD decouples the acquisition operation (capture) from the data transfer (download) operation. This has

two key benefits. First, it is a better fit for services that have post-acquisition processes. Second, it allows

multiple clients to download the captured biometric data by exploiting the concurrent nature of HTTP. By

making download a simple data transfer operation, service can handle multiple, concurrent downloads

without requiring locking.

5.13.2.2 Services with Post-Acquisition Processing

A service does not need to make the captured data available immediately after capture; a service may have

distinct acquisition and post-acquisition processes. The following are two examples of such services:

EXAMPLE: A service exposing a fingerprint scanner also performs post processing on a fingerprint

image—segmentation, quality assessment, and templatization.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

84

EXAMPLE: A service exposes a digital camera in which the captured image is not immediately

available after a photo is taken; the image may need to be downloaded from to the camera’s internal

storage or from the camera to the host computer (in a physically separated implementation). If the

digital camera was unavailable for an operation due to a data transfer, a client requesting a sensor

operation would receive a sensorBusy status.

The first method is to perform the post-processing within the capture operation itself. I.e., capture not only

blocks for the acquisition to be performed, but also blocks for the post-processing—returning when the post-

processing is complete. This type of capture is the easier of the two to both (a) implement on the client, and

(b) use by a client.

EXAMPLE: Figure 9 illustrates an example of a capture operation that includes post-processing. Once

the post-processing is complete, capture ids are returned to the client.

Figure 9. Including post-processing in the capture operation means downloads are
immediately available when capture completes. Unless specified, the status of all returned
operations is success.

In the second method, post-processing may be performed by the web service after the capture operation

returns. Capture ids are still returned to the client, but are in an intermediate state. This exposes a window of

time in which the capture is complete, but the biometric data is not yet ready for retrieval or download. Data-

related operations (download, get download info, and thrifty download) performed within this window return

a preparingDownload status to clients to indicate that the captured data is currently in an intermediate

state—captured, but not yet ready for retrieval.

EXAMPLE: Figure 10 illustrates an example of a capture operation with separate post-processing.

Returning to the example of the fingerprint scanner that transforms a raw biometric sample into a

template after acquisition, assume that the service performs templatization after capture returns.

During post-processing, requests for the captured data return preparingDownload, but the sensor

itself is available for another capture operation.

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition Within the capture operation, the service performs both the acquisition and any
post-processing.

Post-processing

2:capture

captureId={C1D10123...}

After post-processing, the service provides a capture id to the requesting client.

3:download

captureId={C1D10123...}

4:download

(biometric data)

The requesting client uses the capture ids to download the biometric data.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

85

Figure 10. Example of capture with separate post-acquisition processing that does involve
the target biometric sensor. Because the post-acquisition processing does not involve the
target biometric sensor, it is available for sensor operations. Unless specified, the status of
all returned operations is success.

Services with an independent post-processing step should perform the post-processing on an independent

unit of execution (e.g., a separate thread, or process). However, post-processing may include a sensor

operation, which would interfere with incoming sensor requests.

EXAMPLE: Figure 11 illustrates another variation on a capture operation with separate post-

processing. Return to the digital camera example, but assume that it is a physically separate

implementation and capture operation returns immediately after acquisition. The service also has a

post-acquisition process that downloads the image data from the camera to a computer. Like the

previous example, during post-processing, requests for the captured data return preparingDownload.

However, the sensor is not available for additional operations because the post-processing step

requires complete control over the camera to transfer the images to the host machine: preparing

them for download.

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition 1 Within the capture operation, the service performs both the acquisition and any
post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting client.

beginbegin

Post-processing capture {12345...}
In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to download.

4:download

status=preparingDownload

However, since the post-processing is not yet complete, the service returns
"preparingDownload" since the requested capture result is not yet ready.

5:capture

sessionId={A1234567...}

The service does not use the sensor during the post-processing step. The
client can successfully perform another capture.

Acquisition 2

6:capture

captureId={ABCDE...}

endend

Post-processing capture {12345...}

7:download

captureId={12345...}

8:download

(biometric data)

Now that the post-processing for captureId={12345...} is finished, the client can
download the biometric data.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

86

Figure 11. Example of capture with separate post-acquisition processing that does involve
the target biometric sensor. Because the post-acquisition processing does not involve the
target biometric sensor, it is available for sensor operations. Unless specified, the status of
all returned operations is success.

Unless there is an advantage to doing so, when post-acquisition processing includes a sensor operation,

implementers should avoid having a capture operation that returns directly after acquisition. In this case,

even when the capture operation finishes, clients cannot perform a sensor operation until the post-acquisition

processing is complete.

