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a b s t r a c t

For helium-4, we present ab initio, semiclassical calculations of virial coefficients Bn for n = 2, 3, 4, and 5
from 50 to 1000 K. Using our values of B4 and B5 and the more accurate literature values of B2 and B3, we
argue that the ab initio virial equation of state is more accurate than recent, high-quality, densimeter
measurements spanning the range {223 K < T < 500 K, p < 38 MPa}. Thus, the present values of B4 and
B5 extend the useful temperature and density range of ab initio helium standards.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The virial equation of state, presented in Eq. (1), has long played
an important role in metrology and molecular physics because of
its connection to statistical mechanics. The virial coefficients Bn

can be formulated rigorously in terms of molecular interaction
energies, each encapsulating unique contributions to the pressure
from interactions within groups of n molecules. This simple rela-
tion for the pressure p, temperature T, and molar density q, where
NA is the Avogadro constant, kB is the Boltzmann constant, and Z is
the compressibility factor, remains of high interest despite the typ-
ical restriction to low order n and thus low densities and pressures.

Z ¼ p
NAkBTq

¼ 1þ
X1
n¼2

BnðTÞqn�1 ð1Þ

For some time, the thermophysical properties of helium at low
densities have been calculated from the ab initio virial equation of
state more accurately than they can be measured; therefore, the
calculated values have been used as standards to calibrate measur-
ing instruments [1,2]. Several areas of gas metrology will benefit
from extending accurate ab initio calculations to higher densities.
These include: (1) a calculable pressure standard obtained by com-
bining the ab initio equation of state with measurements of the
temperature and density [3,4]; (2) calibration of the equation-of-
state apparatus [5]; and (3) re-determination of the Boltzmann
constant from measurements of the dielectric constant of helium
at the temperature of the triple point of water [6].

To analyze experimental data, modifications to the virial equa-
tion of state are often employed. For example, to analyze data sets
for helium, Moldover and McLinden [5] used the virial model for Z
presented in Eq. (2):
ll rights reserved.
Z ¼ Zab initio þ B4q3 þ dðTÞ þ eðTÞ
q

ð2Þ

where

Zab initio ¼ 1þ B2qþ B3q2

In Eq. (2), the small parameter e accounts for zero offsets in the
measurements of the pressure and the density. The small parame-
ter d accounts for the fact that experimental values of Z do not ap-
proach precisely 1 as pressure decreases. Values of d – 0 are
generated by small errors in scale factors for measuring p, T, and
q, as well as non-negligible impurity concentrations. Moldover
and McLinden [5] used analytic representations of ab initio values
of B2 and B3 in Eq. (2) and fitted values of d, e, and B4 on each iso-
therm. In effect, fitting d and e calibrated the apparatus and pro-
tected the fitted values of B4 from the imperfections associated
with these terms. Their calibration reduced the uncertainty of
the determination of B4 by roughly a factor of 5 compared with a
conventional calibration [7] that did not use ab initio values of B2

and B3. Moldover and McLinden found that when an adjustable
B5 was included in fits to the measurements, it was not statistically
different from zero; thus, any effect of B5 and higher virials was
implicitly included in their values of B4.

Here, we demonstrate that the Moldover–McLinden analysis
of the experimental data can be significantly affected by the
inclusion of an ab initio estimate of B5. The virial model that is
fitted to provide B4 this way includes an analytic representation
of the fifth-order semiclassical values BSCL

5 reported in this work,
as shown in Eq. (3).

Z ¼ Zab initio þ B4q3 þ dðTÞ þ eðTÞ
q

ð3Þ

where

Zab initio ¼ 1þ B2qþ B3q2 þ BSCL
5 q4
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Ab initio values of B2 and B3 are from [8] and [9], respectively. All
ab initio values, including BSCL

5 , employ the pair potential of
Pryzbytek et al. [10] and the nonadditive trimer potential of Cencek
et al. [11]. Higher-order multi-body interactions are neglected.
Garberoglio [12] showed that his ab initio calculation of B4 using
the centroid approximation and the same potentials is nearly con-
sistent with the measurements of B4 we determined in this manner
and present here.

