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We compared face identification by humans and machines using images taken under a variety of
uncontrolled illumination conditions in both indoor and outdoor settings. Natural variations in a
person’s day-to-day appearance (e.g., hair style, facial expression, hats, glasses, etc.) contributed
to the difficulty of the task. Both humans and machines matched the identity of people (same or
different) in pairs of frontal view face images. The degree of difficulty introduced by photomet-
ric and appearance-based variability was estimated using a face recognition algorithm created by
fusing three top-performing algorithms from a recent international competition. The algorithm
computed similarity scores for a constant set of same-identity and different-identity pairings from
multiple images. Image pairs were assigned to good, moderate, and poor accuracy groups by rank-
ing the similarity scores for each identity pairing, and dividing these rankings into three strata.
This procedure isolated the role of photometric variables from the effects of the distinctiveness of
particular identities. Algorithm performance for these constant identity pairings varied dramati-
cally across the groups. In a series of experiments, humans matched image pairs from the good,
moderate, and poor conditions, rating the likelihood that the images were of the same person
(1: sure same - 5: sure different). Algorithms were more accurate than humans in the good and
moderate conditions, but were comparable to humans in the poor accuracy condition. To date,
these are the most variable illumination- and appearance-based recognition conditions on which
humans and machines have been compared. The finding that machines were never less accurate
than humans on these challenging frontal images suggests that face recognition systems may be
ready for applications with comparable difficulty. We speculate that superiority of machines over
humans in the less challenging conditions may be due to its use of view-specific identity informa-
tion. Humans may ignore this information due to its limited potential for robust generalization
over view change.
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1. INTRODUCTION

When humans and machines differ on a face recognition judgment, which “system”
is more likely to be correct? It is widely but incorrectly believed that humans
are more accurate than machines at most face recognition tasks. In fact, compar-
isons made between humans and algorithms competing in two recent international
competitions, the Face Recognition Grand Challenge (FRGC) [Phillips et al. 2010]
and the Face Recognition Vendor Test (FRVT 2006) [Phillips et al. 2010], showed
that the best face recognition algorithms surpassed humans at the task of matching
identity in frontal face images [O’Toole et al. 2007; O’Toole et al. 2008]. For those
comparisons, one image in the pair was taken under controlled illumination (studio
or “mugshot” quality) and the other image was taken under uncontrolled (indoor
ambient) illumination. Notably, the advantage for the algorithms over humans
was particularly large for identifications that were pre-screened with a baseline
pixel-wise image comparison algorithm to be “easy” for the algorithms. For the
top-performing algorithms, however, the performance advantage for machines was
evident even for identifications prescreened to be “difficult” for the algorithms.

The impressive performance of algorithms relative to humans in these tests might
be interpreted to suggest that the problem of automatic face recognition from
frontal images is “solved”, even when illumination varies. A more recent assessment
of algorithm performance with a more challenging data-set of frontal face images
indicates that this conclusion is premature [Phillips et al. 2011]. The test was con-
ducted by National Institute of Standards and Technology and named The Good,
The Bad and The Ugly (GBU) Challenge [Phillips et al. 2011]. Its purpose was
to understand the characteristics of face image pairs that are identified by current
algorithms with high (the “good”), moderate (the “bad”), and poor (“the ugly”)
accuracy. In particular, the effects of natural variations in a person’s day-to-day
appearance (hair, facial expression, etc.) and variations in illumination across both
indoor and outdoor settings were considered. An important control imposed on
the stimulus set in this test was that all three data sets were made up of identity
pairs of the same individuals. Thus, only the images, not the individual identities,
changed across the three groups. This provides an assurance that the accuracy
differences for algorithms were due to factors other than the particular set of face
identities tested.

