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Abstract
We compare different methods for the adjustment of the Planck constant using recent,
inconsistent data. First we discuss the popular Birge ratio method. By stating the underlying
statistical model we critically assess and modify this method. We then propose alternative
ways of adjusting the inconsistent data using different, less restrictive assumptions about the
cause of the inconsistency. Finally, we discuss the results and give some guidance as to the
choice of method.

(Some figures may appear in colour only in the online journal)

1. Introduction

The new definition of the kilogram will be based on the
Planck constant h [1]. According to the present definition, the
uncertainty of the mass of the international kilogram prototype
is zero by convention. However, any new realization will
allocate an uncertainty to the kilogram. Two experiments have
contributed significantly to the CODATA value of h of 2010
and have, together with the reestablished NPL watt balance
experiment at NRC in Canada, the potential to achieve the
agreed goal for the relative uncertainty of 2 × 10−8. One is
the NIST watt balance experiment which aims at measuring
h by the virtual comparison of mechanical and electrical
powers [2]. The other experiment aims at determining the
Avogadro constant NA by counting the atoms in a nearly
perfect single-crystal silicon sphere highly enriched with the
28Si isotope [3]. A relative 1.8 × 10−7 discrepancy has been
observed when comparing the results of these experiments
through the molar Planck constant, NAh. This discrepancy is
not consistent with the stated uncertainties and therefore needs
further consideration. This paper presents several alternative
statistical models to combine the available data and form a
consensus estimate of h. All analyses resolve the inconsistency
of the measurements. Recommendations as to which model
may be preferred are given in section 5.

The starting point of our analysis is the data listed in
table XXXV of the CODATA adjustment of 2006 [4]. Since
then, one result for the Planck constant has been withdrawn:
the Avogadro experiment with natural silicon, Vm(Si)-2005

[5]. New data come from the mentioned 28Si Avogadro
experiment [3], identified as Avogadro-11, the METAS watt
balance experiment [6], identified as METAS-11, the new
evaluation of the NPL watt balance experiments of 2006 to
2009 [7], identified as NPL-12, and the reestablished NPL
watt balance experiment at NRC in Canada [8], identified as
NRC-12. In total, we consider eight results from table XXXV
of CODATA 2006 and the four new results. All experiments
are listed in table 1, thus there are 12 measurement values
and relative uncertainties for the measurand, see also figure 1.
The value obtained for the Avogadro constant was converted
into the corresponding h value by NAh = 3.990 312 7176 ×
10−10 J s mol−1, which has a relative standard uncertainty of
7 × 10−10 [9].

The most commonly used estimator of a measurand in an
experiment such as this is the weighted mean

µ̂WM = u2
n∑

i=1

xi

u2
i

, (1)

where

u =
(

n∑
i=1

1

u2
i

)−1/2

(2)

is its standard uncertainty. For these data, n = 12, u =
1.375×10−7×10−34 J s, and µ̂WM = 6.626 069 67×10−34 J s.
The relative standard uncertainty is 2.08 × 10−8. A common
check on the consistency of the data set is the chi-square test
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Table 1. Measurements of the Planck constant.

Equation Value/10−34 J s Relative standard
Identification in [4] xi uncertainty ui/xi

NPL-79 263 6.626 0729 1.0 × 10−6

NIST-80 296 6.626 0657 1.3 × 10−6

NMI-89 277 6.626 0684 5.4 × 10−7

NPL-90 282 6.626 0682 2.0 × 10−7

PTB-91 279 6.626 0670 6.3 × 10−7

NIM-95 261 6.626 071 1.6 × 10−6

NIST-98 284 6.626 068 91 8.7 × 10−8

NIST-07 288 6.626 068 91 3.6 × 10−8

METAS-11 6.626 0691 2.9 × 10−7

NPL-12 6.626 0712 2.0 × 10−7

NRC-12 6.626 070 63 6.5 × 10−8

Avogadro-11 6.626 070 09 3.0 × 10−8

based on the statistic

χ2
obs =

n∑
i=1

(µ̂WM − xi)
2/u2

i . (3)

