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a b s t r a c t

In this pedagogical paper, material already in the Jahn–Teller literature is recast in a way that emphasizes
how vibronic wavefunctions for the XY3 Jahn–Teller problem can conveniently be calculated using elec-
tronic and vibrational basis set functions that do not transform into their negatives upon going once
around the conical intersection and do transform as irreducible representations of the ordinary C3v point
group. We give as an explicit example, a recalculation of the pseudorotational energy levels and wave-
functions near the bottom of a deep Jahn–Teller moat that does not make use of half-integral quantum
numbers. A brief discussion, also recast somewhat from material in the literature, is given of how the
basis functions used here are related to the more frequently discussed electronic and vibrational basis
functions for the Jahn–Teller problem, which transform into their negatives upon going once around
the conical intersection.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

In the classic paper of Longuet-Higgins et al. [1] discussing vib-
ronic consequences of the Jahn–Teller effect in a doubly degenerate
electronic state, it was pointed out that the real electronic wave-
function components obtained by diagonalizing the 2 � 2 elec-
tronic Hamiltonian matrix for fixed nuclear positions transform
into their negatives when the nuclear positions are adiabatically
varied so as to make a complete revolution around the conical
intersection of the two electronic potential surfaces. This point
was emphasized again in three publications soon afterwards [2–
4], and further discussed in numerous publications during the five
decades up to the present time (see, e.g., Refs. [5–12]).

After a brief definition of the symmetry operations used here,
we turn in Section 3 to the well-known fact [1–12] that this prop-
erty of the fixed-nuclei Born–Oppenheimer electronic wavefunc-
tions transforming into their negatives arises only when those
wavefunctions are chosen to be real. Other transformation proper-
ties are obtained [1–12] if complex phase factors for the electronic
wavefunctions are chosen after diagonalizing the 2 � 2 electronic
Hamiltonian matrix for fixed nuclear positions. In particular,
phases can be chosen so that the two electronic wavefunctions
transform into themselves with no sign change when the nuclear
configuration makes one revolution around the conical intersec-
ll rights reserved.
tion. If one uses signs in parentheses (±) to indicate how a given
electronic we(±) or vibrational wv(±) basis function transforms
when the vibrational coordinates are taken once around the coni-
cal intersection, then the discussion in this paper can be described
symbolically as a comparison of calculations using vibronic basis
functions of the form we(+)wv(+) with calculations using vibronic
basis sets of the form we(�)wv(�), where basis functions of the lat-
ter type are the overwhelming favorite in the theoretical literature
[1–12].

Vibronic basis sets of the form we(�)wv(�) have a significant
mnemonic advantage [1–12] because quantized levels for the
pseudo-rotational vibrational motion very near the bottom of the
lower Jahn–Teller potential surface having energies proportional
to j2 with j half-integral can be seen as arising when the analog
of particle-on-a-ring basis functions e+ija with wv(�) transforma-
tion properties, and therefore half-integer j values, are used to
derive these energies. In Section 4 we rederive these energy levels
for a C3v molecule: (i) using electronic wavefunctions with we(+)
transformation properties, and (ii) using an e+ila basis set for the
pseudorotation problem with only integer l values. One of the
advantages of such a calculation is that the electronic, vibrational,
and vibronic symmetry properties can be handled relatively simply
using the A1, A2 and E representations of the permutation–
inversion (PI) group isomorphic to the ordinary C3v point group.
The half-integer-squared behavior of the energy expression arises
with this choice of basis functions because one must average two
particle-on-a-ring integer-squared contributions to the energy,
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namely an l2 contribution from one component of the electronic
wavefunction, and an (l + 1)2 contribution from the other, yielding
a final energy proportional to (l + ½)2 + 1=4.

In Section 5, an attempt is made to relate some of the slightly
different language, notation, and ideas in Refs. [1–12] to their ana-
logs in the present calculation.

