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Summary

We present a new method for segmenting phase contrast
images of NIH 3T3 fibroblast cells that is accurate even when
cells are physically in contact with each other. The problem of
segmentation, when cells are in contact, poses a challenge to
the accurate automation of cell counting, tracking and lineage
modelling in cell biology. The segmentation method presented
in this paper consists of (1) background reconstruction to
obtain noise-free foreground pixels and (2) incorporation of
biological insight about dividing and nondividing cells into
the segmentation process to achieve reliable separation of
foreground pixels defined as pixels associated with individual
cells. The segmentation results for a time-lapse image stack
were compared against 238 manually segmented images
(8219 cells) provided by experts, which we consider as
reference data. We chose two metrics to measure the accuracy
of segmentation: the ‘Adjusted Rand Index’ which compares
similarities at a pixel level between masks resulting from
manual and automated segmentation, and the ‘Number of
Cells per Field’ (NCF) which compares the number of cells
identified in the field by manual versus automated analysis.
Our results show that the automated segmentation compared
to manual segmentation has an average adjusted rand index
of 0.96 (1 being a perfect match), with a standard deviation
of 0.03, and an average difference of the two numbers of cells
per field equal to 5.39% with a standard deviation of 4.6%.

Introduction

Automated microscopy and image analysis of live cells is
critical to studying cellular dynamics at the single cell level.
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With time dependent, single cell data, it is possible to uncover
temporal patterns that cannot be resolved by population-
averaged measurements (Sigal et al., 2006; Halter et al.,
2011). The quantification of cellular reporters such as green
fluorescent protein (GFP) allows analysis of the kinetics
and fluctuations associated with gene expression, promoter
activation and protein synthesis (Langenbach et al., 2006;
Sigal et al., 2006; Sigal et al., 2006b; Halter et al., 2009),
but requires accurate segmentation of cells to enable accurate
measures of cellular fluorescence.

Automated segmentation and tracking pose significant
challenges due to the variability of image and object qualities.
The variability arises from differences in imaging devices and
modalities. In addition, different cell lines can have different
physical characteristics and these characteristics can change
in response to external conditions during a cell cycle. A
particular challenge is accurately segmenting individual cells
when cells are in contact with each other, particularly as the
culture grows and cell density increases. The main motivation
of this work is to address this problem and enable the collection
of single cell data from cell monolayers as they approach
confluence.

For this study, we have focused on segmenting live NIH
3T3 cells imaged by Zernike phase contrast microscopy. By
segmenting phase contrast images, the fluorescence channels
are available for quantifying expression from fluorescence
protein reporters and the segmentation is determined in a
manner that is not biased by intracellular location or intensity
of fluorescent marker. Here, we present a new segmentation
technique that consists of (1) background reconstruction
to obtain foreground pixels with high signal-to-noise ratio
and (2) incorporation of biological insight about dividing
and nondividing cells into the segmentation algorithm. The
latter aspect of the segmentation provides the basis for a
more robust separation of foreground pixels of connected cells
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Fig. 1. Representative phase contrast image of NIH 3T3 cells
approximately 24 h after seeding. The number of cells in contact increases
throughout the time-lapse image set used in this study. The image shown
is 696 × 520 pixels (approximately 1.4 mm × 1.0 mm).

into individual cell pixels, compared to methods that do not
incorporate any prior biological knowledge.

Figure 1 shows an example of a NIH 3T3 live cell image
where cells are in contact with each other. The visual cues
in the image that are used to segment cells include (1) a
bright halo region surrounding a cell in general, (2) a dark
region inside these halos and (3) a circular bright region often
found inside the dark central region where the nucleus of
a cell is located. We segment the halo around the cell so that
intracellular fluorescence can be accurately quantified (Halter
et al., 2011). By including the entire halo, the segmented
cell area is enlarged which ensures that the entire cell is
within the segmented mask. Intracellular fluorescence is
measured by integrating the signal over the entire cell mask
and subtracting a local background signal measured from
around the cell periphery (Halter et al., 2011). By including the
halo, we reduce the probability that part of a cell is excluded
from the foreground and included in the local background.
When a cell is about to divide (cell undergoing a mitosis),
it rounds up and becomes very bright under phase contrast.
We have used these visual cues and biological understanding
of these cells to automatically and accurately generate seeds
for a watershed-based segmentation to separate adjacent
cells.