To arrive at the performance-based data conditions in the GBU evaluation, three
top-performing face recognition algorithms from the FRVT 2006 algorithm test
[Phillips et al. 2010] were computationally “fused” to produce a single algorithm.
This involved combining estimates generated by the three algorithms of the similar-
ity between each pair of face images (cf., Methods section for details of the fusion
procedure). This “similarity score” forms the basis for an identification judgment,
with higher similarity scores indicating a higher likelihood that two images are of
the same individual. For each same-identity pairing of an individual, multiple simi-
larity scores were available from different image pairings. These scores were ranked
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and partitioned into three groups. The face pairs with the highest third of the
scores comprised the “high accuracy condition”, the face pairs with scores in the
middle third comprised the “moderate accuracy condition”, and face pairs in the
lowest third of the scores comprised the “low accuracy condition”. Figure 1 shows
three pairs of images of the same person, sampled from the good (left), moderate
(middle), and poor (right) performance conditions. This figure illustrates the wide
variation in the appearance of a person across frontal images. It also highlights the
difficulties that may occur in matching identity in pairs of images that are taken in
different settings and which include variations in expression and appearance-based
features such as hairstyle. These factors become even more salient in combination
(cf., Figure 1 right).

More concretely, Figure 2 contains the distribution of algorithm-generated sim-
ilarity scores for matched (images of the same person) and non-matched (images
of different people) identity pairs found in the GBU challenge. As is clear, the top
third of cases yield minimal overlap between similarity scores for the matched and
non-matched identity pairs, whereas the bottom third show strong overlap between
the matched and non-matched distributions. The performance of the algorithm is
highly accurate for best cases and quite poor for the worst cases. Note that the
three distributions in Figure 2 contain the same pairs of face identities, isolating
the impact of photometric and appearance-based variation on recognition.

The purpose of the present study was to compare humans to face recognition
algorithms with stimuli that portray faces with natural variations in appearance
and illumination. Specifically, we compared machines and humans as a function of
the level of challenge. Illumination variation is well-known to affect both machine
and human face recognition performance [Gross et al. 2005; Adini et al. 1997; Braje
2003; Braje et al. 1999; Hill and Bruce 1996; Johnston et al. 1992]. Although these
natural changes in appearance (e.g., hair style, expression) are common in everyday
life, they have not been studied extensively either by psychologists or by computer
vision researchers. One exception is a recent study by Jenkins and colleagues that
provides a striking demonstration of the variability of a person’s appearance across
multiple images [Jenkins et al. 2010]. In that study, participants were asked to
decide how many different individuals were pictured among 40 “web-gathered”
images, comprised of 20 images each of two inidviduals. On average, participants
“found” between seven and eight unique identities in the 40 images.

The data from the GBU challenge provided a unique opportunity to look at hu-
man performance over natural variations in viewing conditions that are problematic
for machine-based recognition systems. In the first set of experiments, we measured
human performance matching the identity of face pairs sampled from the match
and non-match distributions generated by the GBU evaluation (Figure 2). These
represent different degrees of difficulty for algorithms. How do humans compare
to algorithms as the difficulty for the algorithms increases? In the first set of ex-
periments, we sampled the distributions near their respective means and compared
short exposure times with unlimited viewing times. In a second set of experiments,
we sampled the moderate and difficult distributions more broadly and tested two
separate groups of participants with a larger number of image pairs. The compari-
son across the first two experiments offers insight into the extent to which humans
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Fig. 1. Two example stimuli from the good, moderate, and poor distributions to illustrate the
variation in the challenge level associated with matching identity in these three data sets. The top
two rows show three pairs of images of the same person, sampled from the good (left), moderate
(middle), and poor (right) performance conditions. The second two rows show the same type of
sample for a second person.
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Fig. 2. This figure shows the distribution of algorithm generated similarity scores for matched
(images of the same person) identity pairs and non-matched (images of different people) identity
pairs for the GBU test.

maintain a stable criterion for determining the level of similarity needed to affirm
or reject an identification match. In combination, the results of the study provide
a basis for understanding how human face recognition abilities compare to those of
current algorithms as the level of difficulty increases. This is especially interesting
in cases, such as the present one, where neither the human nor machine performs
flawlessly.

