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We analyze theoretical distributions of MIMO channel capacity for different antennas in 2D and 3D statistically isotropic
environments, which may be generated by multiprobe anechoic and reverberation chambers, respectively. We observe that the two
environments yield comparable capacity distributions provided that (1) the 2D statistically isotropic environment’s capacity data
are taken at many different antenna orientations and (2) the radiation elements have a low directivity. When these conditions are
met, we find that the relative error between the 2D statistically isotropic environment’s orientation-combined capacity distribution
and the 3D statistically isotropic environment’s capacity distribution is typically less than 10% for signal-to-noise ratios greater
than 5 dB.

1. Introduction

Multiprobe anechoic chambers and reverberation chambers
are capable of generating 2D and 3D statistically isotropic
environments, respectively, suitable for over-the-air (OTA)
testing of multiple-input multiple-output (MIMO) wireless
terminals [1–3]. In CTIA, 3GPP’s RAN4, and COST 2100
both multiprobe anechoic and reverberation chambers are
being considered for adoption into certification test proce-
dures for MIMO handsets [1, 4–6]. It is possible that test
procedures based on both chambers may be adopted, but it is
unclear to what extent their test results are comparable. Here,
we compare the statistically isotropic environments gener-
ated by multiprobe anechoic and reverberation chambers
in terms of their capacity distributions for different MIMO
antennas-under-test (AUTs).

Capacity determines the maximum obtainable through-
put for a wireless device. The relationship between capacity
and throughput implies that 2D and 3D statistically isotropic
environments will only provide comparable device perfor-
mance test results if their capacity statistics are comparable
for any given AUT. Prior work has used channel simulations
to compare the mean capacity of 2D and 3D statistically
isotropic environments [2]. For a single orientation of the

AUT, large differences in the channel’s mean capacity
were observed for the 2D and 3D statistically isotropic
environments. In contrast, by changing the orientation
(and position) of the AUT between simulation trials, the
mean capacities of the antennas converged to the same value
in both environments.

We expand on the results presented in [2] by comparing
the two environments’ theoretical distributions of MIMO
channel capacity for several AUTs. Our procedure extends
the analysis presented in [7] to the problem of comparing
capacity distributions for MIMO OTA test environments. We
observe that for a single orientation of the AUT, the capacity
distributions obtained from the two environments are un-
likely to be comparable due to the orientation dependence of
the 2D isotropic environment’s capacity statistics. This is due
to the well-known environment dependence of each AUT’s
complex correlation coefficient and mean effective gains (cf.,
[7–9]). We also observe that differences in the 2D and 3D
environments’ capacity distributions may be reduced sub-
stantially by comparing the 3D environment’s orientation-
independent capacity distribution to the 2D environment’s
orientation-combined capacity distribution, which is the dis-
tribution formed when capacity realizations are combined
from different orientations of the AUT. However, we find
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that the difference between these two capacity distributions
is small (e.g., within 10%) only if the AUTs use low-
directivity elements; for high-directivity elements, the dif-
ference between the capacity distributions may exceed 20%.
This suggests that discrepancies between device performance
tests in statistically isotropic environments generated by
multiprobe anechoic and reverberation chambers will be
small provided that (1) the DUT’s performance in the
multiprobe anechoic chamber is evaluated at many different
orientations, and (2) the DUT’s dimensions are on the order
of a wavelength or less such that the directivities of the
antenna elements are low.

We begin in Section 2 by reviewing the covariance
between the signals received by the elements of an AUT when
it is placed in a random electromagnetic field. In Section 3,
we define the power-angle spectra for 2D and 3D statistically
isotropic environments, as well as the set of antenna con-
figurations used in our numerical study of MIMO channel
capacity. Capacity distributions for the AUTs in each test
environment are presented and analyzed in Section 4.
Section 5 explores why certain antenna configurations are
more sensitive to orientation in 2D statistically isotropic
environments than others. Section 6 summarizes the paper.