In general, implementers should try to combine both the acquisition and post-acquisition processing into one

capture operation—particularly if the delay due to post-acquisition processing is either operationally

acceptable or a relatively insignificant contributor to the combined time.

A download operation must return failure if the post-acquisition processing cannot be completed

successfully. Such failures cannot be reflected in the originating capture operation —that operation has

already returned successfully with capture ids. Services must eventually resolve all preparingDownload

statuses to success or failure. Through get service info, a service can provide information to a client on how

long to wait after capture until a preparingDownload is fully resolved.

Client Service

1:capture

sessionId={A1234567...}

The client sends a capture request to the service.

Acquisition 1 Within the capture operation, the service performs both the acquisition and any
post-processing.

2:capture

captureId={12345...}

After acquisition, the service provides a capture id to the requesting client.

beginbegin

Post-processing capture {12345...}
In the background, the service starts post-processing.

3:download

captureId={12345...}

Once a capture id is available, the client can make a request to download.

4:download

status=preparingDownload

However, since the post-processing is not yet complete, the service returns
"preparingDownload" since the requested capture result is not yet ready.

5:capture

sessionId={A1234567...}

The service uses the sensor during the post-processing step. No client can
successfully perform another sensor operation.

Acquisition 2

6:capture

status=sensorBusy

endend

Post-processing capture {12345...}

7:download

captureId={12345...}

8:download

(biometric data)

Now that the post-processing for captureId={12345...} is finished, the client can
download the biometric data.

9:capture

sessionId={A1234567...}

Futhermore, clients can again perform successful capture.

Acquisition 3

10:capture

captureId={ABCDE...}

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

87

5.13.2.3 Client Notification

A client that receives a preparingDownload must poll the service until the requested data becomes available.

However, through get service info, a service can provide “hints” to a client on how long to wait after capture

until data can be downloaded (§A.2.5)

 Unique Knowledge 5.13.3

The download operation can be used to provide metadata, which may be unique to the service, through the

metadata element. See §4 for information regarding metadata.

 Return Values Detail 5.13.4

The download operation must return a Result according to the following constraints.

5.13.4.1 Success

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.10)

the literal “success”

metadata (Dictionary, §3.3)

sensor metadata as it was at the time of capture

sensorData (xs:base64Binary, [XSDPart2])

the biometric data corresponding to the requested capture id, base-64
encoded

Optional Elements None

A successful download must populate the Result with all of the following information:

1. The status element must be populated with the Status literal “success”.

2. The metadata element must be populated with metadata of the biometric data and the configuration

held by the target biometric sensor at the time of capture.

3. The sensorData element must contain the biometric data, base-64 encoded (xs:base64Binary),

corresponding to the requested capture id.

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for more detail regarding the

conditions under which a service is permitted to accept or deny download requests.

5.13.4.2 Failure

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

88

A service might not be able to provide the requested data due to failure in post-acquisition processing, a

corrupted data store or other service or storage related failure.

5.13.4.3 Invalid Id

Status Value invalidId

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become unrecognized by

the service automatically if the service automatically clears storage space to accommodate new captures

(§A.3).

See §5.1.2 for general information on how services must handle parameter failures.

5.13.4.4 Bad Value

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

5.13.4.5 Preparing Download

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.10)

the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for full detail.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

89

5.14 Get Download Info

Description Get only the metadata associated with a particular capture

URL Template /download/{captureId}/info

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to query

Input Payload Not applicable

Idempotent Yes

Sensor Operation No

 Result Summary 5.14.1

success status="success"

metadata=sensor configuration at the time of capture

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields={"captureId"} (StringArray, §3.7)

preparingDownload status="preparingDownload"

 Usage Notes 5.14.2

Given the potential large size of some biometric data the get download info operation provides clients with a

way to get information about the biometric data without needing to transfer the biometric data itself. It is

logically equivalent to the download operation, but without any sensor data. Therefore, unless detailed

otherwise, the usage notes for download (§5.14.2) also apply to get download info.

 Unique Knowledge 5.14.3

The get download info operation can be used to provide metadata, which may be unique to the service,

through the metadata element. See §4 for information regarding metadata.

 Return Values Detail 5.14.4

The get download info operation must return a Result according to the following constraints.

5.14.4.1 Success

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.10)

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

90

the literal “success”

metadata (Dictionary, §3.3)

the sensor’s configuration as it was set at the time of capture

Optional Elements None

A successful get download info operation returns all of the same information as a successful download

operation (§5.13.4.1), but without the sensor data.