2. Specification of group-theoretical operations and some sign
conventions

It was pointed out in a footnote on p. 64 of [4] that some change
in signs of the coordinates defined in [1] was desirable to bring cer-
tain results into conventional form. Since the totality of sign
choices, atom labels, transformation conventions, etc. determines
whether the electronic coordinate expression (x + iy), for example,
transforms as e+2pi/3 or as e�2pi/3 under the permutation–inversion
operation (123), and since we want to make detailed use of such
group theoretical transformations, we digress briefly to specify
the various sign and transformation conventions used below.

For simplicity, we consider a four-atomic pyramidal C3v mole-
cule, represented symbolically by XY3, sitting on its base with the
X atom pointing upward in the positive z direction, with the Y
atoms numbered 1, 2, 3 in a counter-clockwise sense when viewed
from the X atom, and with Y1 lying in the xz plane. The character
table for the C3v point-group, involving the classes E, 2C3 and 3rv
and the symmetry species A1, A2 and E, is well-known and fully
standardized, so we will not repeat it here.

We imagine the doubly degenerate E electronic state to be
caused by a single pp electron outside closed shells (located on
the X atom), whose two-component wavefunction is represented
(in common diatomic notation) by |K = ± 1i. A vibrational state
of a doubly degenerate vibrational fundamental is represented
(in common notation) by |v = 1, l = ± 1i. The transformation proper-
ties for these functions and for operators involving the variables in
these functions are determined as specified in Refs. [13,14]. Briefly,
the operation C�1

3 , when considered as a rotation matrix for
Cartesian x, y, z coordinates, is defined as the matrix obtained by
setting v = 2p/3, h = / = 0 on the right of Eq. (6) of [14]. Following
Section 11 of [14], this causes the Yi atom numbering given above
to satisfy C�1

3 ai = ai+1 (where i = 1, 2, 3 modulo 3). Following the
arguments in [13,14], we find that the PI operation (123) then
causes the following transformations of the variables in any
rovibronic wavefunction: (i) The rotational angles (v, h, /) are
replaced by (v + 2p/3, h, /). (ii) The molecule-fixed Cartesian
coordinates re of the pp electron are replaced by C3 re. (iii) The
infinitesimal vibrational displacement vector di of Yi is replaced
by C3 di+1, and dX for the X atom is replaced by C3 dX. Similarly,
the PI operation (23)⁄ causes the following variable transforma-
tions: (i) The rotational angles (v, h, /) are replaced by (p � v,
p � h, p + /). (ii) The molecule-fixed Cartesian coordinates re of
the pp electron are replaced by r(xz) re. (iii) The infinitesimal
vibrational displacement vector di of Yi is replaced by r(xz) d5�i,
and dX for the X atom is replaced by r(xz) dX.

If we consider cylindrical polar coordinates for the electron
(subscript e), defined by

re ¼ ire cos he þ jre sin he þ kze ð1Þ

then replacing re by C3 re corresponds to replacing he by he � 2p/3,
so that the electronic wavefunction |Ki � e+iKhe has the transforma-
tion property

ð123ÞjKi ¼ e�2piK=3jKi ð2Þ

We can choose similar definitions for the polar coordinates (Qv,
/v) for a doubly degenerate vibration (subscript v)

Q�BQx � iQyBQve�i/v ð3Þ
(for example Q± � dr1 + e±2pi/3dr2 + e�2pi/3dr3 for the degenerate XY
stretching vibration), which then gives the transformation proper-
ties (since Qv, /v are replaced by Qv, /v � 2p/3)

ð123ÞQ� ¼ e�2pi=3 Q�

ð123Þjm; li ¼ e�2pil=3jm; li: ð4Þ

It can be shown that phase factors can always be chosen so that
(23)⁄, which requires the angles he and /v to be replaced by their
negatives, gives rise to the following transformations