We validate our segmentation technique by comparing our
results against a reference segmentation input provided by
experts for a stack of 238 images. The choice of the adjusted
rand index (ARI) similarity metric is based on our desire to
compare two mask images with similar overlapping areas
but where the grouping of pixels into discrete objects may
be different. Unlike overlap based similarity metrics, the ARI
metric penalizes the result when groupings of pixels do not

correspond to the same superstructure. For example, if the
reference mask image has one object in an area and the
algorithm mask image has two or more objects in the same
area, the ARI metric will be reduced because the number of
object groups is different for the two images. A structured
approach to the choice of the ARI metric for our study is
described by Bajcsy et al. (Bajcsy et al., 2012), where similarity
metrics are recommended based on their sensitivity response to
the user defined input of interest. We also chose another metric
to compute the similarities at a cellular level: the number of
cells per frame (NCF). The choice of this particular metric is
based on its wide use as an indicator of cellular proliferation
and cytotoxicity within a culture system.

Live cell image acquisition protocol

Before imaging, cells were seeded into a six-well plate at
1200 cells/cm2 and allowed to adhere in the incubator for
approximately 3 h. The cells were maintained throughout
the imaging experiment in a humidified 5% CO2 balanced-air
atmosphere at 37oC using a microscope incubation chamber.
Phase contrast and fluorescence images were acquired
using an automated microscope controlled by ‘ISee’ image
acquisition software (‘ISee’ Imaging Systems, Rayleigh, NC,
USA; http://www.iseeimaging.com/). Images were acquired
every 15 min for a time length greater than 62 h in 12
different fields using a 10× (0.3 NA) objective on Zeiss 200M
inverted microscope equipped with an automated stage (Ludl,
Hawthorne, NY, USA), a collimated blue LED (470 nm)
fluorescence excitation source (Thorlabs, Newton, NJ, USA)
and a CoolSNAP HQ charge coupled device (CCD) camera
(Roper Scientific, Tucson, AZ, USA). A 0.63× de-magnifying
lens was positioned in front of the CCD. Auto-focusing was
performed during the acquisition and was limited to a <5 μm
z-axis sweep so that large focus adjustments that might lead
to out-of-focus images were prohibited.

The raw image data from the detector are 696 × 520 pixels,
and with a single channel values represented by unsigned
numbers of 16 bits per pixel. The pixel to μm calibration was
determined by using a graduated micrometre image. The pixel
length was found to be = 1.95 μm in each x and y direction.
Further details describing the live cell imaging can be found in
(Halter et al., 2011).

Background reconstruction

The objective of background reconstruction is: (1) to support
more accurate detection of foreground pixels (i.e., cell pixels) by
subtracting the background signal and (2) to aid in detection of
biological features used to separate cells in contact (see Section
4.2). The background reconstruction problem is a well-studied
problem in surveillance, monitoring and tracking applications
(Tang et al., 2008; Kang et al., 2009), but here, it is uniquely
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applied to phase contrast images of cells, and contributes to
the accuracy of the overall cell edge segmentation.

The following four criteria need to be met to apply
our background reconstruction method: (1) an initial
foreground/background mask can be calculated, (2) the
CCD camera noise can be modelled by a stationary ergodic
stochastic process (i.e., the statistical properties of the CCD
camera noise do not change over time), (3) most cells do
not stay in one location of the field of view (FOV) during the
experiment and (4) for most pixels in FOV there is at least
one time instance during the experiment when a pixel is not
occupied by a cell. We show below that all of the 4 criteria
were met with our test data set.