2. Antennas in Random Electromagnetic Fields

Let us consider a two-element antenna in a time-harmonic
electromagnetic field. Assuming the antenna is in the far-
field, whereby the electromagnetic field is composed entirely
of homogeneous plane waves, we may express the signal xi
received by the ith antenna element as [8]

xi =
∫
dΩAi(Ω) · F(Ω), (1)

where i ∈ {1, 2}, · denotes the vector dot product, Ai(Ω) is
the ith element’s complex vector radiation pattern defined as

Ai(Ω) = Aih(Ω)ĥ + Aiv(Ω)v̂, (2)

and F(Ω) is the field’s complex vector plane-wave spectrum
defined as

F(Ω) = Fh(Ω)ĥ + Fv(Ω)v̂. (3)

In (2) and (3), ĥ and v̂ are the two orthogonal unit
vectors defining the horizontal and vertical polarizations,
respectively, and Ω denotes a point on the unit sphere with∫
dΩ corresponding to an integration over the unit sphere.

To constrain the scope of our capacity analysis, we con-
sider power-normalized radiation patterns for which

∫
dΩ‖Ai(Ω)‖2 = 4π. (4)

That is, ‖Ai(Ω)‖2 is equal to the directivity of the ith antenna
element, where we neglect impedance mismatches and
ohmic loss [8]. We recognize that mismatches and loss do
affect the capacity of the MIMO wireless channel by way of a
reduction in the signal-to-noise ratio (SNR) and, potentially,

a gain imbalance at the receiver [10]. However, because
impedance mismatches and ohmic losses are solely antenna-
related quantities that are independent of the environment’s
power-angle spectrum, their effect on capacity does not
provide insight into the differences between MIMO device
tests in 2D and 3D statistically isotropic environments.

To describe a random electromagnetic field, we may
specify the components, Fh(Ω) and Fv(Ω), of the plane-
wave spectrum to be random variables characterized by the
following covariances [11–13]:

E
{
Fh(Ω)F∗h (Ω′)

}
= Ph(Ω)δ(Ω−Ω′),

E
{
Fv(Ω)F∗v (Ω′)

} = Pv(Ω)δ(Ω−Ω′),

E
{
Fh(Ω)F∗v (Ω′)

} = E
{
Fv(Ω)F∗h (Ω′)

}
= 0,

(5)

where E{·} denotes the expectation operator, δ(·) is the
Dirac delta function, and Ph(Ω) and Pv(Ω) are real quantities
that describe the power density versus angle-of-arrival for
horizontally and vertically polarized incident plane waves,
respectively. The electromagnetic field’s vector power-angle
spectrum is given by

P(Ω) = Ph(Ω)ĥ + Pv(Ω)v̂. (6)

Denoting P0 as the total power available to an AUT, we define
the vector power-angle spectrum such that

∫
dΩ
[

P(Ω) · ĥ + P(Ω) · v̂
]
= P0. (7)

The covariance between the signals received by the ith
and jth antenna elements is defined as [13]

E
{
xix

∗
j

}
= ρi jσiσj , (8)

where σi and σj are the standard deviations of the signals
received by ith and jth antenna elements, respectively, and
ρi j is the complex correlation coefficient of the two signals.
Combining (1)–(8), the covariance may be written as

ρi jσiσj

=
∫
dΩ
[
Aih(Ω)A∗jh(Ω)Ph(Ω) + Aiv(Ω)A∗jv(Ω)Pv(Ω)

]
.

(9)

Interpreting σ2
i (the variance of xi) as the power received

by the ith antenna element, we may define the element’s
mean effective gain (MEG) gi as the ratio of received power
to available power: [8, 14]

gi =
σ2
i

P0
. (10)

An element’s MEG accounts for the interplay between the
element’s radiation pattern and the distribution of incident
power versus angle-of-arrival. For an angle-invariant radia-
tion pattern or power-angle spectrum, gi = 1/2, indicating
that one-half of the available power is received by the antenna
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Table 1: Specified antenna configurations.