ð23Þ�j^i ¼ þj � ^i

ð23Þ�jm; li ¼ þjm;�li ð5Þ

One reason for choosing the set of conventions above is to simplify
visual checking of the symmetry properties of various operators and
eigenfunctions. A basis-set or operator expression of the general
form A+B�C+ 	 	 	 Z� is of species A (i.e., is not E) in C3v if the number
of + subscripts (or more accurately, the total number of +ihe and +i/v

exponents) minus the number of � subscripts (total number of �ihe

and �i/v exponents) is 0 mod 3. If this 0 mod 3 criterion is satisfied,
an expression of the form (A+B�C+ 	 	 	 Z�) ± (A�B+C� 	 	 	 Z+) is A1 (+
sign) or A2 (� sign), respectively.
3. Born–Oppenheimer components of a doubly degenerate
electronic state that do not change sign when going around a
conical intersection

The simplified time-independent Hamiltonian that we consider
contains a purely electronic term, a purely vibrational term, and a
vibronic interaction term, with subscripts e, v, and ev, respectively,

H ¼ He þ Hv þ Hev : ð6Þ

In high-resolution molecular spectroscopy we are normally
interested in calculating the stationary rovibronic states of the
molecular Hamiltonian, but for the present paper we restrict atten-
tion to the stationary vibronic states of the Hamiltonian in Eq. (6).
If m and k are used for the effective mass and the quadratic force
constant of the doubly degenerate harmonic oscillator Hamiltonian
in Hv, and kJT is used for the coefficient of the linear Jahn–Teller
interaction term in Hev, we have [1]

Hv ¼ ð1=2mÞðP2
x þ P2

yÞ þ ðk=2ÞðQ 2
x þ Q 2

yÞ

Hev ¼ kJTðQþeþ2ih þ Q�e�2ihÞ ð7Þ

He is left unspecified, and serves only to put the degenerate elec-
tronic state at some particular energy Ee. (From this point forward,
the subscripts v and e will not be written, so that Qv, /v, and he be-
come Q, /, and h, respectively.)

For fixed nuclear coordinates, the 2 � 2 Hamiltonian matrix in
the basis set |K = �1i and |K = +1i takes the well-known [1] form

Ee þ ð1=2ÞkQ2 kJT Qe�i/

kJT Qeþi/ Ee þ ð1=2ÞkQ2

" #
ð8Þ

with the well-known eigenvalues [1]

Ee þ ð1=2ÞkQ2 þ kJT Q ð9aÞ

Ee þ ð1=2ÞkQ2 � kJT Q ð9bÞ

corresponding to two potential surfaces with a conical intersection
at the point with Q = 0 and energy Ee. Column eigenvectors (unnor-
malized) for the matrix in Eq. (8) belonging to the eigenvalues in
Eqs. (9a) and (9b) can be taken to have the form [5,6,8,10]
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1
eþih

� �
1
�eþih

� �
ð10Þ

We note in passing that for this simple model, the eigenvalues
in Eq. (9) do not depend on /, while the eigenvectors in Eq. (10)
do not depend on Q.

The eigenvectors in Eq. (10) lead to normalized electronic wave-
functions for fixed vibrational coordinates Q, / of the form

ð1=p2Þ jK ¼ �1i þ eþi/jK ¼ þ1i
� �

! ð1=2
p

pÞ e�ih þ eþiheþi/
� �

ð11aÞ

ð1=p2Þ½jK ¼ �1i � eþi/jK ¼ þ1i

! ð1=2

p
pÞ½e�ih � eþiheþi/
 ð11bÞ

In the schematic expressions following the arrows only the h-
dependent parts of the purely electronic basis functions are explic-
itly indicated. Both of the vibronic wavefunctions in Eq. (11) (and
in fact each of the two individual parts of each vibronic wavefunc-
tion) transform under the (123) operation as

ð123Þð1=2
p

pÞ e�ih þ eþiheþi/
� �

¼ eþ2pi=3ð1=2
p

pÞ e�ih þ eþiheþi/
� �

; ð12aÞ

ð123Þð1=2
p

pÞ e�ih � eþiheþi/
� �

¼ eþ2pi=3ð1=2
p

pÞ e�ih � eþiheþi/
� �

; ð12bÞ

i.e., these wavefunctions transform as E� functions in the C3v point
group. They also do not go into their negatives when / is increased
by 2p [5,6,8,10].