Initial foreground/background separation

The first step of the algorithm is the calculation of the absolute
gradient image applying Robert’s edge operator (Gonzalez &
Woods, 2008; see Fig. 2a). This method performed very well
in detecting most cells in these images.

The absolute gradient image is thresholded by using an
automatically determined threshold value. The automated
threshold selection assumes that there is sufficient number
of background pixels in the image to produce high peak,
similar to Gaussian distribution, in the part of the absolute
gradient histogram with low intensity values. This assumption
is satisfied in our example due to the low cell density at the
beginning of the experiment. The threshold value is chosen
as the bin value corresponding to the right tail around the
peak of the gradient intensity distribution where the frequency
value is approximately equal to the frequency value of the
lowest gradient value in the image. The method for finding the
automatic threshold value is shown in Figure 2(b).

After thresholding the image, the holes are filled by
morphological operation and connected regions are labelled
to obtain foreground and background masks. To remove all
noncellular objects (like small debris) from the labelled image,
we eliminate all regions smaller than the minimum cell area =
100 pixels. This value has been determined empirically in
our study of NIH 3T3 cells. The resulting mask image is
depicted in Figure 2(c). By inspection of this mask image it
is clear that many cell areas were not detected by the initial
segmentation technique. We apply a morphological dilation
(Gonzalez & Woods, 2008) to the foreground/background
mask to ensure that we exclude as many undetected cell pixels
as possible without compromising background pixels. The size
of a morphological dilation kernel depends on the accuracy of
the initial foreground/background detection, and in our study
the size was set to 10 pixels based on empirical determination.
This value was sufficient to cover most cell pixels that were not
initially detected as shown in Figure 2(d). The aforementioned
software algorithms were implemented in Borland C/C++and
the executable can be downloaded for free from (Kociolek,
2009).

Determination of pixel values for the reconstructed background
image

To determine the reconstructed background image, we
calculate the mode (the value that occurs most frequently)
for each location (x, y) from the FOV as described in Figures
3(a) and (b). The background intensity over time at a single,
representative location (x, y) is plotted in Figure 3(b). Because
the background intensities and the fluctuations in intensities
at the same location are relatively stable through time, we
conclude that the CCD camera noise can be modelled by
a stationary ergodic stochastic process, thus demonstrating
that our test data set meets the second criterion. In Figure
3(a) and in the plot in Figure 3(b), low intensity background
pixel values are highlighted. We attribute these outliers to thin
cellular extensions that appear dark (low intensity) in phase
contrast. The initial segmentation incorrectly assigns pixels
associated with the thin cellular extensions as background
pixels. Because these outliers can reduce the time-averaged
value (the mean) of a background pixel (x, y), we use the
mode instead, as a more robust pixel value in the reconstructed
background image.

The image shown in Figure 3(c) indicates the frequency
during which a pixel is considered as background pixel.
From this image we concluded that most cells do not stay
in one location of the FOV and at each location in the
FOV the background was uncovered at least 15 times for
this particular FOV, thus demonstrating that criteria 3 and
4 described above are met. However, even if these two
assumptions were violated in some isolated pixel locations,
the background value will be estimated by using the average
of neighbouring background-reconstructed intensities. A
representative reconstructed background image is shown in
Figure 4.

In any experiment, it is not uncommon to get some images
slightly out of focus. The impact of these blurred images is
minimized by using the mode to compute the value of the
reconstructed background pixels.

Cell segmentation

The previous work in the area of segmentation of phase
contrast cell images can be classified into six method
categories: (1) region growing methods [e.g., watershed
algorithms (Roerdink & Meijster, 2001; Tscherepanow
et al., 2008)], (2) edge-based methods [e.g., Canny edge-based
detection (Canny, 1986)], (3) energy function minimization
methods (Williams & Shah, 1992; Dzyubachyk et al., 2009),
(4) cell motion based methods (Zanella et al., 2010), (5) model-
based methods (Kachouie et al., 2007) and (6) methods based
on advanced feature detection (Bradhurst et al., 2008; Wang
et al., 2008)). Our segmentation method falls under the last
category; it operates on a single image frame and uses the
temporal information of live cell imaging only for background
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Fig. 2. Initial segmentation for identifying background image pixel values. (a) Absolute value of the gradient image shown in pseudo colours, corresponds
to the raw image shown in Figure 1. (b) The histogram of the absolute values of the gradient image (a) for pixels values from 0 to 200. (c) Labelled image
with holes in foreground removed. (d) The final foreground/background mask after morphological dilation. The white arrows in (c) and (d) indicate cell
areas not detected by the initial segmentation but better included in the mask after morphological dilation. (e) The binary image that results after applying
the threshold in (b) to the gradient image in (a). (f) The binary image after morphological dilation.