2. EXPERIMENTS
2.1 Stimulus Set

The data set for the GBU challenge was constructed from face images in the multi-
biometric database collected at Notre Dame University for the FRVT 2006 [Phillips
et al. 2010]. These images were selected from a larger set collected either outside
or with ambient indoor illumination in a corridor. All images were acquired with
a 6 Mega-pixel Nikon D70 camera, and were taken between Aug. 2004 and May
2005. As noted, because multiple images were available for all of the subjects in the
database, it was possible to assess algorithm performance for matching the identity
of the same person with many image pairings. This was also true for pairings of
different identities. The creation of three performance-based stimulus partitions was
carried out by ranking the similarity scores generated by the fused algorithm (see
below) and dividing them into three strata to produce the good, moderate, and
poor performance partitions. Stimuli from these algorithm-generated partitions
formed three conditions for the human participants in these experiments. We refer
to these conditions henceforth as the good, moderate, and poor conditions.

Each condition was constructed using two sets of images. Set 1 included 1085
images of 457 individuals and Set 2 included 1085 different images of the same
individuals. To balance subject counts across the three conditions, the number of
images per person was the same in Sets 1 and 2. To assure that identity matches
could not be based on trivial appearance cues (clothing, hair), the images in all
matched identity pairs were taken on different days.

The task of the algorithm was to assign a similarity score to all possible pairs
of images from Set 1 and 2. Thus, for each condition, the algorithm produced a
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1085 x 1085 similarity matrix of 1,177,225 similarity scores, where element s; ;
of the matrix contained the similarity between the i** image in Set 1 and the j**
image in Set 2. For each condition, the matrix contained similarity scores for 3297
matched identity pairs and 1,173,928 non-matched identity pairs. The matched
and non-matching identity pairings across these three conditions were exactly the
same.

2.2 Algorithm Source

The FRVT 2006, a U.S. Government-sponsored international competition for face
recognition algorithms, was the source of the algorithm used in this study. Com-
plete information and results for this competition can be found elsewhere [Phillips
et al. 2010]. For present purposes, the algorithm we tested was a fusion of three
top-performing algorithms from the FRVT 2006. All three of these algorithms were
submitted by commercial enterprises. We note at the outset that the FRV'T 2006,
and similar US Government sponsored algorithm competitions, are conducted with-
out access to the source code of the algorithms entered. Instead, executable versions
of the programs, installed at NIST, are used for the test. The use of executables
protects the proprietary nature of the code and makes it more likely that the very
best commercial algorithms will participate in the evaluation. The downside, how-
ever, is that it is not possible to know precisely how individual algorithms operate.
For this reason, it makes sense to use a combination of several good algorithms
rather than any individual algorithm.

This fusion algorithm was created by combining the similarity scores generated
by the three algorithms for all possible pairs of the Set 1 and Set 2 images. The
fusion was computed in a two-step process. In the first step, for each algorithm, the
median and the median absolute deviation (MAD) were estimated from 1 in 1023
similarity scores (mediany and MADy, are the median and MAD for algorithm k).
This sampling method was used to avoid “over tuning” the estimates to the data.
The similarity scores were selected to evenly sample the images in the experiment.
The fused similarity scores were computed as follows: If s, is a similarity score for
algorithm k and sy is a fusion similarity score, then sy = >, (s, —mediany)/MADj,.

3. EXPERIMENTS 1A AND 1B : HUMAN PERFORMANCE - SAMPLING FROM
NEAR THE DISTRIBUTION AVERAGES

In this first set of experiments, humans matched the identity of face pairs sam-
pled from the good, moderate, and poor distributions generated by the fused face
recognition algorithm (see Figure 2). In Experiment la, participants saw each pair
of faces for 2 s before entering a judgment. In Experiment 1b, participants were
allowed to view the faces for an unlimited amount of time. For all three conditions,
the stimulus pairs presented to participants were selected from close to the mean
of their respective matched and non-matched distributions. Because of the large
number of available pairs of images in each distribution, and the smaller number
of pairs we can reasonably present to human participants, it was possible to se-
lect a set of matched and non-matched pairs with virtually no overlap in similarity
scores for all three conditions. In other words, on these image pairs, the algorithm
performed perfectly for the the good, moderate, and poor conditions (see Figure
2). Despite the perfect performance of the algorithm with samples chosen in this
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way, as we will see, human performance can be linked to these algorithm-generated
similarity scores, independent of the local distribution of scores in the experimental
conditions.