Class Configuration
2D 3D

max(‖Ai(Ω)‖2)
|ρ12| g1 g2 |ρ12| g1 g2

d = λ 0.02 0.80 0.80 0.12 0.50 0.50 1.85

Closely spaced dipoles
[18]

d = λ/2 0.17 0.73 0.73 0.01 0.50 0.50 2.20

d = λ/4 0.18 0.74 0.74 0.00 0.50 0.50 3.14

“Good” 0.34 0.42 0.42 0.04 0.50 0.50 2.96

CTIA reference
antennas [19]

“Nominal” 0.73 0.48 0.48 0.58 0.50 0.50 1.57

“Bad” 0.90 0.54 0.54 0.90 0.50 0.50 1.77

Cross-polarized
dipoles [20]

Free space 0.00 0.38 0.38 0.00 0.50 0.50 1.50

PEC 0.00 0.00 0.00 0.00 0.50 0.50 5.21

[8]. By use of (8) and (9) with i = j corresponding to the
variance of xi(note that ρii = 1), we may express gi in terms
of the ith antenna’s vector radiation pattern and power-angle
spectrum:

gi =
1
P0

∫
dΩ
[∣∣Aiv(Ω)|2Pv(Ω)+

∣∣Aih(Ω)|2Ph(Ω)
]
. (11)

Finally, by combining (9)–(11), the environment-dependent
correlation coefficient ρi j may be expressed as

ρi j = 1

P0

√
g1g2

×
∫
dΩ
[
Aiv(Ω)A∗jv(Ω)Pv(Ω) + Aih(Ω)A∗jh(Ω)Ph(Ω)

]
.

(12)

3. Simulation Setup

In the following sections, we define the vector power-angle
spectra and antenna configurations used in our numerical
study of capacity in 2D and 3D statistically isotropic
environments.

3.1. Power-Angle Spectra. For statistically isotropic environ-
ments, we expect that

Ph(Ω) = Pv(Ω), (13)

whereby the power density versus angle-of-arrival is inde-
pendent of the polarization of incident waves. For the 2D
isotropic environment, the vector power-angle spectrum is
only nonzero along the unit sphere’s equator and is given by

P2D(Ω) = P0

2π
δ(θ − π/2)

1
2

(
ĥ + v̂

)
, (14)

where θ denotes the zenith angle. In contrast, the 3D
isotropic environment’s vector power-angle spectrum is
constant across the entire unit sphere and is given by

P3D(Ω) = P0

4π
1
2

(
ĥ + v̂

)
. (15)

Equations (14) and (15) are idealizations of the statistically
isotropic environments that may be generated in multiprobe
anechoic and reverberation chambers, respectively. Thus, we
neglect non-idealities due to, for example, using a finite
number of probes in the multiple-probe anechoic chamber
[4–6] and unstirred energy in the reverberation chamber
[15–17].

3.2. Antennas under Test. In the following sections, we will
compare the capacity distributions for three classes of two-
element antennas.

(i) Two closely-spaced and vertically polarized Hertzian
dipoles separated by a distance d [18].

(ii) The recently developed CTIA MIMO reference
antennas (so-called “Good”, “Nominal”, and “Bad”)
[19].

(iii) Two colocated and cross-polarized Hertzian dipoles
aligned parallel to the x-y plane and located (a) in
free space and (b) at a height h = λ/4 above a
perfectly electrically conducting (PEC) surface with
surface normal ẑ [20].

The different antenna classes and configurations are intended
to span the spectrum of antennas typically used by physically
small handheld or mobile devices such as phones or laptops.
Where applicable, our antenna descriptions include the
effects of mutual coupling between elements.