5.14.4.2 Failure

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A service might not be able to provide the requested data due to failure in post-acquisition processing, a

corrupted data store or other service or storage related failure.

5.14.4.3 Invalid Id

Status Value invalidId

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it was not returned by a capture operation. A capture id may become unrecognized by

the service automatically if the service automatically clears storage space to accommodate new captures

(§A.3).

See §5.1.2 for general information on how services must handle parameter failures.

5.14.4.4 Bad Value

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

91

See §5.1.2 for general information on how services must handle parameter failures.

5.14.4.5 Preparing Download

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.10)

the literal “preparingDownload”

Optional Elements None

See the usage notes for both capture (§5.12.2) and download (§5.13.2) for full detail.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

93

5.15 Thrifty Download

Description Download a compact representation of the captured biometric data suitable for
preview

URL Template /download/{captureId}/{maxSize}

HTTP Method GET

URL Parameters {captureId} (UUID, §3.2)

Identity of the captured data to download

{maxSize} (xs:string, [XSDPart2])

Content-type dependent indicator of maximum permitted download size

Input Payload None

Idempotent Yes

Sensor Operation No

 Result Summary 5.15.1

success status="success"

metadata=minimal metadata describing the captured data (Dictionary, §3.3,
§4.3.1)

sensorData=biometric data (xs:base64Binary)

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

badFields={"captureId"} (StringArray, §3.7)

badValue status="badValue"

badFields=either "captureId", "maxSize", or both (StringArray, §3.7)

unsupported status="unsupported"

preparingDownload status="preparingDownload"

 Usage Notes 5.15.2

The thrifty download operation allows a client to retrieve a compact representation of the biometric data

acquired during a particular capture. It is logically equivalent to the download operation, but provides a

compact version of the sensor data. Therefore, unless detailed otherwise, the usage notes for download

(§5.14.2) also apply to get download info.

The suitability of the thrifty download data as a biometric is implementation-dependent. For some

applications, the compact representation may be suitable for use within a biometric algorithm; for others, it

may only serve the purpose of preview.

For images, the maxSize parameter describes the maximum image width or height (in pixels) that the service

may return; neither dimension shall exceed maxSize. It is expected that servers will dynamically scale the

captured data to fulfill a client request. This is not strictly necessary, however, as long as the maximum size

requirements are met.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

94

For non-images, the default behavior is to return unsupported. It is possible to use URL parameter maxSize as

general purpose parameter with implementation-dependent semantics. (See the next section for details.)

 Unique Knowledge 5.15.3

The thrifty download operation can be used to provide knowledge about unique characteristics to a service.

Through thrifty download, a service may (a) redefine the semantics of maxSize or (b) provide a data in a

format that does not conform to the explicit types defined in this specification (see Appendix A for content

types).

 Return Values Detail 5.15.4

The thrifty download operation must return a Result according to the following constraints.

5.15.4.1 Success

Status Value success

Condition The service can provide the requested data

Required Elements status (Status, §3.10)

the literal “success”

metadata (Dictionary, §3.3)

minimal representation of sensor metadata as it was at the time of
capture. See §4.3.1 for information regarding minimal metadata.

sensorData (xs:base64Binary, [XSDPart2])

the biometric data corresponding to the requested capture id, base-64
encoded, scaled appropriately to the maxSize parameter.

Optional Elements None

For increased efficiency, a successful thrifty download operation only returns the sensor data, and a subset of

associated metadata. The metadata returned should be information that is absolutely essential to open or

decode the returned sensor data.

5.15.4.2 Failure

Status Value failure

Condition The service cannot provide the requested data.

Required Elements status (Status, §3.10)

the literal “failure”

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

A service might not be able to provide the requested data due to a corrupted data store or other service or

storage related failure.

5.15.4.3 Invalid Id

Status Value invalidId

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

95

Condition The provided capture id is not recognized by the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “captureId”

Optional Elements None

A capture id is invalid if it does not correspond to a capture operation. A capture id may become

unrecognized by the service automatically if the service automatically clears storage space to accommodate

new captures (§A.3).

See §5.1.2 for general information on how services must handle parameter failures.

5.15.4.4 Bad Value

Status Value badValue

Condition The provided capture id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains one or both of the following fields:

‐ “captureId” if the provided session id is not well-formed
‐ “maxSize” if the provided maxSize parameter is not well-formed

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

5.15.4.5 Unsupported

Status Value unsupported

Condition The service does not support thrifty download,

Required Elements status (Status, §3.10)

the literal “unsupported”

Optional Elements None

Services that capture biometrics that are not image-based should return unsupported.

