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Abstract
A fundamental solution of Laplace’s equation in three dimensions is expanded
in harmonic functions that are separated in parabolic or elliptic cylinder
coordinates. There are two expansions in each case which reduce to expansions
of the Bessel functions J0(kr) or K0(kr), r2 = (x−x0)

2 +(y−y0)
2, in parabolic

and elliptic cylinder harmonics. Advantage is taken of the fact that K0(kr) is a
fundamental solution and J0(kr) is the Riemann function of partial differential
equations on the Euclidean plane.

PACS numbers: 02.30.Em, 02.30.Gp, 02.30.Hq, 02.30.Jr, 02.30.Mv, 02.40.Dr
Mathematics Subject Classification: 35A08, 35J05, 42C15, 33E10, 33C15

1. Introduction

A fundamental solution of Laplace’s equation

∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
= 0 (1)

is given by (apart from a multiplicative factor of 4π )

U (x, x0) = 1

‖x − x0‖ , where x = (x, y, z) �= x0 = (x0, y0, z0), (2)

and ‖x − x0‖ denotes the Euclidean distance between x and x0. In many applications it is
required to expand a fundamental solution in the form of a series or an integral, in terms
of solutions of (1) that are separated in suitable curvilinear coordinates. Examples of such
applications include electrostatics, magnetostatics, quantum direct and exchange Coulomb
interactions, Newtonian gravity, potential flow and steady state heat transfer. Morse and
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Feshbach [19] (see also [11]; [14]; [10]) provide a list of such expansions for various coordinate
systems but the formulas for several coordinate systems are missing. It is the goal of this paper
to provide these expansions for parabolic and elliptic cylinder coordinates. Although these
expansions are partially known from [3] and [13] for parabolic cylinder coordinates, and from
[17] for elliptic cylinder coordinates, we found it desirable to investigate these expansions in
a systematic fashion and provide direct proofs for them based on eigenfunction expansions.

There will be two expansions for both of these coordinate systems. The first expansion for
a cylindrical coordinate system on R3 starts from the known formula in terms of the integral
of Lipschitz (see [27, section 13.2]; [6, (8)])

1

‖x − x0‖ =
∫ ∞

0
J0(k

√
(x − x0)2 + (y − y0)2) e−k|z−z0| dk. (3)

The Bessel function Jν can be defined by (see for instance (10.2.2) in [20])

Jν (z) :=
(

z

2

)ν ∞∑
n=0

(−z2/4)n

n!�(ν + n + 1)
. (4)

Note that Wk : R2 × R2 → R, defined by

Wk(x, y, x0, y0) := J0(kr), (5)

where r2 := (x − x0)
2 + (y − y0)

2, solves the partial differential equation

∂2U

∂x2
+ ∂2U

∂y2
+ k2U = 0. (6)

Therefore, in a cylindrical coordinate system on R3 involving the Cartesian coordinate z, the
first expansion (3) reduces to expanding Wk from (5) in terms of solutions of (6) that are
separated in a curvilinear coordinate system on the plane.

The second expansion for a cylindrical coordinate system on R3 is based on the known
formula given in terms of the Lipschitz–Hankel integral (see [27, section 13.21]; [6, (9)])

1

‖x − x0‖ = 2

π

∫ ∞

0
K0(k

√
(x − x0)2 + (y − y0)2) cos k(z − z0) dk, (7)

where Kν : (0,∞) → R (cf (10.32.9) in [20]), the modified Bessel function of the second
kind (Macdonald’s function), of order ν ∈ R, is defined by

Kν (z) :=
∫ ∞

0
e−z cosh t cosh(νt) dt. (8)

Now Vk : R2 × R2 \ {(x, x) : x ∈ R2} → (0,∞), defined by

Vk(x, y, x0, y0) := K0(kr) (9)

solves the partial differential equation

∂2U

∂x2
+ ∂2U

∂y2
− k2U = 0. (10)

In a cylindrical coordinate system on R3 involving the Cartesian coordinate z, the second
expansion (7) reduces to expanding Vk in terms of solutions of (10) that are separated in
curvilinear coordinates on the plane.