Table 1 summarizes the different antenna configurations
and compares the antennas’ correlation coefficient magni-
tudes and MEGs for the 2D and 3D statistically isotropic
environments as calculated by use of (11)–(15). Due to
(4)’s power normalization, gi = 0.5 for all antennas in
the 3D statistically isotropic environment. For the cross-
polarized dipoles above a PEC surface, gi = 0 for the 2D
statistically isotropic environment, because the gain patterns
of the antenna’s elements are zero for angles at and below
the horizon [20]. The last column in Table 1 presents the
maximum directivity of each antenna’s elements. We will use
these values later in Section 5.
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4. Capacity

We consider a 2-by-2 MIMO channel with uncorrelated
transmit antennas and potentially correlated receive anten-
nas. For the case of an uninformed transmitter and a receiver
with perfect channel state information, the cumulative dis-
tribution function (CDF) of MIMO capacity is given by [21]

FC(c) =
2∑
i=1

2∑
j=1, j /= i

1

γiγj
(
γi − γj

)

×
{
e1/γi+1/γj

γ j − γi
γi

(∫ 2c

1
dvve−v/γi−2c/vγj

)

+
[
γi +

(
γi − γj

)(
γi + 2c

)]
e(1−2c)/γi

}
,

(16)

where γi are the eigenvalues of the 2-by-2 matrix Γ defined as

Γ = 1
N0nt

Σr . (17)

In (17), nt = 2 is the number of transmit antenna elements,
N0 is the noise power density at the receiver, and Σr is the
receiver’s covariance matrix given by

Σr =
⎡
⎢⎣E
{
|x1|2

}
E
{
x1x

∗
2

}

E
{
x2x

∗
1

}
E
{
|x2|2

}
⎤
⎥⎦. (18)

Using (8)–(12), Σr may be expressed as

Σr = P0

⎡
⎢⎣ g1 ρ

√
g1g2

ρ∗
√
g1g2 g2

⎤
⎥⎦, (19)

where the eigenvalues of Γ are

γ1
2 =

P0

N0nt

⎡
⎢⎢⎣
g1 + g2 ±

√
g2

1 + g2
2 + 2g1g2

(
2
∣∣ρ∣∣2 − 1

)

2

⎤
⎥⎥⎦,

(20)

and (P0/2)/N0 defines the SNR of the corresponding single-
input single-output link for an isotropic antenna.

4.1. Single Orientation. Figures 1(a) and 1(b) compare the
analytic 2-by-2 MIMO capacity CDFs for the different
AUTs in the 2D and 3D statistically isotropic environments,
respectively. The CDFs were calculated from (16)–(20) with
the correlation coefficients and MEGs reported in Table 1.
We observe that the different test environments may yield
considerably different capacity CDFs for identical AUTs. The
cross-polarized dipoles above a PEC surface are particularly
problematic, because the MEGs of the antenna elements are
zero (see Table 1) for the 2D environment. This implies an
SNR of zero and results in a capacity CDF given by a unit
step function with a transition at zero bps/Hz.

Figure 1(c) illustrates the shift in the capacity CDFs for
the 2D statistically isotropic environment with respect to the

3D statistically isotropic environment. We quantify this shift
in terms of a relative error of the 2D environment’s capacity
curves with respect to the 3D environment’s capacity CDFs.
We note that the relative error for the cross-polarized dipoles
above a PEC surface is 100% due to its step-function capacity
CDF in the 2D isotropic environment; this error is outside
of the range of relative errors considered in Figure 1(c).
Depending on the antenna configuration, the relative error
in the 2D environment’s capacity CDF may exceed 20%.
This suggests that capacity statistics for a given AUT in a
2D and 3D statistically isotropic environment may not be
comparable for a single orientation of the AUT. This is in
agreement with the conclusions presented in [2] for ergodic
capacity based on a single orientation of the AUT.

