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ABSTRACT

As hyperspectral imaging (HSI) sees increased implementation into the biological and medical fields it becomes
increasingly important that the algorithms being used to analyze the corresponding output be validated. While
certainly important under any circumstance, as this technology begins to see a transition from benchtop to
bedside ensuring that the measurements being given to medical professionals are accurate and reproducible is
critical. In order to address these issues work has been done in generating a collection of datasets which could
act as a test bed for algorithms validation. Using a microarray spot printer a collection of three food color dyes,
acid red 1 (AR), brilliant blue R (BBR) and erioglaucine (EG) are mixed together at different concentrations in
varying proportions at different locations on a microarray chip. With the concentration and mixture proportions
known at each location, using HSI an algorithm should in principle, based on estimates of abundances, be able
to determine the concentrations and proportions of each dye at each location on the chip. These types of data
are particularly important in the context of medical measurements as the resulting estimated abundances will
be used to make critical decisions which can have a serious impact on an individual’s health.

In this paper we present a novel algorithm for processing and analyzing HSI data based on the LASSO
algorithm (similar to “basis pursuit”). The LASSO is a statistical method for simultaneously performing model
estimation and variable selection. In the context of estimating abundances in an HSI scene these so called
“sparse” representations provided by the LASSO are appropriate as not every pixel will be expected to contain
every endmember. The algorithm we present takes the general framework of the LASSO algorithm a step
further and incorporates the rich spatial information which is available in HSI to further improve the estimates
of abundance. We show our algorithm’s improvement over the standard LASSO using the dye mixture data as
the test bed.

Keywords: Sparse regression, LASSO, SPLASSO, hyperspectral image analysis

1. INTRODUCTION

Hyperspectral imaging until recently has been a technology more commonly associated with remote sensing
type applications to identify ground materials with unique optical reflectance and/or absorbance properties.
The use of hyperspectral imaging in biomedical settings, while not new, has seen slower adoption into more
widespread practice. The reasons for this include open instrument and algorithmic challenges associated with
imaging biomedical scenes to identify chemical and molecular substances. Some common problems encountered
include controlling/accounting for reflective glare from surfaces (e.g. from various regions on an organ), large
background signals (e.g. from cell media), shading from three-dimensional contours of objects and accounting
for unknown elements in an image. Each of these can, have a significant impact on the observed signal, making
it difficult to make sense of or reliably use the collected measurements for any type of quantitative analysis.
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Inspite of the various challenges the potential benefit of hyperspectral imaging technology in the clinic and
laboratory is undeniable and has already has begun to see increased use in both settings.1,2 For example, while
still largely qualitative, surgeons at the University of Texas Southwestern have been implementing hyperspectral
imaging technology in kidney related surgical procedures to monitor changes in hemoglobin oxygenation (referred
to as oximetry). The system allows the surgeons to gauge, in real time the relative oxygen content of the
kidney before the clamping of the renal artery, which is done in order to avoid excessive bleeding and related
complications, to after clamping of the renal artery. Here the pre-clamp oxygen levels are used as a representative
baseline for 100% oxygenation. Current standard of care dictates that the surgeon has about 30 minutes to
complete his procedure. With real time oxymetric measurements they have a better gauge of exactly what that
window is, as well as having insight into other potentially relevant physiological changes in the patient.

As hyperspectral imaging begins to see increased use in clinics and laboratories, it is important to understand
the accuracy of the algorithms being used to analyze them. One possible way to measure algorithm performance
is through the use of well characterized benchmark data sets, preferably where some type of ground truth exists.
The characteristics of a data set that would be well suited for the types of applications we are interested in here
are those that have similar scale in terms of object sizes, ranges of spectral features and spatial complexity.