5.15.4.6 Preparing Download

Status Value preparingDownload

Condition The requested data cannot be provided because the service is currently
performing a post-acquisition process—i.e., preparing it for download

Required Elements status (Status, §3.10)

the literal “preparingDownload”

Optional Elements None

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

96

Like download, the availability of thrifty download data may also be affected by the sequencing of post-

acquisition processing. See §5.13.2.2 for detail.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

97

5.16 Cancel

Description Cancel the current sensor operation

URL Template /cancel/{sessionId}

HTTP Method POST

URL Parameters {sessionId} (UUID, §3.2)

Identity of the session requesting cancellation

Input Payload None

Idempotent Yes

Sensor Operation Yes

 Result Summary 5.16.1

success status="success"

failure status="failure"

message*=informative message describing failure

invalidId status="invalidId"

lockNotHeld status="lockNotHeld"

lockHeldByAnother status="lockHeldByAnother"

badValue status="badValue"
badFields={"sessionId"}

 Usage Notes 5.16.2

The cancel operation stops any currently running sensor operation; it has no effect on non-sensor operations.

If cancellation of an active sensor operation is successful, cancel operation receives a success result, while

the canceled operation receives a canceled (or canceledWithSensorFailure) result. As long as the operation

is canceled, the cancel operation itself receives a success result, regardless if cancellation caused a sensor

failure. In other words, if cancellation caused a fault within the target biometric sensor, as long as the sensor

operation has stopped running, the cancel operation is considered to be successful.

Figure 12. Example sequence of events for a client initially requesting a capture followed by a cancellation request.

Client Service

1:capture

sessionId={A1234567...}

The client initates a capture operation with the server.

2:cancel

sessionId={A1234567...}

The client, before the capture is complete, initiates a cancel operation.

3:capture

status=canceled

The server returns a 'canceled' status for the capture operation because the
client requested a cancellation.

4:cancel

status=success

The server returns a 'success' status for the cancel operation because the
previous capture operation was cancelled successfully.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

98

All services must provide cancellation for all sensor operations.

5.16.2.1 Canceling Non-Sensor Operations

Clients are responsible for canceling all non-sensor operations via client-side mechanisms only. Cancellation

of sensor operations requires a separate service operation, since a service may need to “manually” interrupt a

busy sensor. A service that had its client terminate a non-sensor operation would have no way to easily

determine that a cancellation was requested.

Figure 13. Cancellations of non-sensor operations do not require a cancel operation to be
requested to the service. An example of this is where a client initiates then cancels a
download operation.

5.16.2.2 Cancellation Triggers

Typically, the client that originates the sensor operation to be cancelled also initiates the cancellation request.

Because WSBD operations are performed synchronously, cancellations are typically initiated on a separate

unit of execution such as an independent thread or process.

Notice that the only requirement to perform cancellation is that the requesting client holds the service lock. It

is not a requirement that the client that originates the sensor operation to be canceled also initiates the

cancellation request. Therefore, it is possible that a client may cancel the sensor operation initiated by

another client. This occurs if a peer client (a) manages to steal the service lock before the sensor operation is

completed, or (b) is provided with the originating client’s session id.

A service might also self-initiate cancellation. In normal operation, a service that does not receive a timely

response from a target biometric sensor would return sensorTimeout. However, if the service’s internal

timeout mechanism fails, a service may initiate a cancel operation itself. Implementers should use this as a

“last resort” compensating action.

In summary, clients should be designed to not expect to be able to match a cancelation notification to any

specific request or operation.

 Unique Knowledge 5.16.3

As specified, the cancel operation cannot be used to provide or obtain knowledge about unique

characteristics of a client or service.

Client Service

1:download

captureId={10FEDCBA...}

A client initiates a download of a particular capture.

2:cancel The user of the client decides to abort the download. Since a cancellation of a
non-sensor operation has no effect on the service, the client bypasses sending
the cancel operation to the service and handles the request internally.

3:HttpSocket.close() The client simply closes the connection to the service, terminating the data
transfer.

4:download The server gets a signal that the connection is lost and stops transmitting the
requested data.

5:cancel

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

99

 Return Values Detail 5.16.4

The cancel operation must return a Result according to the following constraints.

5.16.4.1 Success

Status Value success

Condition The service successfully canceled the sensor operation

Required Elements status

must be populated with the Status literal "success"

Optional Elements None

See the usage notes for capture (§5.12.2) and download (§5.13.2) for full detail.