In the fixed-nuclei electronic wavefunctions of Eqs. (11a) and
(11b), the vibrational coordinate / is just a parameter, so we can
choose [5–12] to multiply each wave function by some arbitrary
phase factor of the form e+if(/). Choosing the exponentials e�i//2

and e�i(/�p)/2 as phase factors for Eqs. (11a) and (11b), respectively,
leads to real wavefunctions of the form (1/

p
p)cos(h + //2) and (1/p

p)sin(h + //2). These are the functions that were chosen for dis-
cussion in [1], and in much of the later theoretical literature [5–
12]. They transform into their negatives when / is increased by 2p.
4. Calculation of vibronic energies for states near the bottom of
the lower Jahn–Teller potential surface without introducing
half-integer quantum numbers

We repeat almost exactly the calculation from Ref. [1], where
basis functions with the transformation properties we(�)wv(�)
were used, except that here basis functions with transformation
properties we(+)wv(+) are used. This allows us to avoid the intro-
duction of half-integer quantum numbers, and thus to keep all nec-
essary symmetry considerations within the ordinary C3v point
group. Consider for simplicity the case where kJT > 0, so that the
electronic wavefunction given in Eq. (11b) belongs to the lower
Jahn–Teller potential energy surface given in Eq. (9b). Following
[1] we wish to solve the eigenvalue problem associated with

Hfð1=2
p

pÞ½e�ih � eþiheþi/
½eþil/f ðQÞ
g
¼ Efð1=2

p
pÞ½e�ih � eþiheþi/
½eþil/f ðQÞ
g ð13Þ

From Eqs. (7) and (9a) and (9b), H takes the form

H ¼ ð��h2
=2mÞ½ð@2=@Q 2Þ þ ð1=QÞð@=@QÞ
 þ ð��h2

=2mQ2Þ

� ð@2=@/2Þ þ ½Ee � ðk2
JT=2kÞ
 þ ð1=2Þk½Q � ðkJT=kÞ
2 ð14Þ

when the kinetic energy part of Hv from Eq. (7) is written in polar
vibrational coordinates and the potential energy part of Eq. (9b) is
rewritten in the form appropriate for a Harmonic oscillator in the
vibrational coordinate Q centered at kJT/k.

Following Ref. [1], we note that when the Jahn–Teller effect is
large enough that the depth D of the minimum below the conical
intersection is much greater than the radial vibrational quantum
�hxr, i.e., when D = (kJT

2/2k)� �h
p

(k/m) = �hxr, then in the lowest ra-
dial vibrational state |vr = 0i, Q will oscillate in a small interval
around its equilibrium value Qeq = kJT/k. Following a procedure
common in the treatment of diatomic molecules, we replace Q in
the diatomic-rotational-energy-like operator (�h2/2mQ2)(o2/o/2)
by its equilibrium value, and then apply this operator to the wave-
function in Eq. (13) to determine the pseudorotational energy asso-
ciated with the vibrational angular coordinate / in the present
problem.

ð��h2
=2mQ2

eqÞð@
2=@/2Þfð1=2

p
pÞ½e�ih � eþiheþi/
½eþil/f ðQÞ
g

¼ ðþ�h2
=2mQ2

eqÞð1=2
p

pÞ½l2e�ih � ðlþ 1Þ2eþiheþi/
½eþil/f ðQÞ


¼ ðþ�h2
=2mQ2

eqÞf½ðlþ 1=2Þ2 þ 1=4
ð1=2
p

pÞ½e�ih � eþiheþi/


� ðlþ 1=2Þð1=2
p

pÞ½e�ih þ eþiheþi/
g½eþil/f ðQÞ
: ð15Þ

As pointed out in [1] the (1/2
p

p)[e�ih + e+ihe+i/] term after the
second equality in Eq. (15) involves the electronic wavefunction
associated with the upper potential surface in Eq. (9a), which by
hypothesis is a long way away from the lower surface, so that
the second-order perturbation correction arising from this term
(and therefore also this term itself) can be neglected. This yields
an apparent pseudorotational energy at this point of (�h2/2mQeq

2)[(-
l + ½)2 + 1=4]. As Eq. (15) shows, the dependence of the pseudorota-
tional energy on the half-integer expression (l + ½)2 arises in the
present calculation because the l2 dependence from the |K = �1i
part of the vibronic wavefunction must be averaged with the
(l + 1)2 dependence from the |K = +1i part.