The fifth-order semiclassical values BSCL
5 reported here are com-

puted by Mayer-sampling Monte Carlo (MSMC). MSMC has been
applied previously to compute classical virial coefficients BCL

n for
a variety of potentials, including the Gaussian-charge polarizable
model (GCPM) for water up to n = 5 [13], the Lennard–Jones poten-
tial up to n = 8 [14], and the flexible TraPPE-UA alkane models up
to n = 5 [15,16]. The Lennard–Jones and TraPPE-UA potentials are
pairwise additive, such that only the additive component BA

n of
the virial coefficient is relevant. For GCPM water or the nonadditive
trimer interaction of Cencek et al. [11], one must also consider the
nonadditive component BNA

n .
Replacing the pair potential u12 with its quadratic Feynman–

Hibbs (QFH) modification uQFH
12 [17–19], shown in Eq. (4), one can

use the same MSMC framework to compute a semiclassical esti-
mate of the additive component of the virial coefficient BA;SCL

n

[20]. Here, h is Planck’s constant, �h is h=ð2pÞ, and m is the mass
of one of two identical atoms. In this work, we do not apply the
QFH modification to the nonadditive trimer potential because of
its complexity and its relatively minor contribution to the classical
virial coefficients computed here.
uQFH
12 ðr12Þ ¼ u12 þ

�h2b
24ðm=2Þ

@2u12

@r2
12

þ 2
r12

@u12

@r12

" #
ð4Þ

As noted by Guillot and Guissani [19], Feynman–Hibbs effective
potentials are more accurate and have better convergence proper-
ties than the Wigner–Kirkwood asymptotic expansion. In the
Wigner–Kirkwood expansion, the first quantum correction is ap-
plied to the Boltzmann factor for the system of n particles. As
described by Mayer and Band [21], the Wigner–Kirkwood expan-
sion of the probability of a particular configuration can be viewed
as approximating the use of a quantum correction to the potential
energy Uq � U within the exponential defining the probability:
e�bUq ¼ e�bUe�bðUq�UÞ ffi e�bUð1� bðUq � UÞÞ. Thus, employing a
quantum correction directly to the potential should be more
accurate.

We also consider the approach for the first quantum correction
employed by Kim and Henderson [22,23], shown in Eq. (5), which
we refer to as the KH approach. Here, g0n is the nth density expan-
sion coefficient of the classical radial distribution function g as
defined by g ¼ e�bu12

P
ng0nqn rather than g ¼

P
ngnqn.
BSCL
n ¼ BCL

n þ ðn� 1Þ h2b2

24pm

�
Z 1

0
e�bu12 g0n�2

@2u12

@r2
12

þ 2
r12

@u12

@r12

" #
r2

12dr12 ð5Þ

This correction can be viewed as an approximation to the Wig-
ner–Kirkwood expansion, in that the Boltzmann factor for only the
1–2 pair is corrected. The interactions between all other pairs are
classical, and so we would expect the KH approach to perform
worse at higher order n than the QFH approach. Kim and Hender-
son applied this approach to compute BSCL

n for the additive Haber-
landt potential of helium for n = 2–4 [22] and n = 5 [23].
2. Calculation details

2.1. Notes on the potentials

Because the pair potential of Pryzbytek et al. [10] is unphysical-
ly negative at very short separations, we apply a supplemental
hard core of 0.4 a0 to u12 and uQFH

12 (where a0 is the Bohr radius).
To compute uQFH

12 , we employ the mass of helium provided at the
NIST website of 4.002602 amu. The nonadditive potential of Cen-
cek et al. [11] is also unphysically negative at linear and near-linear
configurations with very short separations, so we omit this energy
if any of the pair separations is less than 2.5 a0.

For both the pair and nonadditive trimer potentials, we make no
attempt to account for systematic errors in the potentials relative
to true helium interactions; the uncertainties we report account
only for Monte Carlo stochastic error. Garberoglio et al. [9] and
Garberoglio [12] propagate uncertainties in the potential to the
virial coefficients by examining respective positive and negative
deviations of the potential, with magnitudes chosen to reflect the
estimated accuracy of the potential. This carries an implicit
assumption that inaccuracies in the potential at different separa-
tions are fully correlated. Apart from this, for n = 2, the approach
has clear validity as a means to establish bounds on the accuracy
of the virial coefficient: a more positive deviation in the potential
will necessarily result in a more positive B2, and a more negative
deviation will result in a more negative B2. At higher n, however,
its validity is less clear because the virial coefficients are formed
from sums of products of interaction terms of varying sign. Thus
one could, for example, shift the potential up and find that the viri-
al coefficient decreases. Moreover, errors in the potential may
introduce errors in the coefficients that offset each other when
summed to compute the pressure. Alternatively, one could exam-
ine the variance of Bn (or the pressure itself) upon application of re-
peated random perturbations of the potential. The result would be
a type of confidence limit describing the effect of inaccuracies in
the potential on the virial coefficients. In contrast to a simple shift
of the potential, this treatment instead assumes that inaccuracies
at different separations are completely uncorrelated, and in this re-
spect the approach has drawbacks as well; we do not pursue it
here either.
2.2. Calculations of classical and semiclassical approximations to Bn

For a spherically symmetric pair potential such as the helium
potential of Pryzbytek et al., B2 and BA

3 are readily computable by
quadrature and fast Fourier transforms (FFT), respectively. Portions
of higher-order additive components are also computable by FFT.
To compute other terms, we employ the MSMC formulation that
utilizes two-stage overlap sampling, described in detail elsewhere
[13–16]. Two Monte Carlo calculations are employed: one in which
the sampling weight is computed using the target integrand (the
integrand of Bn evaluated using the helium pair potential) and an-
other in which the sampling weight is computed using the refer-
ence integrand (the integrand of Bn evaluated for hard spheres
having diameter 3 Å).

