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Valley polarization of multi-valleyed materials is of significant interest for potential applications 

in electronic devices. The main challenge is removing the valley degeneracy in some controllable 

way. The unique properties of bismuth, including its anisotropic electronic structure and Dirac 

valley degeneracy, make this material an excellent system for valleytronics. We demonstrate 

theoretically that the direction of an externally applied magnetic field in the binary-bisectrix 

plane has a profound effect not only on the charge, but also on the thermal transport along the 

trigonal direction. The rotating field probes the electronic mass anisotropy and tunes the 

contribution from a particular Dirac valley in the electrical resistivity, Seebeck coefficient, and 

thermal conductivity at moderate temperatures and field strengths. We further show that the field 

polarization of the transport properties is accompanied by selective filtering of the carriers type 

providing further opportunities for thermoelectric transport control. 

 

I. Introduction 

Creating an imbalance in the energy bandstructure valleys is an interesting concept motivated by 

the potential of constructing multichannel devices with valley polarization properties[1-3]. Usually 
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two-dimensional materials, such as graphene, AlAs or Si surfaces, are envisioned for such 

manipulations[2-5]. However, recent experiments demonstrate that valley polarization effects are 

manifested in the measured angular oscillations of the electrical resistivity of bismuth as a 

function of the external magnetic field orientation.[6] This behavior suggests that tuning of each 

electronic valley contribution to the total resistivity is achievable in a wide temperature regime. 

Here we present a model showing that the charge and heat currents can be valley-polarized with 

a magnetic field applied in the bismuth binary-bisectrix (bb) plane. We demonstrate that 

valleytronics is feasible for other transport characteristics along the trigonal direction, such as the 

Seebeck coefficient and thermal conductivity. Consequently, thermoelectricity exhibits 

preferential excitations, with the bismuth figure of merit being profoundly affected by the 

magnetic field orientation. The model is validated by interpreting existing experimental results 

for the bismuth resistivity along the trigonal direction [6]. 

 

II. Theoretical Approach 

Bismuth is characterized by a rhombohedral crystal structure and a Fermi surface consisting of a 

hole carrier ellipsoid located around the trigonal axis (T-point) and three electron carrier ones 

almost perpendicular to the trigonal axis (L-points) (Figure 1). The electronic energy dispersion 

)(keε  is described via a two-band, non-parabolic model[7]: kk
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gε  is the electron energy band gap, k is the wave vector, 0m is the free electron mass, and em  is the 

electron effective mass tensor. The band gap and components of the mass tensor are temperature 

dependent and they are taken from available experimental data[8, 9] . The hole band structure is 
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described by a parabolic model: 

kkk 1
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)( −= hm

mh
ε , where hm  is the 

effective hole mass tensor with temperature 

independent components taken from available 

experiments[8]. We consider an external 

magnetic B field applied in the bb-plane, 

characterized by an angle Φ  measured 

with respect to the bisectrix (Figure 1). The 

total conductivity tensor is 

h
i

ie σσσ += ∑ =

3
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where the electron and hole contributions are indexed by e and h, respectively, and i indicates 

summation over the L-pockets[10]. The partial conductivities are calculated by solving the 

Boltzmann equation within the relaxation time approximation: 

( ), ( ) , ( )2
0 ( )e i h e i he d fσ ε ε ε= −∂ ∂ Σ∫      (2) 

, ( ) , ( )3 ( ) ( )
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e i h e i he h e h
e hd kε τ δ ε ε

π
 Σ = ⋅ − ∫ v k v k k k   (3) 

where Σ is the partial distribution transport tensor, e is the electron charge, 0f  is the equilibrium 

Fermi-Dirac distribution function, ( ) 1
( )( ) ( )e h

e hε−= ∂ ∂v k k k  are the carriers’ group velocity 

components, and )()(, khieτ  are the relaxation time tensors[7, 8, 11, 12]. The latter are expressed using 

the Mathiessen’s rule as ( ) ( )( ) 11 1, ( ) ( ) , ( )e i h e h e i h
intr Bτ τ τ

−− −
= + , where the first term accounts for the 

Fig. 1. Electron and Hole Fermi surfaces of bismuth at 
the Brillouin zone and the orientation of the externally 
applied magnetic field B. 
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intrinsic scattering mechanisms and the second one represents the effects of the externally 

applied field B. )(
int

he
rτ  is diagonal with components assumed corresponding to dominant carrier- 

phonon scattering[13, 14]. Also[15], 1),()( −= hehe
B mBeτ , where the nonzero components of the 

antisymmetric B  tensor reflect the geometry in Figure 1: Φ=−= cos3113 BBB  and 

Φ=−= − sin2332 BBB . Evaluating Eq. (3) leads to: 
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and )/1( gee εεεγ += . The electron and hole mass components along the bisectrix, binary, and 

trigonal axes are denoted as ,
1,2,3
e hm , respectively. Together with gε , these are taken from available 

experimental data[8, 9]. The relaxation times )(
3,2,1

heτ  and the Fermi levels for the carriers )(he
Fε are 

determined such that the zero-field calculated properties fit those experimentally measured in 

Ref. [16] for bulk bismuth in the temperature range 80 K to 300 K. The obtained values are 

shown in Table I. 
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III. Calculated Transport Properties 

In Figure 2a the angular dependence of the resistivity 1
3333
−= σρ  along the trigonal axis is shown. 