4.2. Multiple Orientations. As suggested in [2], a possible
solution for obtaining comparable capacity statistics is to
combine capacity data from different orientations of the
AUT in the 2D statistically isotropic environment. Assuming
N orientations of the AUT are sampled equally (i.e., an
equal number of independent capacity realizations are taken
at N unique orientations), the CDF of the combined set
of capacity realizations is equal to the mean of the N
orientation-dependent capacity CDFs: [22]

FĈ(c) = 1
N

N∑
n=1

F(n)
C (c), (21)

where F(n)
C (c) denotes the capacity CDF associated with

the nth orientation of the AUT, and FĈ(c) describes the
orientation-combined CDF of the resulting (mixture) distri-
bution.

As Figure 2 illustrates, there are three degrees-of-freedom
in a 3D rotation of an object to a new orientation [23–25].
In the rotation sequence illustrated in Figure 2, an object is
rotated by α ∈ [0,π) in a direction β ∈ [0, 2π) such that
object’s original z-axis is aligned to an axis z′ defined by
(α,β). Then, the object is rotated by an angle χ ∈ [0, 2π)
about the z′-axis. To obtain a uniform sampling of the AUT’s
3D orientation space, we apply the successive orthogonal
images technique [24]. We specify a set of L angle pairs
(α,β) corresponding to L points uniformly distributed on
the unit sphere. For each angle pair, χ = 2π(m/M) for m =
0, 1, . . . ,M − 1, where M is an integer number of χ rotations
per (α,β) pair as given by

M = round
(√

πL
)

, (22)

and the total number of orientations is N = ML. In
(22), round(·) rounds to the nearest integer. Equation (22)
provides the appropriate weighting between M and L to
ensure that the N orientations are a uniform sampling of the
rotation space (cf., [24, Equation (3.1)]).

A set of L = 162 uniformly distributed angle pairs
(α,β) were generated by iterative triangularization of an
icosahedron. By use of (22), we have M = 23 whereby a
set of N = ML = 3726 uniformly distributed orientations
were considered. (Similar results were observed for larger
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Figure 1: Comparison of the capacity CDFs for the different AUTs in statistically isotropic environments at a single orientation: (a) capacity
CDFs for the 2D environment, (b) capacity CDFs for the 3D environment, (c) relative error in the 2D environment’s capacity CDFs with
respect to the 3D environment’s capacity CDFs. The center plot’s legend applies to all three plots.

choices of N .) The AUT was rotated to each of the N ori-
entations, and (11), (12), and (16) were used to calculate the
resulting N capacity CDFs. For each of the AUTs, Figure 3
compares the N orientation-dependent capacity CDFs ob-
tained from the 2D statistically isotropic environment (solid
lines), the resulting orientation-combined CDF from the
2D statistically isotropic environment (solid line), and the
orientation-independent capacity CDF obtained from the
3D statistically isotropic environment (dashed line). We

observe large variations in the 2D environment’s orientation-
dependent capacity CDFs for the closely spaced dipoles
(Figures 3(a)–3(c)), as well as the cross-polarized dipoles
above a PEC surface (Figure 3(h)).

Figures 4(a) and 4(b) compare the 2D environment’s
orientation-combined capacity CDFs to those from the
3D environment’s orientation-independent capacity CDFs;
Figure 4(c) examines the relative error in the 2D statisti-
cally isotropic environment’s orientation-combined capacity
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Figure 2: There are three degrees of freedom in the specification
of a rotation to an arbitrary orientation. The diagram defines a
rotation of an object in 3D via Euler angles. The object is rotated by
an angle α in the direction β and subsequently rotated by an angle χ
about the axis z′ defined by (α,β).