Under the assumption that the data are normally distributed,
independent random variables with the same mean µ, and
variances u2

i , the χ2
obs is an observed value of a chi-square

random variable with n − 1 degrees of freedom. For this
data set χ2

obs = 25.0, and this value is very large, making
the test of consistency significant at 0.05 level. This result
has been generally interpreted as a proof of underestimation
of the uncertainties. Of course, a large value of χ2

obs can
also be a consequence of one or more of the measurements
being viewed as having means that are not equal to µ. It is
in fact impossible to reliably determine on the basis of the
available data, without additional information, which of the
two alternatives caused the high value of the χ2

obs statistic.
Reference [10] has more discussion of this interesting and
important topic. The fact that the data presented in table 1
were produced by highly reputable laboratories may lead one
to prefer the first explanation and endeavour to inflate the
uncertainties in a sensible way. There are essentially two ways
to inflate the uncertainties, one multiplicatively, described in
section 2, and one additively, described in section 3. But as
the second explanation is also possible we provide a method
which allows for the possibility of some undetected overlooked
biases in section 4.

2. Methods based on the Birge ratio

The method most commonly used to increase the size of
the measurement uncertainties, as for example in [4], is
equivalent to making the assumption that measurement i is
normally distributed with variance c2u2

i and mean µ. Then the
expression for the consensus mean (1) remains the same, but
the expression for the standard uncertainty becomes

uB = cu.

The objective of the method is to estimate c. The usual estimate
is based on the fact that under these assumptions

1

c2

n∑
i=1

(
xi − µ̂WM

ui

)2

= χ2
obs

c2

is an observed value of a chi-square random variable with n−1
degrees of freedom. Since the expected value of such a chi-
square random variable is n − 1,

E

(
χ2

obs

n − 1

)
= (n − 1)c2

n − 1
= c2,

and so χ2
obs/(n − 1) is an unbiased estimator of c2 and uB can

be estimated as ũB =
√

χ2
obs/(n − 1)u. For the Planck data

ũB = 1.51u. The final result of the analysis is therefore
µ̂WM = 6.626 069 67 × 10−34 J s, with relative standard
uncertainty of 3.13 × 10−8.

This method is equivalent to treating the estimate of c

as a constant without error. But under the same assumptions
(Gaussian distribution with variance c2u2

i and mean µ) the
value of χ2

obs could have been different, as it is a realization
of a random variable. Fortunately, it is quite straightforward
to modify the Birge ratio procedure so that it accounts for this
uncertainty. It requires taking the Bayesian approach [11],
a line of attack in line with the Guide to the Expression
of Uncertainty in Measurement [12], and especially its
Supplement 1 [13]. (See also [14] which uses this approach
to compute the gravitation constant from the 1998 CODATA
data set.) The Bayesian approach requires, in addition to
the assumption of a Gaussian distribution with variance c2u2

i

and mean µ, a so-called prior distribution for µ and c.
This distribution summarizes our knowledge about these two
parameters before the data are taken into account. When no
additional knowledge of the parameters is available, as is the
case here, a so-called non-informative distribution is used.
Such distributions are not uniquely determined and different
criteria have been proposed for their derivation. Here we use
a so-called reference prior p(µ, c) ∝ 1/c (see [11] for more
discussion of non-informative and reference priors, including
methods of derivation). Then applying Bayes’ theorem in the
usual way, integrating over c, the posterior distribution for µ

can be shown to be the three-parameter Student’s t distribution
with n − 1 degrees of freedom, location parameter µ̂WM and

scale parameter u

√
χ2

obs/(n − 1). This density is symmetric

with mean µ̂WM and variance u2χ2
obs/(n − 3). The estimates

of the consensus mean and of the standard uncertainty based
on this method are µ̂WM and

uMB = u

√
χ2

obs

(n − 3)
,

and the expanded uncertainty (at a 95% level of confidence) is

u

√
χ2

obs/(n − 3)tn−1,0.975. The accounting for the additional
uncertainty due to the fact that the constant c is not
known, but only estimated, resulted in the increase of the

standard uncertainty from
√

χ2
obs/(n − 1)u to

√
χ2

obs/(n − 3)u.
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Figure 1. Measurements of the Planck constant h. The error bars denote the standard uncertainties.