5.16.4.2 Failure

Status Value failure

Condition The service could not cancel the sensor operation

Required Elements status (Status, §3.10)
must be populated with the Status literal "failure"

Optional Elements message (xs:string, [XSDPart2])

an informative description of the nature of the failure

Services should try to return failure in a timely fashion—there is little advantage to a client if it receives the

cancellation failure after the sensor operation to be canceled completes.

5.16.4.3 Invalid Id

Status Value invalidId

Condition The provided session id is not recognized by the service.

Required Elements status (Status, §3.10)

the literal “invalidId”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

A session id is invalid if it does not correspond to an active registration. A session id may become

unregistered from a service through explicit unregistration or triggered automatically by the service due to

inactivity (§5.4.4.1).

See §5.1.2 for general information on how services must handle parameter failures.

5.16.4.4 Lock Not Held

Status Value lockNotHeld

Condition The service could cancel the operation because the requesting client does not
hold the lock.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

100

Required Elements status (Status, §3.10)

the literal “lockNotHeld”

Optional Elements None

Sensor operations require that the requesting client holds the service lock.

5.16.4.5 Lock Held by Another

Status Value lockHeldByAnother

Condition The service could not cancel the operation because the lock is held by another
client.

Required Elements status (Status, §3.10)

the literal “lockHeldByAnother”

Optional Elements None

5.16.4.6 Bad Value

Status Value badValue

Condition The provided session id is not a well-formed UUID.

Required Elements status (Status, §3.10)

the literal “badValue”

badFields (StringArray, §3.7)

an array that contains the single field name, “sessionId”

Optional Elements None

See §5.1.2 for general information on how services must handle parameter failures.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

101

Appendix A Parameter Details

This appendix details the individual parameters available from a get service info operation. For each

parameter, the following information is listed:

 The formal parameter name

 The expected data type of the parameter’s value

 If a the service is required to implement the parameter

A.1 Connections

The following parameters describe how the service handles session lifetimes and registrations.

A.1.1 Last Updated

Formal Name lastUpdated

Data Type xs:dateTime [XSDPart2]

Required Yes

This parameter provides a timestamp of when the service last updated the common info parameters (this

parameter not withstanding). The timestamp must include time zone information. Implementers should

expect clients to use this timestamp to detect if any cached values of the (other) common info parameters

may have changed.

A.1.2 Inactivity Timeout

Formal Name inactivityTimeout

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes how long, in seconds, a session can be inactive before it may be automatically

closed by the service. A value of ‘0’ indicates that the service never drops sessions due to inactivity.

Inactivity time is measured per session. Services must measure it as the time elapsed between (a) the time at

which a client initiated the session’s most recent operation and (b) the current time. Services must only use

the session id to determine a session’s inactivity time. For example, a service does not maintain different

inactivity timeouts for requests that use the same session id, but originate from two different IP addresses.

Services may wait longer than the inactivity timeout to drop a session, but must not drop inactive sessions

any sooner than the inactivityTimeout parameter indicates.

A.1.3 Maximum Concurrent Sessions

Formal Name maximumConcurrentSessions

Data Type xs:positiveInteger [XSDPart2]

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

102

Required Yes

This parameter describes the maximum number of concurrent sessions a service can maintain. Upon startup,

a service must have zero concurrent sessions. When a client registers successfully (§5.3), the service increases

its count of concurrent sessions by one. After successful unregistration (§5.4), the service decreases its count

of concurrent sessions by one .

A.1.4 Least Recently Used (LRU) Sessions Automatically Dropped

Formal Name autoDropLRUSessions

Data Type xs:boolean [XSDPart2]

Required Yes

This parameter describes whether or not the service automatically unregisters the least-recently-used session

when the service has reached its maximum number of concurrent sessions. If true, then upon receiving a

registration request, the service may drop the least-recently used session if the maximum number of

concurrent sessions has already been reached. If false, then any registration request that would cause the

service to exceed its maximum number of concurrent sessions results in failure. The service shall not drop a

session that currently holds the lock unless the session’s inactivity is outside of the inactivity timeout (§A.1.2)

threshold.

A.2 Timeouts

Clients should not block indefinitely on any operation. However, since different services may differ

significantly in the time they require to complete an operation, clients require a means to determine

appropriate timeouts. The timeouts in this subsection describe how long a service waits until the service

either returns sensorTimeout or initiates a service-side cancellation (§5.16.2.1). Services may wait longer than

the times reported here, but, (under normal operations) must not report a sensorTimeout or initiate a

cancellation before the reported time elapses. In other words, a client should be able to use these timeouts to

help determine a reasonable upper bound on the time required for sensor operations.