CDFs with respect to the 3D statistically isotropic environ-
ment’s orientation-independent capacity CDFs. We observe
that for the CTIA reference antennas and cross-polarized
dipoles in free space, this “error” is quite small, with typical
magnitudes below 2%. In comparison, the relative error of
the cross-polarized dipoles above the PEC surface and, to
an extent, the closely-spaced dipoles, is much larger, with
magnitudes exceeding 5–20%. Note that these are the same
antenna configurations which showed the greatest variation
in the 2D environment’s orientation-dependent capacity
CDFs (see Figure 3). Thus, Figures 3 and 4(c) suggest that
for a given AUT, the 2D environment’s orientation-combined
capacity statistics will be comparable to the 3D environ-
ment’s orientation-independent capacity statistics provided
that the variations in the 2D environment’s orientation-
dependent capacity CDFs are small. Repeat studies at SNRs
of 5 dB to 20 dB yielded similar errors, albeit with a slight
increase in relative error for decreasing SNR. The typical
range of error magnitudes remained below 10%.

5. Sensitivity of Capacity to
AUT Orientation in 2D Statistically
Isotropic Environments

From Figures 3 and 4(c), we observed that for a given AUT,
large orientation-dependent variations in the 2D environ-
ment’s capacity CDF led to a large relative error between
the 2D environment’s orientation-combined capacity CDF
and the 3D environment’s orientation-independent capac-
ity CDF. Here, we investigate the source of these large
orientation-dependent variations in capacity and determine
why some antennas are more sensitive to orientation in the
2D isotropic environment than others. This provides insight

into the range of antenna configurations for which we may
expect the 2D environment’s orientation-combined capacity
CDF to be comparable to the 3D environment’s orientation-
independent capacity CDF. We base our analysis on the
orientation-dependence of each AUT’s correlation coefficient
and MEGs in the 2D statistically isotropic environment. Note
that for the 3D environment, these quantities are orientation
invariant and are tabulated in Table 1.

Figure 5 presents scatter plots of each AUT’s MEGs and
correlation coefficient for different orientations in the 2D
statistically isotropic environment. The location of each
circle corresponds to the MEG of the AUT’s elements;
the circle’s size/shade corresponds to the magnitude of the
correlation coefficient. We observe that the antennas exhib-
iting the largest variations in the 2D environment’s orienta-
tion-dependent capacity CDFs, namely, the cross-polarized
dipoles above a PEC surface and the closely-spaced dipoles
tend to have similar antenna element MEGs at each orien-
tation (i.e., g1 ≈ g2). This indicates that the average power
received by each of the antenna elements is identical, whereby
a low (or high) average received power at one element implies
an equally low (or high) average received power at the other
element. This allows for large variations in the cumulative
power received by the two antenna elements. In contrast, the
AUTs exhibiting the smallest variations in the orientation-
dependent capacity CDFs tend to have MEGs that follow g1 +
g2 ≈ 1. This indicates that the cumulative power received by
both antenna elements is approximately constant at different
orientations, whereby a low average received power at one
element is compensated by a high average received power at
the other element.

Based on Figure 5, the 2D environment’s orientation-
dependent capacity CDFs appear to be more sensitive to joint
orientation-dependent variations in the MEGs of an AUT’s
elements than orientation-dependent variations in its cor-
relation coefficient magnitude (e.g., compare Figures 5(g),
5(h), 3(g) and 3(h)). To confirm this, Figure 6 presents en-
vironment-independent contour plots of the median capacity
for different correlation coefficient magnitudes and MEGs.
For the calculations, we specify a nominal single-input sin-
gle-output SNR of 10 dB (i.e., (P0/2)/N0 = 10). Figure 6(a)
corresponds to the case of equal antenna element MEGs;
Figure 6(b) corresponds to the case of constant cumula-
tive received power. As indicated by the range of median
capacities for the two cases, the equal MEG case (g1 = g2)
allows for larger variations in the median capacity than the
constant cumulative received power case (g1 + g2 = 1). We
also observe for both cases that the effect on capacity of large
variations in the magnitude of the correlation coefficient
is considerably weaker than large variations in MEG. This
indicated by the smaller gradient for changes in g1 as
compared to changes in |ρ12|.