3.1 Methods

3.1.1 Participants. Undergraduate students from the School of Behavioral and
Brain Sciences at The University of Texas at Dallas volunteered to participate in
these experiments in exchange for a research credit in a psychology course. A total
of 21 students (14 females and 7 males) participated in Experiment la and 22
students (15 females and 7 males) participated in Experiment 1b.

3.1.2  Stimuli. For each condition, image pairs were chosen by beginning at the
mean of each distribution and sampling pairs with similarity scores directly around
these means. Any image pairs with identities duplicated in the condition were
eliminated. We selected 40 pairs of matched identity images and 40 pairs of non-
matched identities for each condition. The images were 752 pixels wide and 500
pixels in height. For consistency, the images were presented on the same high
quality 24 inch Apple monitor for all experiments.!

3.1.3  Procedure. Participants were instructed about the purpose and procedure
of the experiment. On each trial, they viewed a pair of images, presented side by
side on the computer screen. In Exp. la, the images remained visible for 2 s,
and then disappeared, after which a text prompt appeared asking the participant
to choose one of the following responses: 1.) Sure they are the same person; 2.)
Think they are the same person, 3.) Don’t know; 4.) Think they are different
people; 5.) Sure they are different people. In Exp. 1b, the face pair appeared
on the screen along with the prompt, and remained visible until the participant
entered a response.

In both cases, the participant’s rating was used in this study as a human-
generated measure of the similarity of the faces in each pair. This is analogous
to the similarity scores generated by the algorithm.

Both experiments consisted of 240 trials of face pairs (120 matched pairs and 120
non-matched pairs; 80 pairs from each condition).

3.2 Results: Exp. 1la

The results were analyzed in two ways. First, we computed receiver operator char-
acteristic (ROC) curves from the rating scale used by participants to indicate the
likelihood that the people in the image pairs were the same [Macmillan and Creel-
man 1991]. These appear in Figure 3 (left) and show a stratification of performance
for the good condition over the moderate and poor conditions. The moderate and
poor conditions show roughly equivalent performance, with a small tendency for
better performance in the moderate over the poor condition. Second, and more for-

1The monitor was not calibrated to control for gamma distortion for two reasons. First, given the
variability of the illumination conditions in the images, any calibration would be likely to have
inconsistent effects, possibly improving some images and making others worse. Second, in terms
of ecological validity, humans who would perform this type of a task in a security application
would likely do so on a standard uncalibrated computer monitor.
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mally, we used the summary measure of d’to test for statistical differences between
the conditions. The average accuracies for the conditions were as follows: good (d’
= 3.09, se = .12), moderate (d’ = 2.32, se = .09), and poor (d’ = 2.09, se = .09).
A one-factor within-subjects analysis of variance showed a main effect of condition,
F(2,40) = 36.66;p < .0001. As indicated by the standard errors, the difference
between the good and the moderate conditions, F(1,40) = 39.74.89,p < .001, and
between the good and poor conditions, F(1,40) = 66.83,p < .001, were highly
significant. Human performance in the moderate and poor conditions did not differ
significantly, F'(1,40) = 3.48,ns.

3.3 Results: Exp. 1b

The ROCs for the unlimited exposure time appear in Figure 3 (right) and show
a rough stratification of performance for the good, moderate and poor conditions.
Again, the moderate and poor conditions show roughly equivalent performance,
with a small tendency for better performance in the moderate over the poor con-
dition. The average accuracies for the conditions were as follows: good (d’ = 3.19,
se = .18), moderate (d’ = 2.77, se = .14), and poor (d’ = 2.42, se = .11). A
one-factor within-subjects analysis of variance showed a main effect of condition,
F(2,42) = 25.54;p < .0001. As indicated by the standard errors, the difference
between the good and the moderate conditions, F'(1,42) = 15.03,p < .001, and
between the good and poor conditions, F(1,42) = 51.10,p < .001, were highly
significant. Human performance in the moderate and poor conditions did not differ
significantly, F'(1,42) = 10.63, ns.