For the benefit of the reader, it is to be noted that in this paper, the most important
expansion formulas associated with a fundamental solution of Laplace’s equation on R3 in
parabolic and elliptic cylinder coordinates are listed as follows. There are those given in terms
of Hermite functions for the order zero modified Bessel function of the second kind, namely
theorems 2.2, 2.3; those given in terms of the (modified) parabolic cylinder functions for the

2
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order zero Bessel function of the first kind, namely theorems 3.2, 3.3; those given in terms of
Mathieu functions for the order zero Bessel function of the first kind, namely theorems 4.2,
4.3; and those given in terms of modified Mathieu functions for the order zero modified Bessel
function of the second kind, namely theorems 5.2, 5.3.

The paper is organized as follows. In section 2 we derive the desired expansion of K0(kr)
in parabolic cylinder coordinates. This expansion is given in terms of series over Hermite
functions. In section 3 we obtain an integral representation for J0(kr) in terms of separated
solutions of (10) in terms of (modified) parabolic cylinder functions. We show how these
results are based on a general expansion theorem in terms of solutions of the differential
equation

− u′′ − 1
4ξ 2u = λu, (11)

where ξ is the independent variable. The above equation can be viewed as a quantum
mechanical inverted harmonic oscillator at energy λ (see for instance [2]). In sections 4
and 5 we derive the fundamental solution expansions in elliptic cylinder coordinates for J0(kr)
and K0(kr), respectively.

Throughout this paper we rely on the following definitions. The set of natural numbers
is given by N := {1, 2, 3, . . .}, the set N0 := {0, 1, 2, . . .} = N ∪ {0} and the set
Z := {0,±1,±2, . . .}. The set R represents the real numbers and the set C represents the
complex numbers.

2. Expansion of K0(kr) for parabolic cylinder coordinates

Parabolic coordinates on the plane (ξ , η) (see figure 1, and for instance chapter 10 in [13]) are
connected to Cartesian coordinates (x, y) by

x = 1
2 (ξ 2 − η2), y = ξη, (12)

where ξ ∈ R and η ∈ [0,∞). To simplify notation we will first set k = 1 in (9). Then V1

satisfies
∂2U

∂x2
+ ∂2U

∂y2
− U = 0 if (x, y) �= (x0, y0). (13)

Let (ξ , η), (ξ0, η0) be parabolic coordinates on R2 for (x, y) and (x0, y0), respectively. Then
V1 transforms to

v(ξ, η, ξ0, η0) := K0(r(ξ , η, ξ0, η0)), (ξ , η) �= ±(ξ0, η0)

and r(ξ , η, ξ0, η0) is defined by

r2 = 1
4

[
(ξ + ξ0)

2 + (η + η0)
2
] [

(ξ − ξ0)
2 + (η − η0)

2
]
, r > 0. (14)

Here and in the following we allow all ξ, η, ξ0, η0 ∈ R such that (ξ , η) �= ±(ξ0, η0). From
(13) or by direct computation we obtain that v solves the equation

∂2u

∂ξ 2
+ ∂2u

∂η2
− (ξ 2 + η2)u = 0. (15)

One can view this equation as a quantum mechanical simple harmonic oscillator with zero
energy. Separating variables u(ξ , η) = u1(ξ )u2(η) in (15), we obtain the ordinary differential
equations

u′′
1 + (2n + 1 − ξ 2)u1 = 0, (16)

u′′
2 − (2n + 1 + η2)u2 = 0, (17)

3
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parabolic cylinder coordinates
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Figure 1. The (x, y) plane of parabolic cylinder coordinates on R3. The curves of constant ξ (solid)
and η (dashed) both represent parabolic cylinders (parabolas extended infinitely in the positive and
negative z directions).

where we will use only n ∈ N0. One can view these equations as quantum mechanical simple
harmonic oscillators in one-dimension with positive and negative energies respectively.

Equations (16), (17) have the general solutions

u1(ξ ) = c1e−ξ 2/2Hn(ξ ) + c2 eξ 2/2H−n−1(iξ ),

u2(η) = c3 eη2/2Hn(iη) + c4 e−η2/2H−n−1(η),

where Hν : C → C is the Hermite function which can be defined in terms of Kummer’s
function of the first kind M as (cf (10.2.8) in [13])

Hν (z) := 2ν
√

π

�
(

1−ν
2

)M

(
−ν

2
,

1

2
, z2

)
− 2ν+1√π

�
(− ν

2

) z M

(
1 − ν

2
,

3

2
, z2

)
,

and

M(a, b, z) :=
∞∑

n=0

(a)n

(b)n

zn

n!
(18)

(see for instance (13.2.2) in [20]). Note that the Kummer function of the first kind is entire in z
and a, and is a meromorphic function of b. The Hermite function is an entire function of both
z and ν. If ν = n ∈ N0 then Hν (z) reduces to the Hermite polynomial of degree n.