reconstruction. In this category, Wang et al. describe a series
of feature-specific shape detection procedures to track cell
cycle changes (Wang et al., 2008). Ersoy et al. propose a flux-
tensor based method, which detects cell movements (Ersoy &
Palaniappan, 2008). Bise et al. (Bise et al., 2009) uses temporal
contour shapes of cells and tracking information to separate
cluster of cells. In comparison to the related work, our study is
unique in that we have explicitly employed biological insight
to inform a segmentation process based on intensity and shape

characteristics. We show that incorporating the biological
insight as rules in the algorithm improves the performance as
compared with a relatively naive algorithm. In a similar vein,
Bradhurst et al. (Bradhurst et al., 2008) detect cell edges of bone
marrow stromal cells in phase contrast microscopy images
where the images are processed by rough and then refined
segmentation. The work by Bradhurst et al. (Bradhurst et al.,
2008) uses biological knowledge of the images to overcome
the bright halo surrounding stem cells and also pick up the
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Fig. 3. (a) Image of cellular extension, indicated with the red circle in the enlarged image below, with low intensities remaining in background image.
(b) Background pixel intensity plot at a single location (x, y) over time. The red arrows indicate low intensity values that can be attributed to the cell
extension (tail) highlighted in the image in (a). (c) The frequency of occurrences of background pixels in the 238 time-lapse image set. Dark red indicates
regions in the field of view rarely occupied by cells where a large number of observations are available to accurately calculate the background intensity.

dark interior region of cells. However, they do not address the
issue of separating cells in contact.

The segmentation of adjacent cells is comprised of
three steps: (1) foreground detection by background image

subtraction (Section 4.2), (2) foreground detection with
biologically inspired algorithms (Section 4.2) and (3)
separation of cells in contact (Section 4.3). All these steps are
used to automate morphological seed selection. Morphological

Fig. 4. Foreground detection steps. The ‘Input Image’ is the raw image from the CCD detector and the ‘Background Reconstructed Image’ is the computed
from the time-lapse image set. Thresholding of the difference between the ‘Input Image’ and the ‘Background Reconstructed Image’ is followed by
morphological operations to result in the foreground (FRG)/background (BKG) mask.

This article is in the public domain
Journal of Microscopy C© 2012 Royal Microscopical Society, 249, 41–52



4 6 J . C H A L F O U N E T A L .

seeds are neighbourhoods or individual pixels from which a
region-growing algorithm begins (Gonzalez & Woods, 2008).
These seeds are used to minimize over-segmentation that
typically comes from direct application of watershed transform
(Debeir et al., 2008).

Foreground detection by background image subtraction

To detect the foreground, we subtract the reconstructed
background image from the phase contrast image. This yields
image I 1 with negative and positive values where negative
values correspond to pixels darker than the background
mode at that location and positive values correspond to
pixels brighter than the background mode value. To obtain
foreground pixels, we threshold the values at ±2σ where σ is
the sample standard deviation obtained at each pixel location
and illustrated in Figure 3(b). This is a double thresholding of
image I 1 with the standard deviation matrix (SDM) calculated
from the stack of time-lapse images. Each pixel (x, y) of the
(SDM) matrix is equal to the standard deviation of all the
background pixel intensities at that location. In this way,
the threshold is determined statistically from the time-lapse
image data. This step also assumes Gaussian distribution of
background intensities that would assign background (BKG)
and foreground (FRG) pixels correctly with a probability of
95.45%. Figure 4 shows a schematic of these processing
steps including additional postprocessing operations that
attempt to correct the misclassified pixels by considering a
foreground region’s minimum area and by filling background
holes.