Recently a novel microarray printing methodology was introduced3 for testing of absorption and/or reflectance
of microscopy measurements. The instrument (SpotBot2, ArrayIt, Sunnyvale, CA) uses printed dyes to enable
multiplexed testing of the spectral capability of hyperspectral instruments. The unique optical signatures as-
sociated with chemical properties and their associated spectra are commonly referred to as endmembers. The
dye printing platform is appealing for our applications as it mimics many of the properties and challenges of
biomedical measurements, i.e. there is a spatial component, it contains shading and contours (doming effect
associated with the printing of the dyes), mixtures of different components at different concentrations and a
highly variable background. In this way the microarray printing methodology can act as a standard data set for
validating the performance of hyperspectral image analysis algorithms. In the work presented here we focus on
endmember abundance fraction estimation (i.e. dye concentration).

Figure 1 illustrates the layout of one of the microarray printing platforms involving the mixture of three
different food coloring dyes. The three dyes are acid red 1 (AR), brilliant blue R (BBR) and erioglaucine (EG).4

The image on the left is what the actual array looks like and the image on the right shows the layout of the
locations, relative proportions and concentrations of each of the dyes. Dye samples are initially prepared in
water. These stock solutions are then further diluted and mixed with 75% poly(ethylene glycol, MW = 600 kD)
(PEG) for a final PEG concentration of 50% (v/v). Here, the three right-most columns with “dilutions” written
above, correspond to individual dyes at 100% down to 5% concentration. The columns to the left of this show
mixtures of these dyes at varying concentrations.

These dyes were selected because of their spectral distributions, shown in Figure 2. Here relative absorbance
measurements (y-axis) were taken at 61 wavelengths between 400 nm and 700 nm (x-axis) with 5nm, full width of
the half maximum bandwidth at every wavelength. While the dyes are spectrally distinct there is still considerable
overlap between them in certain spectral regions. This overlap presents a challenge when trying to determine
the concentration and proportion of a particular dye at a given spatial location where several dyes have been
mixed.

Note, the algorithms used here for determing how many and which endmembers are present in the dye-mixture
data are the hyperspectral signal identification by minimum error (HYSIME6) and the simplex identification via
split augmented Lagrangian (SISAL5) algorithms, respectively. Here 18 endmembers were estimated by these
algorithms. While both these aspects of hyperspectral image analysis are extremely important, they are outside
the scope of the work presented here which is focused on estimating the abundances of the endmembers. From
here on we take the endmembers to be known.

1.1 Results and Discussion

Next we present the main results using the LASSO (least absolute shrinkage and selection operator7) and the
SPLASSO (Spatial LASSO8) to estimate the concentrations and proportions of the dyes from the three-dye
mixture data set described above. The LASSO and SPLASSO are both known as “sparse” regression methods,
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Figure 1. The design of the microarray printing platform for three dyes. The image on the left depicts the actual array
and the image on the right shows the location, concentrations and proportion of each of the dyes.
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Figure 2. The spectral signatures of the three dyes used in this experiment. Signatures estimated using the SISAL
algorithm.5
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i.e. they have the property that some of the regression coefficients (i.e. abundances) are set to be exactly equal
to 0, this property will be discussed in more detail in Section 2. Methods like these are particularly well suited
to the task of abundance estimation in hyperspectral images as they exploit the fact that most pixels in a image
are only composed of a subset of the total number of endmembers present (i.e. some will have 0 abundance).

Here algorithm performance is measured by looking at how well the ratio’s from our estimates match up with
the design in Figure 1. Figure 3 shows a heatmap of the estimated abundances using the LASSO and SPLASSO
for each of the three dyes (we have zoomed in on the dye spots and removed most of the background regions
to ease visualization of the results). The vertical white lines dilineate the different dye mixtures shown at the
bottom and the color bar to the right of each figure shows the range of the estimated abundance fractions. Note
that in each case the fractions are less than 1. There are a number of factors at play here which could cause this
to happen. In particular the complexity of the background and other features, reflected in the 18 endmembers
required to model the data, all have an effect on the measured absorbance.
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Figure 3. The abundance estimates of AR, BBR and EG. The color scale on the right indicates the estimated abundance
fractions.

From a qualitative standpoint the SPLASSO algorithm produces a more visually appealing result as compared
to the standard LASSO (less salt-and-pepper artifacts in the background). From a practical standpoint, this
reduces the number of false-positive readings, saying a dye is present when it is not.