Application to the Planck constant measurements yields
standard uncertainty of 1.67u, and the result µ̂WM =
6.626 069 67 × 10−34 J s, with relative standard uncertainty
3.46×10−8. More details on this modified Birge ratio method
will be reported elsewhere.

A key property of the Birge ratio adjustment methods
is that the uncertainties are inflated proportionally, and
therefore the usual weighted mean estimate remains
unchanged. The adjustment rests on the key assumption that
the underestimation of the uncertainty is proportional across
the various measurements. This may or may not be true. The
methods described in the next section do not make this key
assumption.

3. Methods based on the random effects model

The random effects model [15] has a long history. It
appears to have been first used by a nineteenth century
astronomer Airy [16] to account for additional uncertainty
in a particular estimate due to the fact that his observations
were not all made under identical conditions, but instead, were
recorded on several different nights with potentially different
conditions. The random effects model was later rediscovered
by statisticians [17, 18], and widely used ever since [10]. The
model assumes that the ith measurement can be written as

xi = µ + λi + ei, (4)

whereµ is the measurand, λi is the so-called random effect, that
is, a Gaussian random variable with mean 0 and variance σ 2

λ ,
and ei , the usual measurement error term, is a Gaussian random
variable with mean 0 and variance u2

i . The random effect
accounts for additional variability in the measurements that is
not accounted for by the stated u2

i . This variability is thought
to be caused by possibly unknown or poorly understood factors
that affect all of the measurements equally.

Under this model, a particular measurement is thought to
be normally distributed with mean µ and varianceu2

i +σ 2
λ . Thus

the individual uncertainty is increased additively by the term
σ 2

λ . This additional variance term is estimated using the
measurements. One of the natural consequences of making
the uncertainty adjustment additively is that the estimate µ̂,
given in (1), also changes.

Various procedures have been proposed in the statistical
literature to estimate σ 2

λ . Most of them (see, for example, [19])
make use of the fact that the quantity

∑n
i=1 wi(xi − µ̂R)2

has chi-square distribution with n − 1 degrees of freedom
under model (4). Here, wi = 1/(u2

i + σ 2
λ ), µ̂R =

u2
R

∑n
i=1 (xi/(u

2
i + σ 2

λ )) and u2
R = (

∑n
i=1 (1/(u2

i + σ 2
λ )))−1.

A version of this procedure which used maximum likelihood
estimation was applied in [20] to compute the gravitation
constant from the 1998 CODATA data set. None of the
classical estimation procedures yield closed form solution
for the estimator of σ 2

λ , and all use various simplifying
assumptions or approximations. Performance of the estimators
is evaluated using criteria applicable if n is large, or via Monte
Carlo simulation [19]. For this reason we again prefer to
adopt the Bayesian paradigm as it eliminates the need for the
asymptotic arguments as sample sizes of the order of 9 or 10
are not large enough.

A trade-off of course is that the Bayesian method requires
a prior distribution for µ and σ 2

λ . As no additional information
about either parameter is assumed, a non-informative reference
prior p(µ, σ) is derived as

p(µ, σλ) ∝
√√√√ n∑

i=1

σ 2
λ

(u2
i + σ 2

λ )2
.

This prior guarantees that a posterior distribution for µ can
be obtained but its derivation requires numerical means;
unfortunately no analytic expressions are available. The mean
of this distribution can be used as the consensus estimate,
the standard deviation as the standard uncertainty. For the
Planck data, the resulting estimate is 6.626 069 60 × 10−34 J s,
the relative standard uncertainty is 6.68 × 10−8. Thus the
estimate is quite similar to that based on the Birge ratio but the
uncertainty more than two times larger.
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Table 2. Results of the Bayesian model averaging procedure.