Note that these timeouts do not include any round-trip and network delay—clients should add an additional

window to accommodate delays unique to that particular client-server relationship.

A.2.1 Initialization Timeout

Formal Name initializationTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to perform

initialization before it returns sensorTimeout (§5.9.4.10) or initiates a service-side cancellation (§5.16.2.1).

A.2.2 Get Configuration Timeout

Formal Name getConfigurationTimeout

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

103

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to retrieve

its configuration before it returns sensorTimeout (§5.10.4.12) or initiates a service-side cancellation

(§5.16.2.1).

A.2.3 Set Configuration Timeout

Formal Name setConfigurationTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to set its

configuration before it returns sensorTimeout (§5.11.4.11) or initiates a service-side cancellation (§5.16.2.1).

A.2.4 Capture Timeout

Formal Name captureTimeout

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how long, in milliseconds, a service will wait for a target biometric sensor to perform

biometric acquisition before it returns sensorTimeout (§5.11.4.11) or initiates a service-side cancellation

(§5.16.2.1).

A.2.5 Post-Acquisition Processing Time

Formal Name postAcquisitionProcessingTime

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes an upper bound on how long, in milliseconds, a service takes to perform post-

acquisition processing. A client should not expect to be able to download captured data before this time has

elapsed. Conversely, this time also describes how long after a capture a server is permitted to return

preparingDownload for the provided capture ids. A value of zero (‘0’) indicates that the service includes any

post-acquisition processing within the capture operation or that no post-acquisition processing is performed.

A.2.6 Lock Stealing Prevention Period

Formal Name lockStealingPreventionPeriod

Data Type xs:nonNegativeInteger [XSDPart2]

Required Yes

This parameter describes the length, in milliseconds, of the lock stealing prevention period (§5.6.2.2).

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

104

A.3 Storage

The following parameters describe how the service stores captured biometric data.

A.3.1 Maximum Storage Capacity

Formal Name maximumStorageCapacity

Data Type xs:positiveInteger [XSDPart2]

Required Yes

This parameter describes how much data, in bytes, the service is capable of storing.

A.3.2 Least-Recently Used Capture Data Automatically Dropped

Formal Name lruCaptureDataAutomaticallyDropped

Data Type xs:boolean [XSDPart2]

Required Yes

This parameter describes whether or not the service can automatically deletes the least-recently-used capture

to stay within its maximum storage capacity. If true, the service may automatically delete the least-recently

used biometric data to accommodate for new data. If false, then any operation that would require the service

to exceed its storage capacity would fail.

A.4 Sensor

The following parameters describe information about the sensor and its supporting features

A.4.1 Modality

Formal Name modality

Data Type xs:string [XSDPart2]

Required Yes

This parameter describes which modality or modalities are supported by the sensor.

The following table enumerates the list of modalities, as defined in [CBEFF2010], which provides the valid

values for this field for currently identified modalities. Implementations are not limited to the following

values, but shall use them if such modality is exposed. For example, if an implementation is exposing

fingerprint capture capability, “Finger” shall be used. If an implementation is exposing an unlisted modality, it

may use another value.

Modality Value Description

Scent Information about the scent left by a subject

DNA Information about a subject’s DNA

Ear A subject’s ear image

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

105

Face An image of the subject’s face, either in two or three dimensions

Finger An image of one of more of the subject’s fingerprints

Foot An image of one or both of the subject’s feet.

Vein Information about a subject’s vein pattern

HandGeometry The geometry of an subject’s hand

Iris An image of one of both of the subject’s irises

Retina An image of one or both of the subject’s retinas

Voice Information about a subject’s voice

Gait Information about a subject’s gait or ambulatory movement

Keystroke Information about a subject’s typing patterns

LipMovement Information about a subject’s lip movements

SignatureSign Information about a subject’s signature or handwriting

A.4.2 Submodality

Formal Name submodality

Data Type xs:string [XSDPart2]

Required Yes

This parameter describes which submodalities are supported by the sensor.

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

107

Appendix B Content Type Data

This appendix contains a catalog of content types for use in conformance profiles and parameters. When

possible, the idenfied data formats shall be used.