To determine if the unlimited viewing times given to the participants in Exp. 1b
improved performance over the 2s viewing times given in Exp. la, we computed an
ANOVA across the experiments with independent variables of exposure time (2s
and unlimited) and difficulty condition (good, moderate, and poor). This analysis
revealed a small, but statistically significant, advantage for the unlimited viewing
time condition, F'(1,41) = 4.84,p < .03).

3.4 Conclusion

The results of the experiment suggest that condition-based differences in the algo-
rithm generated similarity scores were reflected in the human performance data.
Humans were most accurate for the face pairs from the algorithm-generated good
partition. Humans showed roughly equal performance for the moderate and poor
algorithm-generated partitions. The comparison between short exposures (2s) and
unlimited viewing time indicated a small, but reliable, benefit for the unlimited
time condition. As noted, because the face pairs in this experiment were sampled
from the center of the appropriate distributions, algorithm performance for these
stimulus pairs was perfect in all three conditions.

4. EXPERIMENTS 2A AND 2B: UNIFORM SAMPLING OF DISTRIBUTIONS

The goal of the second set of experiments was to compare human and machine
performance across a range of similarity scores. To do this, we sampled face pairs
broadly across each of the distributions. This yielded a meaningful level of overlap
for the algorithm-generated match and non-match distributions for the moderate
and poor conditions. For the human experiments, we focused here on the poor (Exp.
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Fig. 3. This figure shows the performance of humans on face pairs from the good, moderate, and
poor categories of algorithm performance with 2 s exposures (left) and unlimited time (right).
The figure illustrates also that the performance-based stratifications for algorithms are also seen
with humans.

2a) and moderate (Exp. 2b) performance conditions, because there was virtually no
overlap in the match and non-match distributions for the good condition. We also
sampled a larger number of face pairs for the moderate and poor conditions. On
average, we expected the summary statistics for human performance in the three
conditions to replicate those found in Experiment 1. In addition, the sampling
implemented here allowed us to examine directly the relationship between human-
and algorithm-generated similarity scores. How well do machine-generated scores
predict human identity judgments?

4.1 Methods

4.1.1  Participants. Undergraduate students from the School of Behavioral and
Brain Sciences at The University of Texas at Dallas volunteered to participate in
these experiments in exchange for a research credit in a psychology course. A total
of 23 students (12 females and 11 males) participated in Experiment 2a and 30 (19
females and 11 males) students participated in Experiment 2b.

4.1.2  Stimuli. For each condition, we selected 120 pairs of matched identity im-
ages and 120 pairs of non-matched identities for the moderate and poor performance
conditions. Sampling was centered at the means of the appropriate distributions
and was implemented to span the range of scores in the distributions.

4.1.3 Human Procedure. The human procedure was identical to that described
for Exp. la with the exception that participants in Exp. 2a matched identity in 240
face pairs all from the moderate condition, and participants in Exp. 2b matched
240 identity in face pairs all from the poor condition.
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4.1.4 Algorithm Procedure. To measure the algorithm performance in terms
comparable to human performance, we computed the ROC curve for the algorithms
in the good, moderate, and poor conditions. The ROC plots the trade-off between
the hit rate and the false accept rate as a threshold is varied. Analogous to the
human data analysis, a successful verification occurs when an algorithm correctly
judges “same” in response to a pair of images of the same person. A false accept
occurs when an algorithm incorrectly judges a non-matched face pair as “same”.
It is worth noting that the non-match distributions for the algorithm ROC contain
pairs of images that may or may not match in gender or race. This variability
of the non-matched pairs will tend to over-estimate algorithm performance by a
small amount (cf. [O’Toole et al. 2012] for additional quantitative detail). As we
will see, the human-machine comparisons we present show quite large differences in
performance that cannot be explained by potentially cross-demographic non-match
pairing.

4.2 Results

The ROC curves for these experiments appear in Figure 4, plotted with the compa-
rable conditions from Exp. 1 and with data taken from the algorithm performance.
For comparison, we also include the human versus machine performance for the
good condition from Exp. 1 in the top panel of the figure. This top panel shows
simply that the algorithm performs far better than humans on face pairs from the
algorithm-generated good distribution.