To quantify the performance of segmentation using
background reconstruction, we computed the Dice index
(Zou et al., 2006) between masks coming from the
expert segmentation and the ones coming from automated
segmentation. The Dice index measures spatial overlap
between two segmentations using the following formula
Dice = 2 × overlap/(area1 + area2). We compare those
results with the initial segmentation results described in
Section 3.1 (automated threshold of gradient image using
Robert’s operator). The choice of the Dice index, over the ARI
metric for this case, came from the fact that we are comparing
binary images and not labelled ones with the interest being cell
area segmentation. Thus, overlap-based similarity metrics are
best suited for this type of comparison.

Figure 5 shows the difference between the initial
segmentation and the background reconstruction. This
plot highlights the improvement made by segmenting the
cell edges (foreground/background binary mask) using the
reconstructed background image. On average over 238
images the initial segmentation had a good agreement with
the reference masks with a Dice index of 0.76 and a standard
deviation of 0.036. However, when using the reconstructed
background mask, Dice index shows a much better agreement
between automated and reference masks with an average of

Fig. 5. Dice, an area similarity metric, computed between (1) reference
data and segmentation with background reconstruction (in red) and
(2) reference data and segmentation using initial segmentation without
background reconstruction (automated threshold of gradient image using
Robert’s operator, Figure 2; in green).

0.92 and a standard deviation of 0.016. This implies that
on average using the reconstructed background image for
segmenting foreground pixels is 16% more accurate than
using a threshold on the gradient of the image. This figure
also proves that the initial segmentation and the segmentation
using the reconstructed background are both very accurate
on detecting the cell area in the phase contrast images due to
the strong agreement between the binary masks coming from
automated segmentation and the reference ones [a Dice index
>0.7 indicates excellent agreement between segmentation
masks and reference data (Zijdenbos et al., 1994)].

Foreground detection with biologically inspired algorithms

We have used our understanding of cell biology and visual cues
in Zernike phase contrast images to develop a computational
model for separating cells in contact with each other. The
computational model, summarized in Table 1, consists of
mapping biological states to image intensity and cell shape
characteristics present in the images. When time lapse, Zernike
phase contrast images, of NIH 3T3 fibroblast seeded at low
density are observed, a cell that divides appears to round
up, split into two cells and re-spread on the surface. In the
phase contrast images, the rounded dividing cell becomes very
bright, likely due to the combination of the change in thickness
and shape of the cell. Hence, the pixels corresponding to a
dividing cell will be brighter than the pixels that belong to
the nuclear region of the nondividing cell. We also observe
that, in phase contrast images, the centre of nondividing 3T3
cells (nucleus location) is often brighter than the pixels over
the cytoplasm of the cell. We use this information to derive a
strategy for separating adjacent cells (Fig. 6). Each of the next
two Sub-sections 4.2.1 and 4.2.2 describes an algorithm and
the output of each algorithm is a mask image. These two mask
images are used in Section 4.3 to separate cells in contact.
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Table 1. Mapping biological and phase contrast imaging phenomena to computational models.

Cell Biological Visual cues in phase Computational
state \ models model contrast microscopy images model

Dividing cells Cells release cellular attachments,
depolymerize the cytoskeletal
components and round up
during cell division

1. Dividing cells are close to round in
comparison with nondividing cell shapes

1. Roundness is measured by
R = 4π × area/(perimeter)2. Remove
shapes where R < 0.6

2. Dividing cells are associated with very
high intensity pixels

2. Image intensity is thresholded at a value
higher than the mean intensity of
positive pixels over cell area

Nondividing cells Cells are attached and spread Interior of nondividing cells contains pixels
with smaller or equal intensity values
than the background (∼dark cytoplasm
and slightly brighter nucleus)