Again following [1], the part of the Hamiltonian operator
involving terms in Q and o/oQ can be converted to a form almost
identical to that for the ordinary one-dimensional harmonic oscil-
lator, by setting f(Q) = Q�1/2g(Q). This gives, from Eqs. (13) and (14),

fð��h2
=2mÞ½ð@2=@Q 2Þ þ ð1=QÞð@=@QÞ
 þ ðk=2Þ½Q � ðkJT=kÞ
2gf ðQÞ

¼ Q�1=2fð��h2
=2mÞð@2=@Q2Þ þ ðk=2Þ½Q � ðkJT=kÞ
2ggðQÞ

� ð1=4Þð�h2
=2mQ2Þf ðQÞ: ð16Þ

The last term in Eq. (16) just cancels a similar term in Eq. (15),
and the substitution q = Q � (kJT/k) then yields the equation for a
harmonic oscillator centered at q = 0, so that the final wavefunc-
tion and energy expression becomes

W ¼ ð1=2
p

pÞ½e�ih � eþiheþi/
½wvðqÞeþil/
 ð17aÞ
E¼Ee�ðk2
JT=2kÞþðmþ1=2Þ�hpðk=mÞþð�h2

=2mQ 2
eqÞðlþ1=2Þ2: ð17bÞ

The energy expression in Eq. (17b) agrees with that in Ref. [1],
except for notational changes (some of which are caused by setting
a number of constants equal to unity there). The wavefunction in
Eq. (17a), with transformation properties we(+)wv(+) under /
? / + 2p, also agrees with that in Ref. [1], though the discussion
there requires a factor of e+i//2 to be moved from the electronic part
in Eq. (17a) to the pseudorotational part, i.e., requires thinking in
terms of an expression for W of the form

W ¼ ð1=2
p

pÞ½e�ihe�i/=2 � eþiheþi/=2
½wmðqÞeþiðlþ1=2Þ/
; ð18Þ

where both the electronic part [e�ih e�i//2 � e+ih e+i//2] and the vibra-
tional part [wv(q) e+i(l+½)/] of the vibronic wavefunction now trans-
form into their negatives, i.e., transform as we(�)wv(�), when the
nuclear coordinates go once around the conical intersection.
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It can be seen that the electronic factor in square brackets in the
wavefunction of Eq. (17a) transforms as an E� function under the
PI-group operation (123), while the pseudorotational (vibrational)
factor e+il/ at the end transforms as A, E+, or E�, respectively when
l = 0, 1, or 2 mod 3. The complete vibronic wavefunction W in Eq.
(17a) then transforms as E�, A, or E+, respectively, when l = 0, 1,
or 2 mod 3.

The complete vibronic wavefunction W in Eq. (18), which is in
fact identical to that in Eq. (17a), also transforms as E�, A, or E+

when l = 0, 1, or 2 mod 3, but the transformation properties of
the individual electronic and pseudorotational vibrational factors
cannot be described by any symmetry species in C3v. Their descrip-
tion requires more complicated group theoretical considerations
[5,6].

5. Discussion

In Section 3, the transformation of the fixed-nuclei electronic
wavefunctions into their negatives upon going once around the
conical interaction in vibrational space was described as being
caused by choosing the fixed-nuclei electronic factor of the total
wavefunction to be real. For high-resolution molecular spectrosco-
pists, the choice of real electronic wavefunctions in the case of
orbital degeneracy is not universal. For example, many Hund’s cou-
pling case problems in diatomic molecules in K – 0 states are trea-
ted theoretically using the orbital basis set e±iKh, rather than the
real basis set cos(Kh), sin(Kh). Similarly, many Renner–Teller vib-
ronic coupling problems are treated using the basis set e+iKhe+il/

(with signed K and l), rather than the real basis set cos(Kh + l/),
sin(Kh + l/).