Estimate/10−34 J s Relative standard uncertainty m

6.626 069 34 76.83 × 10−8 1
6.626 069 46 22.98 × 10−8 2
6.626 069 49 13.50 × 10−8 3
6.626 069 50 11.09 × 10−8 4
6.626 069 51 10.15 × 10−8 5
6.626 069 55 9.63 × 10−8 6
6.626 069 60 9.21 × 10−8 7
6.626 069 67 8.69 × 10−8 8
6.626 069 76 7.89 × 10−8 9
6.626 069 87 6.48 × 10−8 10
6.626 069 98 3.62 × 10−8 11
6.626 069 67 2.08 × 10−8 12

4. Methods based on the fixed effects model

It is possible that model (4) may seem overly pessimistic in
the sense that one might think that at least a subset of the
measurements were made with correct uncertainty evaluation.
This is exactly what was done in [21]. There the assumptions
of model (4) are relaxed so that a subset � of size m of the
measurements are assumed to have the correct uncertainty
assessment and so the measurements xi can be viewed as
realizations of Gaussian random variables with mean µ and
variance u2

i . For the remaining measurements, the means are
µ+αi , the αi are potential bias terms. These bias terms are not
modelled as realizations of a common Gaussian distribution (as
is done by the random effects model), rather they constitute
several additional parameters to be estimated from the data.
This is the so-called fixed effects model described in [15, 18].

The measurements in the set � are not predetermined by
the analyst; instead, all subsets of size m are taken in turn and
the posterior distributions of µ are obtained. The final posterior
density of µ is derived via the technique called Bayesian model
averaging [22] using a probability distribution which quantifies
the likelihood of the various models being correct given the
data. The method favours the ‘most coherent’ subset of size
m; that subset will have the most influence over the value of
the estimate. Table 2 gives the estimate and relative standard
uncertainty for various sizes of m.

When m = 12, the procedure yields the usual weighted
mean (1), and its uncertainty (2). For m = 10, 11 the relative
standard uncertainty is smaller than for the random effects
model (4). For small m, the uncertainty gets quite large. The
results are further illustrated by figure 2.

In [21] a procedure was proposed to rule out very large
values of m in view of the data, but it was also explained that
any method inferring the best value of m from the data would
simply be finding the most consistent set of data. This is not
desirable as such a data set may not be the most accurate
and a judgment of accuracy cannot be made without further
information.

Application of the procedure in [21] excludes m = 12
(but not m = 11). Within the range of m from 4 to 10 the
uncertainty of the estimated µ decreases smoothly, and the
results appear to be quite similar. (In view of the data one

Figure 2. Estimates of Planck constant h and standard uncertainties
as a function of m.

may therefore favour a choice of m = 6 or m = 7, say, giving
similar results to the random effects model.)

The different measurements have been treated as being
uncorrelated. However, sometimes some of the measurements
are correlated with known correlation coefficients. Then the
proposed alternative analysis methods should be extended to
account for these correlations, but this is beyond the scope of
this paper.

5. Conclusions

The estimation of a consensus value from an inconsistent set
of measurements requires additional assumptions. These are
best made in the form of a statistical model to either account
for uncertainties that appear to be very small, or to describe
overlooked effects such as possible bias terms. Which of
these different sets of assumptions are the most reasonable for
a particular experiment cannot be determined from the data
alone, and we believe that if no additional prior information
is readily available, then it is best to perform the analysis
under each set and compare the results. (In this we differ
from [23] which applies a set of models to measurements of
the Planck constant and employs additional informative prior
distributions to arrive at a preferred model.) The best situation
is when several different sets of assumptions lead to similar
results. This is in fact true for the Planck constant data:
the random effects model analysis and the Bayesian model
averaging analysis based on the fixed effects model yield very
similar results (figure 3).

If in a particular case different assumptions yield different
results, it is our view that either the method based on the
random effects model or the fixed effects model is preferable
to the adjustment based on the Birge ratio as the assumptions
underlying the latter method seem the most restrictive. We
see the method based on the random effects model as more
restrictive than the one based on the fixed effects model [21]
as there a number of the measurements are considered to be
accompanied by reliable uncertainties. Only the number of
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Figure 3. Comparison of the different methods to form a consensus estimate of h. For the Bayesian model averaging analysis based on the
fixed effects model the result for m = 7 is shown. The error bars denote the standard uncertainties.

such measurements needs to be specified, not their actual
identity.
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