Image intensity is thresholded at a value
lower than the mean intensity of positive
pixels over cell area

Model for detecting dividing cells. To accurately distinguish
the dividing cells in the image, the pixels with high positive
intensities need to be detected and a roundness check applied
to the resulting mask. Hence, we threshold the image after
the background has been subtracted at an intensity equal to
the mean of the resulting positive pixels. However, some of
these high positive pixels will correspond to the halo around
cells and these particular pixels need to be eliminated from the
image. Because dividing cells are bright and round, eroding
the resulting image, by five pixels in our study, will delete the
pixels that correspond to the halo around cells and keep the
pixels that correspond to dividing cells (see Fig. 6, upper right
image). Finally, the nonround objects will not be selected. The
roundness is measured by R = 4π × area/(perimeter)2 and
any object in the image will be removed if its roundness is less
than 0.6 (user defined parameter).

Model for detecting nondividing cells. To better separate
adjacent cells, the dark cell interior region will be used as
indicator of the approximate number of cells in a cluster. The
dark cell regions are found using the original image with the

background subtracted. We again threshold at the mean of
the positive pixels, but this time take all of the pixels below this
value. Then erode the image and fill the holes. The pixels in
the mask will, in general, correspond to a region containing
cell nuclei (see Fig. 6, lower right image). Therefore, this
serves as an indicator of the number of cells in a cluster.

These two biologically driven masks (dividing cell and
the nondividing cell mask) will be used as seeds to aid
the watershed algorithm to separate clusters of cells with
minimized over-segmentation.

Separation of cells in contact

The Euclidian distance transform (Maurer & Qi, 2003;
explained below) is applied to the original binary foreground
mask as shown in Figure 7. The biologically driven masks are
used to modify the distance transform by taking the distance
values from the original distance transform and adding to it the
value of the corresponding pixels that belong to the obtained
masks.

Fig. 6. The workflow for executing the computational model for detecting foreground pixels corresponding to dividing cells and nondividing cells.
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Fig. 7. The mask resulting from the initial segmentation (Figure 2) transformed by the Euclidean distance transform. The pixel intensity increases linearly
with distance from the edge of the mask. The colour is proportional to the distance value with blue representing the minimum (value of 1) and the largest
values are represented with red. In combination with mask images obtained by thresholding bright pixels and dark pixels in the raw image data, this
transformed image is used to separate cells in contact.

The Euclidean distance transform of a binary 2D image I
labels each foreground pixel (the foreground value is 1) with
the distance of this pixel to the nearest background pixel (the
background value is 0). For all foreground pixels of I , the
algorithm determines the minimum Euclidean distance to the
background pixels of I .

Let F be the set of n foreground pixels, F = {p ∈ I |I ( p) =
1}, and B the set of m background pixels, B = {q ∈ I |I (q ) =
0}, such that F ∪ B = I and F ∩ B = ∅.

The new image DT is obtained from the original image I as
follows:

DT( p) = mink{d ( p, qk )|p ∈ F , qk ∈ B, k = 1, . . . , m} (1)

d ( p, qk ) =
√

(xp − xqk )2 + (yp − yqk )2 (2)

DT( p) = 0,∀p ∈ B (3)

Let DV be the mask of dividing cells and NV the one
of nondividing cells. The following is true for every pixel:
DV ∩ NV = ∅.

We construct a modified distance transform image, MDT as
follows:

∀p ∈ DT|p 
= 0, MDT( p) = DT( p) + DT( p)∗(NV( p) ∨ DV( p)),

(4)

where ∨ is the logical OR operator.
This image captures the shape of a foreground region (the

first term) and the biological knowledge about dividing cells

(round shape and bright cell intensity) and nondividing cells
(dark intensity of a cell interior) in the NV and DV masks.

To segment and separate adjacent cells, we apply a modified
watershed algorithm described in (Smołka, 2005) to the
modified distance map, MDT. The resulting segmented image
can be seen in Figure 8 where most adjacent cells are separated.
One can visually see the difference between the images
obtained with/without incorporating the biological features
(Fig. 8).