Based on Figures 3–6 and the maximum directivities
listed in Table 1, we expect that the 2D environment’s
orientation-combined capacity statistics should be com-
parable to the 3D environment’s orientation-independent
capacity statistics provided that the maximum directivities
of the AUT’s elements are small (e.g., max(‖Ai(Ω)‖2) ≤ 2).
This criterion should lead to smaller orientation-dependent
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Figure 3: Comparison of the capacity CDFs for multiple orientations of the two-element antennas in statistically isotropic environments.
Each plot compares the 2D environment’s orientation-dependent capacity CDFs, the 2D environment’s orientation-combined capacity
CDFs, and the 3D environment’s orientation-independent capacity CDFs.

fluctuations in the AUT’s MEGs and, thereby, cumulative
received power. In [7, 14], we note that similar conclusions
were reached concerning the greater variability of MEG
for different orientations of antennas with large directiv-
ities. Here, we have demonstrated that the variability in
capacity is dominated by this variability in MEG. Antennas
with markedly different element directivities may also yield
comparable capacity CDFs, because it is less likely that g1 ≈
g2. However, based on the antenna configurations considered
here, we expect that low directivity is the more important
criteria.

6. Conclusions

Channel capacity determines the maximum theoretical
throughput for a given wireless link. By designing test
procedures such that the capacity distributions obtained
for a given AUT in a 2D and 3D statistically isotropic
environment are comparable, we expect that throughput
statistics for a corresponding DUT in these two environ-
ments will likewise be comparable. More so, we expect
that discrepancies between observed throughput statistics for
different devices in different test environments will be largely
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Figure 4: Comparison of the capacity CDFs for the different AUTs in statistically isotropic environments at multiple orientations: (a)
orientation-combined capacity CDFs for the 2D environment, (b) orientation-independent capacity CDFs for the 3D environment, (c)
relative error in the 2D environment’s orientation-combined capacity CDFs with respect to the 3D environment’s orientation-independent
capacity CDFs. The center plot’s legend applies to all three plots.

due to fundamental differences in the devices (e.g., antenna
loss and mismatch, receiver sensitivity, and algorithm imple-
mentation) and not fundamental differences in the capacity
statistics of the test environments, assuming a sufficient
number of AUT orientations in the 2D environment.

Based on the analysis presented here, provided that (1)
the DUT is rotated to different orientations in the 2D
statistically isotropic environment, and (2) the dimensions

of the DUT are on the order of a wavelength or less such
that the element directivities will be low, we expect that
throughput statistics for a DUT in 2D and 3D statistically
isotropic environments will be within 10% of each other,
as suggested by Figures 3 and 4(c). This suggests that
with properly designed test procedures, over-the-air tests
of multiantenna wireless terminals in multiprobe anechoic
and reverberation chambers should be comparable for a
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(b) Closely spaced dipoles: d = λ/2
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(c) Closely spaced dipoles: d = λ/4
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(d) CTIA reference antenna: “Good”
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(e) CTIA reference antenna: “Nominal”
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(f) CTIA reference antenna: “Bad”
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(g) Cross-polarized dipoles: free space
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(h) Cross-polarized dipoles: PEC

Figure 5: Scatter plots of mean effective gain (MEG) and correlation coefficient magnitudes for each AUT in the 2D statistically isotropic
environment for N uniformly distributed orientations of the AUT. The position of each circle indicates the MEGs of the two antenna
elements; the size/shade of each circle indicates the magnitude of the correlation coefficient.
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Figure 6: Median capacity for ranges of correlation coefficient magnitudes |ρ12| and MEGs, g1 and g2.

wide range of devices. Finally, it is worth emphasizing that
our conclusions are based solely on the distribution of
capacity. That is, our conclusions are independent of the
actual number of realizations used to calculate a capacity (or
throughput) statistic and apply even for the case where a
single capacity (or throughput) measurement is made at each
orientation.
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