In order to estimate the concentration at each dye location we begin by estimating the 100% concentration
values. This is done by calculating the average estimated abundance fractions from a 7× 7 pixel region centered
at the 100% concentration locations for AR, BBR and EG (see Figures 1 and 3); call these values AR100, BBR100

and EG100. Similar 7× 7 regions are then selected and averages calculated at each spot; call these values ARi,
BBRi and EGi, where i denotes each spot location. The final estimated calibrated abundance fraction for each
dye at each location is then calculated as
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Figure 4. The concentrations in the AR dilution column. Each subplot displays the estimated calibrated abundance
fractions within this column. Both methods are able to generally capture the dilution curve.
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Figure 5. The concentrations in the BBR dilution column.
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These results are shown in Figures 4, 5, 6 and 7. The first three figures display the results of the estimated
calibrated abundance fractions for the serial dilutions of the pure dye mixtures (the three right most columns
of Figure 1). Each of these are divided into three subplots corresponding to the three different dyes, with the
x-axis in each seperated by the method used, LASSO or SPLASSO. For each method there is a barplot showing
the estimated abundance fractions for each serial dilution, ranging from 5%, . . . , 100% (shown in the legend key
to the right). In principle, only the subplot corresponding to the dye whose serial dilution we are currently
estimating should have non-zero abundance fraction estimates.

So, for example Figure 4 shows the serial dilutions of AR, where we would expect that of the subplots only
the one titled “AR” (on the left) would have non-zero abundance estimates. Of course in practice this is not
the case, as is seen by the non-zero abundance fraction estimates in the BBR and EG subplots, however both
methods are able to approximately capture the dilution curve. In general the SPLASSO produced fewer false
positive estimates with respect to the other dyes.

EG appeared to be the most challenging dye to estimate for both methods (as can be seen by the differ-
ence between the estimated and true concentration values), in particular both the LASSO and SPLASSO were
considerably less sensitive at the lower concentrations. Both approaches performed quite well on AR with BBR
being a bit more challenging for the LASSO. As whole, for the pure dye mixtures both methods were able to do
a good job of characterizing the serial dilutions, with the SPLASSO doing a much better job of producing fewer
false positive readings.
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Figure 6. The concentrations in the EG dilution column.
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Figure 7 shows the results from the mixture of AR and BBR at varying concentrations. In this plot each
subfigure shows the estimated abundance fraction of each dye for each mixture (corresponding to the BBR:AR
column in Figure 1). So, for example the left most plot displays the mixture of 10% AR with 100% BBR. Here
the LASSO appears to do a better job over the SPLASSO. For both the 50% AR and 100% BBR and 100%
AR and 50% BBR both methods do well in estimating the correct concentrations and proportions. However, for
the cases where we have 100% AR and 10% BBR or 100% of both, both methods have difficulty estimating the
correct concentrations and proportions.

There are several possible reasons for this, part of it may involve improvement in the image acquisition
process, but also further development of pre-processing steps (e.g. background correction). Experimental errors
may also play a role. For example, as the relative ratio of one dye increases, the unmixing and different surface
wettability may introduce local heterogeneity within a single microarray spot and differential reflective scattering
properties.

Within the scope of this work, we conclude that the SPLASSO algorithm is capable of extracting endmembers
of two different chemical substances within the ratio range of 1:0.5 to 1:1. For the sake of space we have not
included results for the remaining columns of mixtures, or replicate measurements (what we have shown is for
one of three), however similar results hold.

2. METHODS

While not always the case in practice it is commonly assumed (as it is here) that at each pixel the spectral
signature is a linear mixture of each of the endmembers present in the scene. Before providing a more formal
description of linear mixing we begin by introducing some notation: define yi = (yi1, . . . , yip)T , i = 1, . . . , n
to be the set of spectral response vectors, n corresonding to the total number of pixels in the image. Let
xj = (x1j , . . . , xpj)