For the moderate condition (middle), the algorithm also performs much better
than humans. This was the case in all three of the experiments we conducted with
this set of faces. This includes Exps. la (2s exposures) and 1b (unlimited time)
with face pairs sampled from the centers of the distributions, as well as Exp. 2a (2s
exposures) with more broadly sampled image pairs. It is also clear from this graph
that Exp. 2a provides a close replication of the analogous Exp. la., F/(1,42) < 1.

In the most difficult cases, which we tested in the poor condition, human and
algorithm performance was roughly comparable. The graph makes clear also that
human performance was reasonably stable in this condition, again with a replication
of accuracy level for Exp. 1b and the analogous Exp. 2b, F(1,49) < 1.

4.2.1  Human and algorithm similarity scores. Next, we considered whether hu-
man and machine responses were linked at the level of individual stimulus pairs.
To do this we assessed the correlation between human and machine-generated sim-
ilarity scores. First, we calculated an average human-generated similarity score
for each face pair in Exps. 2a and 2b. This was defined as the average of the
ratings human participants gave the pair on the 5-point scale (i.e., 1 : sure the
same, 2: think the same .... 5: sure different). Next, we computed a correlation
coefficient for the human and machine scores assigned to the 240 pairs of images
from the moderate and poor performance conditions. In both cases, the correla-
tions were strong and statistically significant (moderate, (239) = —.8838,p < .001,
poor r(239) = —.7452,p < .001). (Note that for the algorithm, high scores indi-
cate high similarity, whereas for the human ratings, the scale is reversed. Thus,
we find a negative correlation between human and machine-generated similarity).
Figure 5 shows the plot of human similarity scores against model similarity scores
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Fig. 4. This figure shows the performance of humans on face pairs from the good, moderate,
and poor conditions for Exps. 1 and 2. The human performance is plotted with the algorithm
performance for comparison. The superior performance of the algorithm is evident in the good
and moderate conditions. The humans and algorithm perform comparably for the poor condition.

for the moderate (left) and poor (right) conditions. Though clearly related, there
is sufficient scatter to suggest differences in the approaches applied by humans and
machines.

It is perhaps worth noting that although it can be informative to look at the
stimuli that make up the outliers in this graph, it is difficult to easily find pairs
that completely characterize where the models err and the humans succeed (and
vice versa). More often than not, human-machine pairs that produce strongly
disparate similarity estimates contain combinations of mismatched poor quality
factors (slight blur, very small misalignments in view, illumination differences and
expression oddities). Thus, although it is often possible to look at these examples
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Fig. 5. This figure shows a strong but imperfect relationship between human and algorithm-
generated similarity scores for moderate (left) and poor (right) performance conditions. Note

that for humans, high numbers indicate low similarity, whereas for the algorithm, the inverse is
true.

and guess what went wrong for the algorithm or human, we would hesitate to
make general claims based on a few examples. A more systematic analysis of these
examples, however, is worthy of further study.

5. CONCLUSION

The goal of this study was to compare human accuracy at identifying faces with
accuracy of state-of-the-art face recognition algorithms. In particular, we were
interested in how humans perform relative to machines as the level of difficultly
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increases. Our tests relied on images taken under a variety of uncontrolled illu-
mination conditions in both indoor and outdoor settings and with natural varia-
tions in a person’s day-to-day appearance. To date, these are the most variable
illumination- and appearance-based recognition conditions on which humans and
machines have been compared. The results of this study indicate that the best
current face recognition algorithms perform better than humans in all but the most
challenging cases of matching identity in frontal face images. Moreover, as the task
difficulty increased, the gap between machines and humans narrowed, but never re-
versed. Thus, for frontal images, even with quite substantial changes in illumination
and appearance, machines are now comparable to humans.