Reference data-based comparison

The current bio-motivated algorithm is compared against the
background subtraction algorithm to quantify performance
improvement due to the prior biological knowledge embedded
into the algorithm. When operating on cells that are in contact,
general segmentation algorithms, such as Otsu, IsoData,
Maximum Entropy, or our background subtraction algorithm,
either over-segment cells into too many fragments or fail to
separate cells. We have analysed the general segmentation
algorithms in the past in Dima et al. (Dima et al., 2011). We are
not including the comparison of the bio-motivated algorithm
against all the general segmentation algorithms in (Dima
et al., 2011) because they are conceptually similar and produce
similar results as our background subtraction algorithm. Our
validation approach is based on comparing the segmentation
results against manually derived reference data. The reference
data is derived from a time-lapse sequence of phase contrast
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Fig. 8. (a) Foreground/background mask segmentation after background reconstruction before applying algorithms to separate adjacent cells in contact
and (b) the final segmented image indicating improved cell separation of adjacent cells in contact.

microscopy images acquired at 15-min intervals for 60 h
(238 frames total). The validation methodology consists of
preparing reference data, defining segmentation accuracy
metrics and computing accuracy between reference data and
segmentation data.

Reference data preparation

A human expert manually segmented cells in each frame
of the time-lapse images and separated adjacent cells by
visual inspection: the expert took advantage of the time-lapse
information to make a group of cell separation decision. The
boundary is drawn using a computer mouse. This work was
done using ImageJ software [http://rsb.info.nih.gov/ij/] and it
took over 200 man-hours to complete the task. This reference
data was inspected by a second expert to minimize human
mistakes.

Segmentation accuracy metrics

We chose two metrics to evaluate the differences between the
reference data and the automated segmentation results:

(1) ARI (Hubert & Arabie, 1985; Vinh et al. 2009) measures
similarities between two segmented images (image1 and
image2) at the pixel level. Let C 1 denote the group of
labelled cells in image1 and C 2 the group of cells in image2.
The number of cells in image1 and image2 is k1 and k2,
respectively. The ARI metric is based upon counting the pairs
of pixels on which two cell labels in both images agree or
disagree. ARI is bounded between 0 and 1 and is computed by
the following formula:

ARI =
∑

i j
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where
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)
= a !(b − a )!
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,

where T is the total number of data points, ni j is the number
of overlapping pixels between cell C 1i in image1 and cell C 2 j

in image2, ( ni j

2
) is a combination pair of data points, ai and b j

are computed as follows:

ai =
k2∑

j=1

ni j and b j =
k1∑

i=1

ni j

(2) NCF metric computes the differences between the number
of correctly segmented cells per frame computed by detecting
the under-segmented cells and the over-segmented cells and
the total cell number in the masks generated by the expert in
the reference data.

Evaluated segmentation methods

We evaluate two segmentation methods developed in this
work to compare against the reference data set: (S1)
segmentation based on the foreground mask without adjacent
cell separation and (S2) biologically motivated segmentation
with adjacent cell separation. In the reference data set, 8219
individual cell objects were identified throughout the image
sequence containing 238 images. In comparison, the (S1)
and (S2) segmentation methods identified 6382 and 7876
individual cell objects, respectively, throughout the time-lapse
image set.

Experimental results

Figure 9 plots the ARI computed for the segmentation methods
described above without and with adjacent cell separation (S1,
red dashed line and S2, blue solid line) against the reference
data. Figure 10 displays the comparison of S1 and S2 with
respect to the reference data in terms of the NCF.

Discussion of experimental results

Figures 9 and 10 show that there is a high level of agreement
between the reference set and both segmentations when cells
occur in the FOV at very low density and the frequency
of cell-to-cell contact is low. These low-density and low-
interaction conditions are observed for image frames 1–150
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Fig. 9. Segmentation of single cells is improved and adjacent cells in
contact are separated. Similarity measured using the ARI metric is plotted
versus the frame index for the time-lapse image set for (1) Reference data
and segmentation after applying algorithms to separate adjacent cells (S2)
and (S2) Reference data and segmentation before applying algorithms to
separate adjacent cells (S1).