B.1 General Type

application/xml Extensible Markup Language (XML) [XML]

text/xml Extensible Markup Language (XML) [XML]

text/plain Plaintext [RFC2046]

B.2 Image Formats

Refer to [CTypeImg] for more information regarding a registered image type.

image/x-ms-bmp Windows OS/2 Bitmap Graphics [BMP]

image/jpeg Joint Photographics Experts Group [JPEG]

image/png Portable Network Graphics [PNG]

image/tiff Tagged Image File Format [TIFF]

image/x-wsq Wavelet Scalar Quantization (WSQ) [WSQ]

B.3 Video Formats

Refer to [CTypeVideo] for more information regarding a registered video type.

video/h264 H.264 Video Compression [H264]

video/mpeg Moving Pictures Experts Group [MPEG]

B.4 General Biometric Formats

x-biometric/x-ansi-nist-itl-2000 Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial, &
Scar Mark & Tattoo (SMT) Information [AN2K]

x-biometric/x-ansi-nist-itl-2007 Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial, &
Other Biometric Information – Part 1 [AN2K7]

x-biometric/x-ansi-nist-itl-2008 Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial, &
Other Biometric Information – Part 2: XML Version [AN2K8]

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

108

x-biometric/x-ansi-nist-itl-2011 Information Technology: American National Standard for Information
Systems—Data Format for the Interchange of Fingerprint, Facial &
Other Biometric Information [AN2K11]

x-biometric/x-cbeff-2010 Common Biometric Exchange Formats Framework with Support for
Additional Elements [CBEFF2010]

B.5 ISO / Modality-Specific Formats

x-biometric/x-iso-19794-2-05 Finger Minutiae Data [BDIF205]

x-biometric/x-iso-19794-3-06 Finger Pattern Spectral Data [BDIF306]

x-biometric/x-iso-19794-4-05 Finger Image Data [BDIF405]

x-biometric/x-iso-19794-5-05 Face Image Data [BDIF505]

x-biometric/x-iso-19794-6-05 Iris Image Data [BDIF605]

x-biometric/x-iso-19794-7-07 Signature/Sign Time Series Data [BDIF707]

x-biometric/x-iso-19794-8-06 Finger Pattern Skeletal Data [BDIF806]

x-biometric/x-iso-19794-9-07 Vascular Image Data [BDIF907]

x-biometric/x-iso-19794-10-07 Hand Geometry Silhouette Data [BDIF1007]

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

109

Appendix C XML Schema

<?xml version="1.0"?>
<xs:schema xmlns:wsbd="urn:oid:2.16.840.1.101.3.9.3.1"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:oid:2.16.840.1.101.3.9.3.1"
 elementFormDefault="qualified">

 <xs:element name="configuration" type="wsbd:Dictionary" nillable="true"/>
 <xs:element name="result" type="wsbd:Result" nillable="true"/>

 <xs:complexType name="Result">
 <xs:sequence>
 <xs:element name="status" type="wsbd:Status"/>
 <xs:element name="badFields" type="wsbd:StringArray" nillable="true" minOccurs="0"/>
 <xs:element name="captureIds" type="wsbd:UuidArray" nillable="true" minOccurs="0"/>
 <xs:element name="metadata" type="wsbd:Dictionary" nillable="true" minOccurs="0"/>
 <xs:element name="message" type="xs:string" nillable="true" minOccurs="0"/>
 <xs:element name="sensorData" type="xs:base64Binary" nillable="true" minOccurs="0"/>
 <xs:element name="sessionId" type="wsbd:UUID" nillable="true" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="UUID">
 <xs:restriction base="xs:string">
 <xs:pattern value="[\da‐fA‐F]{8}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{4}‐[\da‐fA‐F]{12}"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="Status">
 <xs:restriction base="xs:string">
 <xs:enumeration value="success"/>
 <xs:enumeration value="failure"/>
 <xs:enumeration value="invalidId"/>
 <xs:enumeration value="canceled"/>
 <xs:enumeration value="canceledWithSensorFailure"/>
 <xs:enumeration value="sensorFailure"/>
 <xs:enumeration value="lockNotHeld"/>
 <xs:enumeration value="lockHeldByAnother"/>
 <xs:enumeration value="initializationNeeded"/>
 <xs:enumeration value="configurationNeeded"/>
 <xs:enumeration value="sensorBusy"/>
 <xs:enumeration value="sensorTimeout"/>
 <xs:enumeration value="unsupported"/>
 <xs:enumeration value="badValue"/>
 <xs:enumeration value="noSuchParamter"/>
 <xs:enumeration value="preparingDownload"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Array">
 <xs:sequence>
 <xs:element name="element" type="xs:anyType" nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="StringArray">
 <xs:sequence>
 <xs:element name="element" type="xs:string" nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="UuidArray">
 <xs:sequence>
 <xs:element name="element" type="wsbd:UUID" nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Dictionary">
 <xs:sequence>
 <xs:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