Substantial savings in CPU time can be achieved with careful
selection of which portion is computed by FFT, as demonstrated
for the Lennard–Jones potential [24]. As in that work, we restrict
the possibilities for BA;FFT

n to zero, or one of the four approximations
that result from either the hypernetted chain (HNC) or the Percus–
Yevick (PY) integral-equation theories applied through either the
compressibility (c) or virial (v) equations: HNC(c), HNC(v), PY(c),
and PY(v). We find that the PY(c) route affords the most efficient
decomposition for the temperature range of 50–500 K, and compute
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BA
n � BA;PYðcÞ

n with 30 independent MSMC calculations of 108 steps
each at both fourth and fifth orders.

The semiclassical approximations to Bn reported here employ
only a classical nonadditive contribution: BNA;CL

n . BNA;CL
n is computed

using the MSMC method described by Benjamin et al. [13], but
with simplifications accounting for the lack of uniquely four- and
five-body interactions. We compute BNA;CL

3 with 100 independent
MSMC calculations of 106 steps, BNA;CL

4 with 50 independent MSMC
calculations of 106 steps, and BNA;CL

5 with 30 independent MSMC
calculations of 107 steps.
3. Results and discussion

3.1. Comparison with previous calculations of virial coefficients

Classical and semiclassical approximations to B2 and B3 are pro-
vided in Tables 1 and 2, respectively, and both B4 and B5 are given
in Table 3. In Tables 2 and 3 the uncertainties of BCL

n , BSCLðQFHÞ
n , and

BSCLðKHÞ
n account for the Monte Carlo stochastic error only, and for

reasons discussed above in the section Notes on the Potentials, we
do not attempt to account for the uncertainties from the helium
pair and trimer potentials. In contrast, approximate uncertainties
propagated from the potentials were reported in references [10]
and [8] at the k = 2 level for the values of B3 in Table 2 and values
of BCentroid

4 in Table 3. We note that these uncertainty estimates are
Table 1
The 4He second virial coefficient B2.

T (K) BCL
2 BSCLðQFHÞ

2 BSCLðKHÞ
2

B2
a

(cm3/mol) (cm3/mol) (cm3/mol) (cm3/mol)

50 5.7231 8.4969 9.0752 8.7580
63.15 7.9222 9.9697 10.2887
75 9.1180 10.7562 10.9627
83.15 9.6933 11.1268 11.2860
98.15 10.4287 11.5857 11.6907
103.15 10.6086 11.6937 11.7864
113.15 10.8992 11.8623 11.9358
123.15 11.1185 11.9820 12.0415
143.15 11.4105 12.1219 12.1628
148.15 11.4612 12.1419 12.1795
158.15 11.5428 12.1687 12.2006
173.15 11.6258 12.1828 12.2083
183.15 11.6609 12.1792 12.2014
198.15 11.6908 12.1592 12.1775
223.15 11.6968 12.0990 12.1126
248.15 11.6666 12.0175 12.0280
253.15 11.6575 11.9996 12.0095
273.15 11.6137 11.9239 11.9322
273.16 11.6137 11.9239 11.9321 11.9301
293.16 11.5607 11.8440 11.8509
298.15 11.5464 11.8236 11.8303 11.8289
323.15 11.4699 11.7200 11.7254
323.16 11.4699 11.7199 11.7254
348.15 11.3879 11.6152 11.6197
350 11.3817 11.6074 11.6119 11.6113
373.15 11.3027 11.5106 11.5144
375 11.2963 11.5029 11.5067 11.5063
398.15 11.2159 11.4071 11.4104
400 11.2094 11.3995 11.4028 11.4026
423.15 11.1285 11.3054 11.3082
425 11.1221 11.2979 11.3007
450 11.0350 11.1984 11.2008 11.2008
475 10.9487 11.1011 11.1032
500 10.8635 11.0062 11.0081 11.0082
600 10.5381 10.6510 10.6521 10.6523
700 10.2397 10.3322 10.3331 10.3332
800 9.9677 10.0455 10.0461 10.0462
900 9.7194 9.7862 9.7867 9.7867
1000 9.4919 9.5502 9.5506 9.5505

a Ref. [25].
roughly five times larger than the stochastic Monte Carlo uncer-
tainties in this work.