T , j = 1, . . . ,m be the set endmembers (where each of the p entries maps to a specific
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wavelength), which are collected in the matrix X = [x1, . . . ,xm]. Finally let βi = (βi1, . . . , βim), i = 1, . . . , n be
the set of abundance vectors whose entries tell us the proportion and concentration of an endmember at a pixel.
In order to ensure that these abundances have a physical meaning it is typically required that each element of
βi be nonnegative and that the sum of the elements of βi are less than or equal to one. More generally

yi = Xβi, subject to , βil ≥ 0 and

m∑
l=1

βil ≤ 1. (1)

As mentioned in the introduction “sparsity” in the abundance vectors βi (i.e. possibly many βij ’s being
equal to 0) arises naturally in hyperspectral imaging as most pixels are typically composed of only a subset of
the m endmembers. For example, in the the dye mixture data we know that many of the spots are made up
of one or a mixture of two dyes. In some applications large dictionaries of endmembers specific to the types of
objects being analyzed are available, with only a subset of the endmembers in the dictionary being present in
the image at all. By explicitly taking into account the sparse nature of the endmember abundance vectors we
are able to reduce the number of false positives (saying an endmember is present in a pixel when it is not) and
therefore the accuracy of the estimation.

In Sections 2.1 and 2.2 we outline the LASSO and SPLASSO models respectively. Both of these approaches
produce sparse estimates of the abundances and as illustrated in Section 1 produce very good results.

2.1 LASSO

Standard approaches to model building, such as ordinary least squares (OLS) do not produce sparse results and
variable selection procedures traditionally used in conjunction with OLS, such as best subset selection, encounter
difficulties when there are more than a few variables (as the number of possible combinations to consider quickly
becomes intractable). Other shortcomings of subset selection methods are related to the discrete nature in which
variables are added or removed from the model,9.10

In order to effectively deal with these challenges regularization techniques which incorporate an l1 penalty on
the coefficient (abundance) vector, such as the LASSO7 were developed. Through the introduction of the penalty
term these methods are able to simultaneously perform prediction and variable selection. Sparse regression
methods have been shown to be effective in practice across a wide range of applications. The form of the LASSO
is quite similar to the linear mixing model described in (1) with the additional constraint that |β|1 =

∑m
j=1 βj ≤ c,

for some constant c (where | · |1 is the l1 norm). The loss function can then be expressed as

β̂i(LASSO) = arg min
βi

∥∥∥∥∥∥yi −
m∑
j=1

xjβij

∥∥∥∥∥∥
2

+ λ|βi|1, (2)

where λ is a nonnegative regularization parameter. The l1 penalty term has the effect of continuously shrinking
the coefficients toward 0 as λ increases and, for λ sufficiently large it can be shown that some coefficients are set
exactly to 0. Extending this to the abundance estimation problem requires that the above estimation procedure
be repeated for each i, i = 1, . . . , n.

To gain some insight into how the LASSO is able to obtain estimates which are exactly 0, we consider the
following special case. Suppose that the matrix of endmembers, X is orthonormal, i.e. XTX = I and I is the
identity matrix. Then it can be shown that the solution of the LASSO problem in (2) has the closed form
solution

β̂il(LASSO) = sgn(β̂il(OLS))(|β̂il(OLS)| − λ/2)+, l = 1, . . . ,m (3)
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where β̂il(OLS) = xT
l yi is the OLS estimate, and (u)+ = max(0, u). Thus for λ/2 ≥ |β̂il(OLS)|, β̂il(LASSO) = 0.

For the more general case where we do not have orthonormality two fast and efficient algorithms have
been proposed in the literature to solve (2): one based on least angle regression (LARS)11 and a more recent
adaptation based on the coordinate descent algorithm.12 Both these methods provide a significant improvement
in computational speed over standard linearly constrained, quadrattic programming approaches; in particular
coordinate descent12 has been shown to be very efficient for working with larger data sets. Straightforward
modifications of either approach allow us to incorporate the positivity and sum to less than or equal to one
constraints of linear mixing.