The oscillations for the displayed temperature range are related directly to the 

)3/2)1((cos2 π−+Φ i  dependence in 33Σ . As the field rotates in the bb-plane, the different L-

pockets will contribute with different strengths, so that 33ρ  exhibits periodic minima and 

maxima. The factor eD  in Eq. (8) is a measure of the electron mass anisotropy determining the 
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80 0.029 0.0154 18.995 51.421 92.239 71.709 221.026 21.244 

100 0.031 0.0157 12.054 32.629 57.069 49.642 149.186 20.739 

120 0.033 0.0158 8.163 22.099 37.908 37.287 109.902 18.352 

140 0.036 0.0159 5.506 14.906 24.830 28.905 82.731 16.196 

160 0.039 0.0160 3.837 10.388 17.453 22.343 64.499 12.394 

180 0.043 0.0170 2.731 7.392 12.236 17.413 49.523 9.131 

200 0.049 0.0195 1.958 5.301 8.617 13.284 37.106 6.592 

220 0.054 0.0236 1.414 3.829 6.179 9.833 27.162 4.031 

240 0.060 0.0286 1.031 2.791 4.518 7.376 20.522 2.015 

260 0.066 0.0360 0.747 2.022 3.241 5.410 14.895 0.959 

280 0.074 0.0449 0.540 1.462 2.347 3.984 10.989 0.485 

300 0.081 0.0572 0.382 1.034 1.627 2.886 7.801 0.280 

Table 1. Obtained values for the electron and hole Fermi levels and scattering times for different temperatures along 
the binary, bisectrix, and trigonal directions. The obtained relaxation phonon scattering times along the trigonal 
direction are also given. 
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magnitude of the oscillations. This anisotropy can further be enhanced if B is increased. 

However, for holes hh mm 21 =  and hh
21 ττ =  (Table I), thus the orientation of the field does not 

affect their transport[8]. The results in Figure 

2a are in agreement with the reported 

measurements for bismuth[6]. The field 

angular dependence and even the oscillations 

magnitude are well reproduced. This is strong 

experimental validation of this model. 

Figure 2b shows that each L-pocket will be 

responsible for approximately 60% of 33σ  at 

6/)12( π+=Φ n , while the holes account for 

the rest ( ]6,0[∈n  is integer). e
33σ  of each L-

ellipsoid acquires its largest value when the 

field is oriented along the binary axis, which 

is perpendicular to the longer axis of that 

ellipsoid. As B rotates, e
33σ  decreases until 

the field becomes parallel to the longer axis of 

the ellipsoid. The hole contribution to e
33σ  is 

approximately 80% at those Φ  for which the L-pockets contribution is minimum. The field 

magnitude and temperature also contribute significantly to the relative balance of ie,
33σ  and h

33σ  

to 33σ . Larger B and lower T will increase the magnitude of the maxima of the L-pockets, while 

smaller B and higher T reduce the oscillations, as seen in Figure 2.  

Fig. 2 (a) The electrical resistivity along the trigonal 
direction as a function of the B field orientation for 
different temperatures; (b) Conductivity of electronic 
and hole pockets normalized to the total charge 
conductivity along the trigonal direction. The 
normalized total electronic conductivity is also shown. 
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These findings indicate that the transport can be effectively polarized by applying a magnetic 

field in the bb-plane. The field breaks the symmetry of the three L-ellipsoids, and as its direction 

changes, electrons residing in particular valley can be stimulated, while the others are 

suppressed. The main reason for this behavior is the electron mass anisotropy along the binary 

and bisectrix axes. We further demonstrate that it is not only possible to obtain specific Dirac 

valley polarization of the conductivity, but other transport characteristics exhibit similar features.  