The values of the classical and semiclassical approximations to
B2, B3, B4, and B5 are plotted for each order in Figure 1. One can see
there that, at the considered temperatures, the QFH semiclassical
approximation is in excellent agreement with the values for B2

[25] and B3 [9]. We should note that a different pair potential
was used by Hurly and Mehl [25] in their computations of B2 than
is used in this work. Agreement is even better with the unpub-
lished B2 values [8] employing the pair potential of Przybytek
et al. [10], presented at selected temperatures in Table 4. At the
lowest temperature considered, 50 K, where the QFH semiclassical
approximation is the least accurate, it yields an error of only �3.0%
for B2 and �0.8% for B3, whereas the classical estimate yields an er-
ror of �34.7% for B2 and �19.0% for B3. For B4, the classical approx-
imation has errors relative to the QFH semiclassical approximation
of �29.3% at 50 K, �3.3% at 500 K, and �1.8% at 1000 K. For B5,
these errors increase to �31.7% at 50 K, �5.2% at 500 K, and
�4.0% at 1000 K.

Where considered here, the KH semiclassical approximation is
slightly superior to the QFH semiclassical approximation for B2

and B3, with the exception of B2 at 50 K. The similarity of the re-
sults for both approximations reflects the relative smallness of
the quantum effect. At temperatures lower than those considered
here, there can be significant differences between the two. For
B4, the semiclassical estimate BSCLðQFHÞ

4 is in good agreement with
Table 2
The 4He third virial coefficient B3. Values in parentheses are standard (k = 1)
uncertainties on the rightmost digit(s).

T (K) BCL
3 BSCLðQFHÞ

3 BSCLðKHÞ
3

B3
a

(cm6/mol2) (cm6/mol2) (cm6/mol2) (cm6/mol2)

50 166.714(16) 204.174(16) 206.446(16) 205.82(11)
63.15 160.230(12) 189.914(12) 191.525(12) 191.03(10)
75 155.566(11) 180.155(11) 181.333(11) 180.98(8)
83.15 152.643(10) 174.484(10) 175.444(10)
98.15 147.600(9) 165.514(9) 166.191(9)
103.15 146.011(8) 162.866(8) 163.473(8)
113.15 142.940(7) 157.958(7) 158.451(7)
123.15 139.996(7) 153.484(7) 153.890(7)
143.15 134.513(6) 145.609(6) 145.894(6)
148.15 133.228(5) 143.835(5) 144.097(5)
158.15 130.715(5) 140.441(5) 140.666(5)
173.15 127.155(5) 135.768(5) 135.947(5)
183.15 124.898(5) 132.880(5) 133.036(5)
198.15 121.695(5) 128.863(5) 128.991(5)
223.15 116.788(4) 122.871(4) 122.966(4)
248.15 112.332(4) 117.575(4) 117.647(4)
253.15 111.494(5) 116.591(5) 116.660(5)
273.15 108.285(4) 112.862(4) 112.919(4)
273.16 108.275(4) 112.853(4) 112.909(4) 112.93(3)
293.16 105.290(4) 109.429(4) 109.476(4)
298.15 104.575(4) 108.615(4) 108.659(4)
323.15 101.171(4) 104.769(4) 104.805(4)
323.16 101.166(3) 104.763(3) 104.799(3)
348.15 98.016(4) 101.246(4) 101.276(4)
350 97.801(3) 101.006(3) 101.035(3) 101.04(3)
373.15 95.105(4) 98.024(4) 98.049(4)
375 94.906(4) 97.805(4) 97.829(4) 97.86(3)
398.15 92.392(3) 95.047(3) 95.068(3)
400 92.211(3) 94.848(3) 94.868(3) 94.88(3)
423.15 89.871(4) 92.298(4) 92.316(4)
425 89.691(4) 92.103(4) 92.120(4)
450 87.343(4) 89.559(4) 89.574(4) 89.59(3)
475 85.133(3) 87.177(3) 87.190(3)
500 83.061(3) 84.955(3) 84.966(3) 84.97(3)
600 75.848(3) 77.287(3) 77.293(3) 77.30(3)
700 69.963(3) 71.101(3) 71.105(3) 71.13(2)
800 65.064(3) 65.990(3) 65.993(3) 66.01(2)
900 60.895(3) 61.667(3) 61.669(3) 61.68(2)
1000 57.297(3) 57.951(3) 57.953(3) 57.97(2)

a Ref. [10]. These values include propagated uncertainties in the potential.



Table 3
The 4He fourth and fifth virial coefficients B4 and B5. Values in parentheses are
standard (k = 1) uncertainties on the rightmost digit(s).