On the other hand, calculations in the theoretical chemical reac-
tion literature are often carried out [5,6] after simplifying them by
requiring the expectation value (obtained by integration only over
the electronic coordinates r) of the gradient of the fixed-nuclei
electronic wavefunction w(r,R) with respect to the nuclear coordi-
nates R to vanish, i.e., after requiring

FðRÞBhwðr;RÞjrRwðr;RÞi ¼ 0 ð19Þ

(The reader is referred to Refs. [5,6] for precise notational defi-
nitions and further details.) For our present purposes, it is suffi-
cient to note that Eq. (19) is satisfied by requiring [5,6] that
phases of the electronic wavefunctions w(r,R) be chosen so that
the w(r,R) are real. The assumption of the validity of Eq. (19) is
apparently so common in the reaction dynamics literature, that a
warning is given at the end of Section 3-A of [5] against arbitrarily
tampering with the phases of w(r,R) while at the same time pre-
suming that Eq. (19) remains valid. This mathematical inconsis-
tency is much less likely to arise in vibronic calculations in high-
resolution molecular spectroscopy papers, however, since Eq.
(19) is not normally taken as a universally agreed upon starting
point. Instead the effects of Hv acting on w(r,R) are explicitly taken
into account as needed, as, for example, in Section 4 above.

Eq. (19) is also very frequently taken as the starting point for
theoretical discussions of the transformation properties of the
fixed-nucleus Born–Oppenheimer electronic wavefunctions [7–
12]. In some sense, the pedagogical point of the present paper is
to reemphasize that vibronic and rovibronic stationary states for
Jahn–Teller molecules can conveniently be calculated without
making this assumption.
It has been pointed out [5,6,10–12] that when Hv acts on a
w(r,R) not satisfying Eq. (19), then the extra terms arising are for-
mally analogous to those that would arise by introducing a mag-
netic interaction and its associated vector potential. Such an
analogy is quite useful for making the connection between the
mathematics of the Jahn–Teller problem and the mathematics in
other fields of physics [12]. Again, however, an understanding of
this instructive analogy is not necessary for vibronic or rovibronic
energy level calculations in molecular spectroscopy, since it is
sufficient to just take the extra terms into account as needed.

It is not uncommon [8–12] to invoke the concept of Berry phase
[15] (also called geometric phase) in discussions of the sign change
acquired by electronic wavefunctions in Jahn–Teller problems
when the degenerate vibration is taken around a closed loop
enclosing the origin. In the present paper we recall the fact that
when the vibronic basis functions are chosen to have the form
we(+)wv(+), then neither the electronic part we(+) nor the vibra-
tional part wv(+) changes sign when c ? c + 2p, whereas when
the vibronic basis functions are chosen to have the form we(�)wv(-
�), then both the electronic part we(�) and the vibrational part
wv(�) change sign when c ? c + 2p. The author was certainly un-
der the impression that Berry phase is related in a rather simple
way to whether the electronic basis functions change sign or not,
which then led him to the conclusion that the Berry phase for
we(�) would be different from that for we(+). However, one of
the referees points out that geometric phase denotes a phase inde-
pendent quantity in [15] and most of the other literature on the to-
pic, and recommends making a distinction between sign change
and geometric phase. A potentially lengthy discussion of the pre-
cise relationship between Berry phase and wavefunction sign
change can be terminated at this point by noting that the main
purpose of the present paper is to show that authors interested
in computing vibronic or rovibronic energies in Jahn–Teller mole-
cules can (if they wish) completely avoid working with electronic
and vibrational basis functions we(�) and wv(�) that change sign
when going around a closed loop in vibrational space. An alterna-
tive choice of basis functions with factors of the form we(+) and
wv(+) leads (in the author’s opinion) to a gain in group-theoretical
simplicity and to no loss in computational convenience. In addi-
tion, the electronic and vibrational factors in such basis functions
exhibit no unusual sign changes, and thus require no additional
explanation via the concept of Berry phase.
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