The Seebeck coefficient is calculated next using 

1
3
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+= ∑ σσσ hh

i

ieie SSS       (9) 

( ) ( ), ( ) , ( ) , ( )
0 ( )( )e i h e i h e i hT S e d fσ ε ε ε ε µ⋅ = −∂ ∂ Σ −∫    (10) 

where )(, hieS are the partial electron and hole Seebeck coefficients, and µ  denotes the chemical 

potential. The angular dependence of )(
33

heS  and the total 33S  are shown in Figure 3a. Since the 

in-plane hole masses are isotropic, hS33  is not affected by the orientation of the in-plane field. The 

inset of Figure 3a shows that the magnitude of the eS33  oscillations is small, but because of the 

large oscillations in the conductivities (Eq. 9), S33 exhibits similar field angular behavior as in 

Figure 2a. |S33| is maximum when 33ρ  is maximum, and these correspond to the dominant 

contribution of carriers residing in the specific electronic valleys as shown in Figure 2b. The 

Seebeck coefficient is positive when the hole contribution to 33σ  is larger and it changes its sign 

when the electrons dominate. 
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The limits of the angular oscillations of 33S  as a function of the field strength for various 

temperatures reveal a different aspect of the 

transport (see Figure 3b). For lower T (T=100K) 

and sufficiently high B, the holes always 

dominate the transport, since 33S  is always 

positive. For higher T (T=300K ), the electrons 

dominate the transport and 33S  is negative for all 

Φ . There is an intermediate regime (T=200K and 

0.25T<B<0.75T) when the two carrier 

contributions will be comparable and 33S will 

periodically change sign as the field rotates. 

These findings illustrate how to further control 

the transport in bismuth: for intermediate 

temperatures, the orientation and magnitude of 

the field in the bb-plane can be used not only for 

valley polarization, but also for selective filtering 

of the carriers type. 

We also evaluate the thermal conductivity as 

( ) Lehheh
i

ie SST κσσσκκκ +−++= −

=∑ 123

1
,     (11) 

( ), ( ) , ( ) , ( ); , ( ) , ( )2
0 ( )( ) /e i h e i h e i h T e i h e i hd f T T S Sκ ε ε ε ε µ σ= −∂ ∂ Σ − − ⋅ ⋅∫    (12) 

Fig. 3 (a) The angular dependence of  the total 
and partial Seebeck coefficients;  (b) Seebeck 
coefficient oscillations amplitude as a function of 
the magnetic field strength for different 
temperatures. 
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where ie,κ and hκ correspond to the electronic and hole contributions given in Eq. (12). The third 

term accounts for the bipolar diffusion 

characteristic for materials with two types of 

carriers carrying heat in the same direction. Lκ  

represents the lattice thermal conductivity and 

is calculated within the Holland-Callaway 

model and the relaxation time approximation[17, 

18]. The zero-field κ  found via Eqs. (11,12) 

reproduces the experimental data reported in 

Ref. [15], and in Table 1 we give the phonon 

relaxation scattering times along the trigonal axis.   

Figure 4 shows that 33κ  also exhibits oscillations with the applied magnetic field orientation with 

maxima corresponding to the minima of  33S  and 33ρ . L
33κ  is independent of the field and its 

value is the experimental one for the trigonal direction at T=200 K in Ref. [16]. h
33κ  is also 

independent of the field orientation. e
33κ  has angular oscillations and its contribution to the total 

total thermal conductivity will vary, depending on the field orientation. For magnetic fields 

oriented along the binary axis e
33κ  is larger, whereas for fields oriented along the bisectrix, h

33κ  is 

larger. Since the bipolar term accounts for the heat transported by pairs of electrons and holes, its 

contribution to 33κ  has maxima at fields orientations where e
33κ  has the largest values. 

Fig. 4. The angular dependence of  the thermal 
conductivity along the trigonal direction. 
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Finally, we consider the thermoelectric performance of bismuth, described via the dimensionless 

figure of merit 3333
2
3333 κσ TSZT = , as a 

function of the magnetic field orientation. This 

dimensionless quantity is directly related to the 

efficiency of thermoelectric devices as large ZT 

values imply better performance. The polar 

representation in Figure 5a shows that the 

repeating maxima of 33ZT  for B=0.5T occur at 

those Φ  for which 33σ  and 33κ  are maximum 

(S33 is minimum), however for B=0.2T 33ZT  is 

maximum for those Φ  for which S33 is 

maximum ( 33σ  and 33κ  are minimum).  Figure 

5b presents a different perspective of the 33ZT  

dependence on the field orientation. For 

T=200K, for a small B field, the figure of merit 

is maximized for 030Φ =  and minimized for 

00Φ = . For a larger field (B>0.3T), the situation is reversed. This is a consequence of the 

relative contribution of 33σ  and 33κ  (as opposed to 33S ) in their ratio comprising 33ZT . 

 

IV. Summary 

In summary, we have demonstrated that a magnetic field in the bb-plane can excite single Dirac 

valleys with signatures in different transport characteristics. Consequently, the bismuth 

Fig. 5. The thermoelectric figure of merit along the 
trigonal direction: (a) polar representation of its 
angular dependence, and (b) limits of its oscillations 
amplitude for different temperatures. 
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thermoelectricity can be further controlled by tuning the type of carriers dominating the transport 

and its overall figure of merit.   
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