T (K) BCL
4 BSCLðQFHÞ

4 BCentroid
4

a BCL
5 BSCLðQFHÞ

5

(cm9/mol3) (cm9/mol3) (cm9/
mol3)

(cm12/mol4) (cm12/mol4)

50 1574.4(2) 2227.9(2) 1.737(3)�104 2.5420(17)�104

63.15 1542.01(19) 2010.4(2) 1.4907(16)�104 20028(10)
75 1477.24(13) 1839.03(14) 1.2947(11)�104 16593(7)
83.15 1427.05(13) 1735.82(14) 11796(6) 14773(6)
98.15 1333.85(13) 1571.67(14) 10045(4) 12190(4)
103.15 1303.77(13) 1523.44(14) 9551(3) 11492(3)
113.15 1246.25(11) 1435.68(11) 8674(2) 10278(4)
123.15 1191.85(11) 1356.91(12) 7918(3) 9265(3)
143.15 1094.45(11) 1223.01(11) 6690.5(17) 7678(2)
148.15 1072.27(11) 1193.83(11) 6426(2) 7348.4(19)
158.15 1030.04(12) 1139.01(12) 5951.6(18) 6757(2)
173.15 972.20(10) 1065.57(10) 5340.8(15) 6004.4(17)
183.15 936.53(9) 1021.53(9) 4984.4(13) 5572.0(14)
198.15 887.71(11) 961.99(11) 4511.9(16) 5012.5(13)
223.15 816.34(9) 876.75(9) 3870.5(13) 4256.5(15)
248.15 755.04(9) 805.31(9) 3357.8(11) 3663.4(12)
253.15 743.68(9) 792.24(9) 3269.3(11) 3560.7(12)
273.15 701.51(10) 743.97(10) 2940.8(11) 3187.9(12)
273.16 701.44(8) 743.88(8) 744.7(5) 2940.0(14) 3186.4(11)
293.16 663.56(8) 701.02(8) 2659.2(11) 2870.0(11)
298.15 654.87(9) 691.24(9) 2595.7(9) 2798.7(10)
323.15 613.65(8) 645.13(8) 2305.1(10) 2476.1(9)
323.16 613.66(8) 645.16(8) 2305.7(10) 2474.4(10)
348.15 576.93(7) 604.45(7) 2063.2(10) 2206.3(9)
350 574.52(7) 601.81(7) 601.8(5) 2046.1(12) 2186.5(13)
373.15 544.31(7) 568.59(8) 1852.3(8) 1974.0(9)
375 541.96(6) 566.01(6) 566.1(5) 1837.5(9) 1957.9(9)
398.15 514.76(8) 536.34(8) 1672.1(9) 1777.3(9)
400 512.81(7) 534.21(7) 534.1(5) 1658.7(10) 1763.1(9)
423.15 488.05(6) 507.36(6) 1516.0(8) 1607.0(8)
425 486.15(6) 505.31(6) 1504.5(8) 1594.7(9)
450 462.32(10) 479.56(10) 479.2(5) 1367.7(13) 1446.3(13)
475 440.02(6) 455.60(6) 455.5(5) 1247.7(8) 1315.5(8)
500 420.04(6) 434.19(6) 433.8(4) 1140.1(7) 1202.1(7)
600 353.34(7) 363.41(7) 363.2(4) 815.6(7) 855.3(7)
700 303.35(5) 310.86(5) 310.8(4) 597.0(7) 623.9(7)
800 264.60(6) 270.41(6) 270.1(4) 443.6(5) 463.0(5)
900 233.38(5) 238.01(5) 237.8(4) 330.6(6) 344.9(7)
1000 208.04(5) 211.78(5) 211.6(4) 247.7(4) 258.0(4)

a Ref. [12]. These values include propagated uncertainties in the nonadditive
trimer potential.
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the centroid approximation of Garberoglio [12], as can be seen in
Table 3 and in Figure 1c. While quantitative comparison is limited
by consideration of different temperatures, the values differ by less
than 0.11% at 273.16 K and above. BSCLðQFHÞ

4 is more positive than
BCentroid

4 at temperatures above 400 K, and more negative at temper-
atures below 350 K. While the accuracy of BCentroid

4 is unknown, the
accuracy of BCentroid

3 is worse below room temperature than the
semiclassical approximation [12].