Fig. 10. Improved cell-counting accuracy after applying algorithms to
segment adjacent cells in contact. NCF of the expert images (Expert
Count), the segmentation with adjacent cell separation (S2 Count) and
segmentation without adjacent cell separation (S1 Count) is plotted versus
the frame index of the time-lapse image set.

(corresponding to the first 38 h of imaging). However, S1
begins to deviate much more from the reference data than S2
as the cell density and number of cell-to-cell contacts increase.
For example, for the last 30 frames when many cells are
adjacent, the difference between mean (ARI of S2) and mean
(ARI of S1) is between 0.3 and 0.4. We conclude that on
average the S2 method is 10% more accurate than the S1
method when looking at both ARI over the entire data set.

This improvement is also illustrated in Figure 10 where the
number of correctly segmented cells by S2 is much closer to
the reference set than the number of cells obtained by S1. The
average deviation (over the entire FOV) in percent of number

of cells per frame between the result from S2 and the reference
number of cells is 5.39% with a standard deviation of 4.6%
(n = 238 images) whereas the average deviation between the
result from S1 and the reference data set is 17.04% with a
standard deviation of 10.9% (n = 238 images from a time-
lapse image sequence).

The presented segmentation, in comparison with manual
segmentation, has an average ARI of 0.96 (1 being a
perfect match), with a standard deviation of 0.03, and an
average difference of the two NCFs equals 5.39% with a
standard deviation of 4.6% (n = 238 images from a time-
lapse image sequence). In addition, when comparing the
segmentation results with those based only on background
pixel reconstruction, the incorporation of spatial and intensity
models developed for dividing and nondividing cells resulted
in a 10% improvement in the average accuracy and a 4-fold
decrease in standard deviation based on the ARI metric. The
decrease in the standard deviation suggests that in addition to
being more accurate, the algorithm is also more precise for a
given cell measurement. The same comparison based on the
NCF metric resulted in a 11.65% improvement in the average
accuracy and a 2.5 times smaller standard deviation.

Conclusions

We presented a segmentation procedure for Zernike phase
contrast images of NIH 3T3 cells. The segmentation method
is effective at separating cells when they are in contact.
The novelty of the work lies in (a) taking advantage
of live cell dynamics in the microscope FOV to achieve
robust background image reconstruction, (b) incorporating
biological models of dividing and nondividing cells into
a computational model to deliver a more accurate and
automated segmentation method capable of separating cells
in contact and (c) validating the accuracy of segmentation
results using manually created reference data consisting of a
stack of 238 images. This segmentation technique has proven
to be useful for fundamental live cell studies (Halter et al.,
2011), and is contributing to more accurate results for motion
tracking of live cells as well. However, this approach requires
that time-lapse images are acquired such that an accurate
identification of the background pixel intensities can be made.
This is facilitated by low initial cell seeding densities, migratory
cells that expose background pixels and a uniform background
that can be estimated when pixels are not exposed. In general,
plotting the frequency of occurrence of background pixels in
the time series stack, as shown in Figure 3(c), can indicate
when the background reconstruction approach is likely to
succeed. Background reconstruction will be most accurate
when all or nearly all of the background pixels are exposed
during the time-lapse acquisition. Our future work will focus
on background reconstruction for microscopy images with
a high cell density in the FOV, and on extensions of the
biological models to other cell lines. The current algorithm
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is segmenting only single frame. We plan to improve the
algorithm in the future to include the analyses of previous and
next frames which adds more information and help improving
the accuracy of the current segmentation technique.

Disclaimer

No approval or endorsement of any commercial product by
NIST is intended or implied. Certain commercial software
are identified in this report to facilitate better understanding.
Such identification does not imply recommendations or
endorsement by NIST nor does it imply the software identified
are necessarily the best available for the purpose.
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