110

 <xs:sequence>
 <xs:element name="key" type="xs:string" nillable="true"/>

 <xs:element name="value" type="xs:anyType" nillable="true"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Parameter">
 <xs:sequence>
 <xs:element name="name" type="xs:string" nillable="true"/>
 <xs:element name="type" type="xs:QName" nillable="true"/>
 <xs:element name="readOnly" type="xs:boolean" minOccurs="0"/>
 <xs:element name="supportsMultiple" type="xs:boolean" minOccurs="0"/>
 <xs:element name="defaultValue" type="xs:anyType" nillable="true"/>
 <xs:element name="allowedValues" nillable="true" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="allowedValue" type="xs:anyType" nillable="true" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Range">
 <xs:sequence>
 <xs:element name="minimum" type="xs:anyType" nillable="true" minOccurs="0"/>
 <xs:element name="maximum" type="xs:anyType" nillable="true" minOccurs="0"/>
 <xs:element name="minimumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/>
 <xs:element name="maximumIsExclusive" type="xs:boolean" nillable="true" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Resolution">
 <xs:sequence>
 <xs:element name="width" type="xs:decimal"/>
 <xs:element name="height" type="xs:decimal"/>
 <xs:element name="unit" type="xs:string" nillable="true" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

111

Appendix D Acknowledgments

The authors thank the following individuals and organizations for their participation in the creation of this

specification.

Biometric Standards Working Group, Department of Defense

Michael Albright, Vision and Security Technology Laboratory, University of Colorado at Colorado Springs

Senaka Balasuriya, SolidBase Consulting

Terrance Boult, Vision and Security Technology Laboratory, University of Colorado at Colorado Springs

Leslie Collica, Information Technology Laboratory, National Institute of Standards and Technology

Tod Companion, Science & Technology Directorate, Department of Homeland Security

Bert Coursey, Science & Technology Directorate, Department of Homeland Security

Nick Crawford, Government Printing Office

Donna Dodson, Information Technology Laboratory, National Institute of Standards and Technology

Valerie Evanoff, Biometric Center of Excellence, Federal Bureau of Investigation

Rhonda Farrell, Booz Allen Hamilton

Michael Garris, Information Technology Laboratory, National Institute of Standards and Technology

Phillip Griffin, Booz Allen Hamilton

Dwayne Hill, Biometric Standards Working Group, Department of Defense

Rick Lazarick, Computer Sciences Corporation

John Manzo, Biometric Center of Excellence, Federal Bureau of Investigation

Charles Romine, Information Technology Laboratory, National Institute of Standards and Technology

James St. Pierre, Information Technology Laboratory, National Institute of Standards and Technology

Scott Swann, Federal Bureau of Investigation

Ashit Talukder, Information Technology Laboratory, National Institute of Standards and Technology

Cathy Tilton, Daon Inc.

Ryan Triplett, Biometric Standards Working Group, Department of Defense

Bradford Wing, Information Technology Laboratory, National Institute of Standards and Technology

NIST Special Publication 500-288 v1 Specification for WS-Biometric Devices (WS-BD) v1

113

Appendix E Revision History

Release Changeset

Draft 0

January 2011

Initial release. Operations and data types are well defined, but detailed
documentation is not yet complete. Appendixes (metadata, conformance, and security
profiles) are not yet written.

Draft 1

March 2011

Second release. Made significant improvements based on public comment. Removed
‘Detailed Info’ and augmented ‘Get Content Type’ into ‘Get Download Info.’ Detailed
operation documentation is complete, but appendixes still need work.

Draft 2

August 2011

Third release. Made significant improvements based on comments provided by
Department of Defense. Added section related to ‘Metadata’. Modified WsbdResult to
combine common fields into a single metadata field. Added WsbdRange and
WsbdParameter types to the data dictionary.

Draft 3

October 2011

Fourth release. Removed Wsbd prefix from data elements and updated affected
examples. Modified Range type to include value, now RangeOrValue.

Draft 4

December 2011
Fifth release. Candidate for first official release. Design philosophy, data dictionary,
web service operations, and metadata are updated.

Version 1
March 2012

First official version. Updated formatting, fixed typos, and added some explaintory
sections (such as the sequence diagram anatomy).

Document generated: 27 March 2012 14:41