Components of the classical and semiclassical approximations
to B4 and B5 are plotted in Figure 2. For the temperature range of
interest, the PY(c) approximation is the largest component of the
total value. The errors of this approximation for B4 range from
�2.5% at 50 K to 8.6% at 500 K and for B5 range from �11.4% at
50 K to 56.0% at 500 K. The PY(c) approximation is known to wor-
sen with increasing order n, but perhaps could still provide an or-
der-of-magnitude estimate of B6. The PY(c) approximation, which
is a subset of the additive component, becomes worse with
increasing temperature because the additive component as a
whole diminishes to a value closer to that of the nonadditive com-
ponent, which has a weak temperature dependence in this range.
The nonadditive component is most significant at high tempera-
ture where quantum effects are unimportant.
3.2. Comparison with measurements

Instead of focusing on a particular virial coefficient, we ask: are
the helium data consistent with the ab initio equation of state
including semiclassical B4 and B5? To answer this question, we fit-
ted the two instrument parameters d(T) and e(T) on each isotherm
using Eq. (6), where B2(T) and B3(T) are analytic representations of
the values from [8] and [9], respectively, and semiclassical B4(T)
and B5(T) are analytic representations of the values computed in
this work. (The deviations of the tabulated numerical values from
the analytic representations were random and of the same order
as the uncertainty in the values.)

Z ¼ Zab initio þ dðTÞ þ eðTÞ
q

ð6Þ

where

Zabinitio ¼ 1þ B2qþ B3q2 þ BSCLðQFHÞ
4 q3 þ BSCLðQFHÞ

5 q4

We consider two sets of helium data: the isotherms of McLin-
den and Lösch–Will [7] and those of Moldover and McLinden [5].
We refer to these as the ‘ML isotherms’ and the ‘MM isotherms’,
respectively. (Moldover and McLinden [5] referred to these as the
‘2005 isotherms’ and ‘2007 isotherms’, respectively.) Table 4 lists
the fitted values of d and e, and the previously unpublished values
of B2 from [9]. For both the ML and MM isotherms, the deviations
of the fitted values of Z from the experimental values are plotted at
selected temperatures from 223 to 500 K in Figure 3. The standard
deviation of the error in fitted Z is 1.06 � 10�5, which is slightly lar-
ger than the value 0.98 � 10�5 reported by Moldover and McLin-
den [5]. This is not surprising because in [5] they fitted a third
parameter, B4, to the data on each isotherm. We also considered
the effect of the uncertainty of the isothermal compressibility
u(jT) of the ‘sinkers’ used to measure the density of the helium.
McLinden and Lösch–Will [7] conservatively estimate the relative
uncertainty from this source as ur(q) = 1.3 � 10�6 (p/MPa). Upon
changing the measured values of q by the factor
[1 � 0.4 � 10�6 (p/MPa)] which is 30% of ur(q), the standard devia-
tion decreased to 0.99 � 10�5, essentially the same value reported
by Moldover and McLinden.

From Figure 3, we conclude that the ab initio virial equation of
state is consistent with the densimeter measurements throughout
the temperature range 223–500 K at pressures up to 38 MPa. Be-
fore calibration, the standard deviation of data in Figure 3 above
7 MPa was 3.7 � 10�5, which is smaller than expected from the
densimeter’s specifications. (Sections 3.4, 3.5, and 3.6 of [7] discuss
the uncertainties of the densimeter measurements before calibra-
tion with helium. The uncertainties are a complicated function of
the temperature, pressure, and density of the test fluid. For helium
at 293 K and 20 MPa, ur(q) � 5 � 10�5; the uncertainty is larger at
higher and lower pressures and at higher and lower tempera-
tures.). We conclude that the present virial model is indeed useful
for reducing the uncertainty of the densimeter measurements. By
fitting the parameters d(T) and e(T), Moldover and McLinden
calibrated out the imperfections of the apparatus at low pressures.
By fitting jT, we demonstrate the possibility of calibrating out
other imperfections at high pressures. (An apparent, linear
pressure dependence of the density might result from some com-
bination of an error in jT, a systematic error in the pressure cali-
bration, or hysteresis in the pressure transducer.)

We now consider the possible effects of our neglect of B6 for two
thermodynamic states: (1) the highest density (0.002762 mol cm�3

at 7 MPa) on the 273.16 K isotherm that was used by Fellmuth et
al. [6] during their recent determination of kB, and (2), the lowest
temperature and highest density in the densimeter measurements
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Figure 1. Comparison of semiclassical and classical approximations to the 4He virial coefficients at (a) second, (b) third, (c) fourth, and (d) fifth order. At second and third
order, available quantum values are shown to be in excellent agreement with the semiclassical approximations. At third and higher order, the nonadditive component is also
plotted to show its relatively small contribution. Error bars denoting standard (k = 1) uncertainties are too small to be discernable. (a) Ref. [25], (b) Ref. [9] and (c) Ref. [12].

Table 4
Values of the fitting parameters e(T) and d(T) in Eq. (6) and their standard (k = 1)
uncertainties. Also presented are values of B2 from [8] used in Eq. (6), with their
expanded (k = 2) uncertainties indicated by the digits in parentheses.