2.2 SPLASSO

One of the drawbacks of existing LASSO methods in the context of hyperspectral imaging is that they ignore
the smoothly varying, spatial relationships between pixels and abundances. In order to effectively leverage this
we introduce a spatial penalty term of the form

∑
j∈N(yi)

||βi−βj ||2wij into the LASSO objective (2) giving us
the SPLASSO loss function

β̂j(SPLASSO) = arg min
βj

n∑
i=1

||yi −Xβi||2 + λ1|βi|1 + λ2
∑

j∈N(yi)

||βi − βj ||2wij . (4)

Here λ1 and λ2 are nonnegative regularization parameters, N(yi) is the set of neighboring pixels about yi and
wij ∈ [0, 1] is a spatial weight function capturing the similarity between observation i and its neighbors j ∈ N(yi).
The neighborhood defined by N(·) can take on a number of different forms; for our purposes we take N = Nk,
the symmetric k-neighborhood on a regular 2D grid. To illustrate the form of Nk, suppose we are at grid point
grs in a M1 ×M2 image, 1 ≤ r ≤ M1, 1 ≤ s ≤ M2. For k = 1 our neighborhood would be defined as the set of
points N1 = {gr−1,s, gr+1,s, gr,s−1, gr,s+1, gr−1,s+1, gr+1,s+1, gr−1,s−1, gr+1,s−1}.

The introduction of the penalty term
∑

j∈Nk(yi)
||βi−βj ||2wij in (4) has the effect of “encouraging” the βi’s

to be similar to their k-neighbors, introducing a smoothness to the coefficient vectors. In hyperspectral unmixing
this has several appealing aspects: in particular it allows our estimates to be more robust to instrument and
sample variability. Intuitively this makes sense as the variability introduced from these different sources will tend
to be smoothed out. Of course, as in any smoothing method, care needs to be taken to avoid removing actual
features by oversmoothing.

For this reason appropriate selection of the weights wij and regularization parameters λ1 and λ2 is extremely
important. In the application of the SPLASSO to hyperspectral imaging it is desirable to have a weight function
which uses both spatial and spectral information. Let us suppose that the spectral signature, yi whose abun-
dances we are estimating corresponds to the rsth pixel in the image (for illustrative purpose we refer to this
point as yrs). The spatial component of the weight function can then be captured by

brs(lm) =

{ 1
(r−l)2+(s−m)2 , l ∈ [r − k, r + k],m ∈ [s− k, s+ k] if (l,m) 6∈ (r, s),

0 otherwise.
(5)

Our decision to use (5) is that it provides a decrease in the effect a neighboring pixel has the further we move out
from the current observation being estimated. However, the decrease is not so rapid as to make the contribution
of the surrounding observations negligible. Next, to leverage spectral information we use the weights

crs(lm) =
yT
rsylm

||yrs||||ylm||
, l ∈ [r − k, r + k],m ∈ [s− k, s+ k], (6)

which is the cosine of the angle between the spectra. This is a similarity measure commonly used in hyperspectral
image analysis applications. For our purposes it is appealing because it allows our spatial weight function to be
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adaptive to local features in the image, e.g. if we are at the edge of an object. We have also found it useful
in practice to include a threshold on the angle between spectra, so that if acos(crs(lm)) > t, t ∈ [0, π] then
crs(lm) = 0. Putting the spatial (5) and spectral (6) weights together the weight function is defined as

wrs(lm) = brs(lm)crs(lm).

To gain insight into the properties of (4) and the role of the regularization parameter λ2 we once again
considering the case where X is taken to be orthonormal. Let γ = 1/(1 + λ2),

∑
j∈Nk(yi)

wij = 1, (note, the

latter does not need to hold in general, we do so here for illustrative purposes), αi,l =
∑

j∈Nk(yi)
βj,lwij and

b̂i,l = γβ̂i,l(OLS) + (1− γ)αi,l

then it can be shown that

β̂i,l(SPLASSO) = sgn(b̂i,l)

(
|b̂i,l| −

λ1
2
γ

)
+

. (7)

Looking at (7) we can see that it is quite similar to (3) except that now it the parameter γ controls the
tradeoff between the OLS estimate and a smoothly weighted average of its neighboring pixels.

Similar approaches to solving the LASSO can also be applied to solving the SPLASSO; for details see.8
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