A second interesting finding was the close relationship between the similarity
scores generated by humans and machines. This result suggests that to a first ap-
proximation, the judgments generated by the two “systems” are related. Notwith-
standing, the remaining scatter in the human-machine similarity scores may indi-
cate strategic differences in the way humans and machines judged the similarity
of the faces. As noted, although these differences can be difficult to character-
ize generally, they are likely to be related to combinations of quality factors that
are differentially problematic for humans and machines. Concomitantly, it is also
possible that humans also make some use of non-face configural information from
the combination of the face and body (e.g. neck, shoulders). This information is
unlikely to be used by the face recognition algorithms. In recent work, we show
that humans do use some external body information in cases where the face pro-
vides limited information [Rice et al. 2012]. In a previous study based on data
from the earlier FRGC algorithm competition, these strategic differences between
humans and machines were examined using a statistical-based fusion of the human
similarity scores and the scores from seven face recognition algorithms. The fusion
improved accuracy to a level better than either the machines or humans operating
alone [O’Toole et al. 2007], suggesting at least partial independence in the processes
used by humans and machines to judge face similarity.

A striking aspect of the present data was the substantial accuracy advantage for
the machines over the humans in the two less challenging conditions. Again, this
result is consistent with the finding we noted previously from a human-machine
comparison in the FRGC face recognition algorithm competition. In that earlier
competition, the best algorithms were better than humans on the “difficult identity
pairs”, but nearly all of the algorithms were better than humans on the “easy” pairs
[O’Toole et al. 2007]. Omne possible explanation of these two findings is that the
face recognition algorithms tested in the FRCG and FRVT 2006 are highly tuned
to operate on faces imaged from the frontal view. This may make it possible for
the algorithms to exploit information in the frontal view that is of limited general
value as the face pose varies away from the front. Small variations in face texture
or facial markings (and their configuration) are examples of these features. We
speculate that humans may attend far less to this kind of information in making
their judgments. Although this may limit their performance potential when faces
are viewed frontally, it may make for more stable and reliable coding over changes
in viewpoint. This does not suggest that humans create a three-dimensionally
invariant representation of the face. Rather, it is consistent with the possibility
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that humans can tune their perceptual systems to multiple views with some inherent
flexibility around canonical views.

Finally, the superiority of machines over humans in this study reminds us of what
face recognition algorithms have not yet accomplished — recognition robustness over
large changes in viewpoint. Although human recognition for unfamiliar faces is af-
fected by changes in viewpoint [Hancock et al. 2000], familiar face recognition is
not [Burton et al. 2011; Johnston and Edmonds 2009]. More generally, differences
between the performance of humans (at their best) and state-of-the-art face recog-
nition algorithms are analogous to differences between humans recognizing familiar
versus unfamiliar people. We would argue that machines now perform at an accu-
racy level comparable to humans when they recognize “unfamiliar faces”. Changes
in illumination, expression, viewpoint, and appearance, which are problematic for
unfamiliar faces, are much less challenging for recognizing people we know well (e.g.,
friends, family, famous people) [Johnston and Edmonds 2009]. In the recent study
by Jenkins and colleagues, recall that many identities were perceived from a large
set of images of two people [Jenkins et al. 2010]. Notably, Jenkins et al. also com-
pared Dutch and U.K. observers on a comparable test made with two well known
Dutch personalities. The results indicated that almost all of the Dutch participants
performed perfectly on the task, while the U.K observers “found” significantly more
identities among the set of images. The behavioral disparities for familiar versus
unfamiliar faces are accompanied by a variety of differences in the way these faces
are represented neurally [Gobbini and Haxby 2011; Natu and O’Toole 2011]. Ulti-
mately, the elaborated visual and neural codes that support familiar face recogni-
tion may give insight into computational processes that may overcome photometric
changes in viewing conditions.

To compete successfully with humans, the next generation of face recognition al-
gorithms will have to operate with levels of robustness comparable to those humans
show in recognizing familiar faces. There is some evidence to suggest that this kind
of recognition may involve representations of the face and body and may include
some part of identity specific motions, such as facial gesture and gait recognition
[Haxby et al. 2000; O’Toole et al. 2002]. Notwithstanding, the present accomplish-
ments of face recognition algorithms are impressive and within constrained viewing
conditions, may now be considered as good as, or better than, humans. This should
make it possible to use these algorithms in applications that can be constrained ap-
propriately. Moreover, the present data suggest that when humans and machines
disagree in these circumstances, the human is not always more likely to be correct.
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