T (K) 104 e 106 d B2

(kg/m3) (cm3/mol)

ML isothermsa

223.14 �2.01(36) �73(3) 12.1056(12)
253.15 �0.78(35) �43(4) 12.0044(11)
273.16 �4.51(80) �42(6) 11.9279(10)
273.16 �4.20(36) �22(4)
273.16 1.42(38) �27(5)
273.16 �1.56(30) �24(3)
293.16 �6.22(48) �12(6) 11.8474(9)
323.16 �9.37(19) 48(3) 11.7226(9)

MM isothermsb

323.16 0.54(1.00) 10(7)
323.16 �3.26(1.27) 14(9)
350.01 �1.89(1.39) 22(11) 11.6095(8)
375.01 1.91(0.83) 22(7) 11.5047(8)
400.01 2.84(1.17) �2(10) 11.4011(7)
425.01 7.75(0.68) �33(4) 11.2992(7)
450.01 �2.67(0.61) 4(6) 11.1995(7)
475.00 �7.33(0.63) 22(6) 11.1021(6)
500.01 �11.23(1.27) 30(13) 11.0071(6)

a Ref. [7].
b Ref. [5].
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of McLinden and Lösch–Will [7] shown in Figure 3. At 273.16 K and
0.0027629 mol cm�3, the terms B2q, B3q2, BSCL

4 q3, and BSCL
5 q4 have

the values 0.032955, 0.861 � 10�3, 1.6 � 10�5, 1.86 � 10�7,
respectively. Thus, the virial series converges rapidly and a reason-
able guess is B6q5 � 2 � 10�9 [26]. Also, at 273.16 K and
0.0027629 mol cm�3, we have the k = 1 uncertainties u(B2)q =
1.7 � 10�6 from [9], u(B3)q2 = 2.4 � 10�7 from [10], and
u(B4)q3 = 1.1 � 10�8 from [12] (all of which are dominated by con-
tributions that attempt to estimate effects of possible inaccuracy in
the ab initio potentials). Thus all of the terms B6q5,
u(B2)q,� � �u(B5)q4 at 273.16 K and 7 MPa are much smaller than
the relative uncertainty ur(kB) = 7.9 � 10�6 claimed for the Boltz-
mann constant measurement in [6].

At 223.15 K and 0.01664 mol cm�3, the terms B2q, B3q2, BSCL
4 q3,

and BSCL
5 q4 have the values 0.2015, 0.03403, 4.04 � 10�3,

3.27 � 10�4, respectively; therefore, we estimate B6q5 � 2 � 10�5

[26], which is larger than 1.06 � 10�5, the standard deviation of
the data in Figure 3. However, numerical experiments show that
adding the term 2 � 10�5 (q/0.01664 mol cm�3)5 to the 223.15 K
isotherm and refitting d and e would not make the 223.15 K
isotherm stand out in Figure 3. Also at 223.15 K and
0.01664 mol cm�3, we have the k = 1 uncertainties u(B2)q =
0.98 � 10�5 from [9], u(B3)q2 = 0.97 � 10�5 from [10], u(B4)q3

= 0.04 � 10�5 from Table 3 (or 0.12 � 10�5 if using the uncertainty
in [12], which attempts a contribution for inaccuracy in the poten-
tial), and u(B5)q4 = 0.01 � 10�5 also from Table 3. The sum in quad-
rature of the terms u(Bn)qn�1 is �1.4 � 10�5, which is smaller than
the estimated error incurred from neglect of B6q5 but larger than
the standard deviation in the data. To summarize, the error in
the ab initio virial equation of state of helium at 223.15 K and
0.01664 mol cm�3 is approximately 2.0 times larger than the reso-
lution of a contemporary, accurate, densimeter; however, the den-
simeter could not detect an error of this size in the equation of
state of helium because the values of the fitted apparatus parame-
ters d(T) and e(T) (and possibly jT) would change to accommodate
it. Thus, we assert that the ab initio equation of state of helium is
more accurate than this densimeter in the range of the MM and
ML data.

In [12], Garberoglio used the same densimeter data to ask a dif-
ferent question: what values of B4 result from the data when the
instrumental parameters d(T) and e(T) are allowed to vary while
B2 is fixed at the ab initio values in [9], B3 is fixed at the ab initio
values in [8], and B5 is fixed at the semi-classical values reported
in this work? This question is answered in Table 5. For comparison,
Table 5 also displays the values of BSCLðQFHÞ

4 computed here, and the
values of B4 fitted to experiment by Moldover and McLinden using
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Figure 2. Components of (a) BCL
4 , (b) BSCLðQFHÞ

4 , (c) BCL
5 , and (d) BSCLðQFHÞ

5 for 4He. The additive Percus–Yevick compressibility-route approximation, computable by FFT, is the
largest component in all cases. Error bars denoting standard (k = 1) uncertainties are too small to be discernable.

Figure 3. Relative deviations of measured data from the virial model (Eq. (6)) after
fitting values of the apparatus parameters d and e on each isotherm. The data from
[5] are linked by solid lines; the data from [7] are linked by dotted lines. The
standard deviation of the data is 10.6 � 10�6. The symbols identifying the isotherms
are: d 223 K; s 253 K; j 273 K; h 293 K; N 323 K; 4 350 K; . 375 K; 400 K; �
425 K; e 450 K; 475 K; 500 K.

Table 5
The 4He fourth virial coefficient B4 fitted using virial models, compared to the
semiclassical BSCLðQFHÞ

4 values at some of the temperatures computed in this work.
Values in parentheses are standard (k = 1) uncertainties on the rightmost digit(s).

T (K) BSCLðQFHÞ
4

B4 fitted with

BSCLðQFHÞ
5 included

B4 fitted in [5]
with B5 � 0

(cm9/mol3) (cm9/mol3) (cm9/mol3)

ML Isotherms [7]
223.14 876.75(9) 875.1(2.0) 960(12)
253.15 792.24(9) 795(3.1) 864(14)
273.16 743.88(8) 743.2(5.1) 801(14)
273.16 743.88(8) 735.7(2.9) 791(15)
273.16 743.88(8) 746.3(4.7) 803(15)
273.16 743.88(8) 739.9(3.3) 799(16)
293.16 701.02(8) 702.4(8.0) 750(17)
323.16 645.16(8) 641.6(4.2) 674(19)

MM isotherms [5]
323.16 645.16(8) 623.7(3.0) 659(17)
323.16 645.16(8) 619.5(3.6) 661(17)
350 601.81(7) 563.1(4.6) 593(19)
375 566.01(6) 546.8(10.3) 573(22)
400 534.21(7) 496.3(15.2) 521(25)
425 505.31(6) 493.3(9.5) 512(24)
450 479.56(10) 447.9(12.9) 465(31)
475 455.60(6) 425.4(18.8) 442(36)
500 434.19(6) 412.7(55.6) 427(53)
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the assumption that B5 ffi 0. The results trend differently for the ML
and MM data sets. When BSCLðQFHÞ

5 is used, the fitted values of B4 for
the ML isotherms agree within combined uncertainties with
BSCLðQFHÞ

4 (as well as BCentroid
4 (not shown)): including BSCLðQFHÞ

5 brings
the fitted values of B4 into much better agreement with the ab
initio estimates. However, the values of B4 obtained by fitting the
MM isotherms differ from the ab initio values such that on average
B4;MM � BSCLðQFHÞ
4 ¼ �25cm9=mol3, and at most temperatures,

including BSCLðQFHÞ
5 worsens the agreement of the fitted values with

the ab initio estimates. At this point we are not prepared to draw
conclusions about the origin of this differing behavior, but it is
worthwhile to consider possible causes. We note first that while
this difference is comparable to the measurement uncertainty, it
is biased and thus suggests an inaccuracy (i.e., systematic error).
Such an error in the ab initio virial coefficients could result from
the neglect of 4- or 5-body contributions to the potential, or it
could be inherent in the 2- and 3-body potentials used to calculate
the virial coefficients. In this respect we note that Garberoglio’s
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confidence limits, which attempt also to characterize the magni-
tude of the bias in BCentroid

4 that could result from inaccuracies in
the 3-body potential, are only about 1 cm9/mol3, and thus do not
explain the deviation observed in Table 5. Alternatively it may have
to do with neglect of B6, or it could reflect some subtle issue with
the experimental data. Further study should be able to resolve the
question.

4. Conclusions

The helium equation-of-state data from McLinden and Lösch–
Will [7] and Moldover and McLinden [5] are consistent with the
virial equation of state using ab initio values of B2, B3, BSCLðQFHÞ

4 ,
and BSCLðQFHÞ

5 , together with reasonable values of the temperature-
dependent apparatus parameters d and e. We detected a possible
correction to the isothermal compressibility of the sinkers corre-
sponding to about one-third of its uncertainty estimated from
the literature. If the uncertainties of the calculated virial coeffi-
cients are uncorrelated and if four and five-body interactions can
be ignored, the (k = 1) relative uncertainty of the calculated density
is approximately 2.5 � 10�5 in the worst case considered here. Un-
der these conditions (223 K, 38 MPa), the theoretical uncertainty is
smaller than the uncertainty of the best measurements known to
the authors.

At the considered temperatures, the semiclassical values of the
virial coefficients of helium as computed here constitute a signifi-
cant improvement relative to the classical approximation. We plan
to compute fourth and fifth virial coefficients fully accurate with
respect to quantum effects such that lower temperatures can be
considered. While the nonadditive trimer contributions are rela-
tively small at all orders relative to the total virial coefficient, the
significance of the four- and five-body interactions is unknown
and merits further investigation.
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