4
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Arguing as in [26, theorem 1.11], we obtain the following integral representation for
solutions of (15).

Theorem 2.1. Let u ∈ C2(R2) be a solution of (15). Let (ξ0, η0) ∈ R2, and let C be a closed
rectifiable curve on R2 which does not pass through ±(ξ0, η0), and let n± be the winding
number of C with respect to ±(ξ0, η0). Then we have

2π
[
n+u(ξ0, η0) + n−u(−ξ0,−η0)

] =
∫

C
(u∂2v − v∂2u)dξ + (v∂1u − u∂1v) dη,

where ∂1, ∂2 denote partial derivatives with respect to ξ , η, respectively.

This is a generalization of Green’s representation formula (see for instance [12, p 60]
and [9, (6.25)]) with the right-hand side being the boundary integral of unv − uvn, where the
subscript n indicates the normal derivative on C. Note that v is a fundamental solution of (15)
which has logarithmic singularities at the points ±(ξ0, η0).

We apply theorem 2.1 to the solution

u(ξ , η) = e−ξ 2/2Hn(ξ )eη2/2Hn(iη),

of (15), and for C we take the positively oriented boundary of the rectangle |ξ | � ξ1, |η| � η1,
where |ξ0| < ξ1, |η0| < η1, so n+ = n− = 1. Then let ξ1 → ∞ and note that the integrals over
the vertical sides converge to 0. The integrals over the horizontal sides of the rectangle give the
same contribution because the integrand changes sign when (ξ , η) is replaced by (−ξ,−η).
Therefore, we obtain, for η = η1 > |η0|,

2πu(ξ0, η0) =
∫ ∞

−∞
(v(ξ, η, ξ0, η0)∂2u(ξ , η) − u(ξ , η)∂2v(ξ, η, ξ0, η0)) dξ . (19)

We expand v as a function of ξ in an orthogonal series of functions e−ξ 2/2Hn(ξ ), n ∈ N0,
so that the coefficients

fn(η, ξ0, η0) :=
∫ ∞

−∞
v(ξ, η, ξ0, η0) e−ξ 2/2Hn(ξ ) dξ, (20)

are to be evaluated.
Set f (η) = fn(η, ξ0, η0) and g(η) = eη2/2Hn(iη). Then after substituting the above

particular u, (19) becomes

2πu(ξ0, η0) = g′(η) f (η) − g(η) f ′(η). (21)

By differentiating both sides of (21) with respect to η we see that f satisfies (17). Since f (η)

goes to 0 as η → ∞, it follows that

f (η) = ce−η2/2H−n−1(η),

where c is a constant. Going back to (21), we find that

2πu(ξ0, η0) = cW,

where W = in is the (constant) Wronskian of e−η2/2H−n−1(η) and g(η). Therefore, if η > |η0|,
we obtain

fn(η, ξ0, η0) = 2π(−i)n e−ξ 2
0 /2Hn(ξ0) eη2

0/2Hn(iη0) e−η2/2H−n−1(η). (22)

By taking limits, we see that (22) remains true when η = |η0|. Expanding ξ 
→ v(ξ, η, ξ0, η0)

in a series of Hermite functions [23, theorem 9.1.6] we obtain the following result.

5
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Theorem 2.2. Let ξ, η, ξ0, η0 ∈ R with |η0| � η such that (ξ , η) �= ±(ξ0, η0). Then

K0(r(ξ , η, ξ0, η0)) = √
πe(η2

0−ξ 2
0 −η2−ξ 2)/2

∞∑
n=0

(−i)n

2n−1n!
Hn(ξ )H−n−1(η)Hn(ξ0)Hn(iη0),

where r is defined by (14).

The special case ξ0 = η0 = 0 of theorem 2.2 can be found in [13, problem 7, p 298].
If we multiply each ξ, η, ξ0, η0 by

√
k then we obtain an expansion for K0(kr). Inserting this

expansion into (7) yields our main result.

Theorem 2.3. Let x, x0 be distinct points on R3 with parabolic cylinder coordinates (ξ , η, z)
and (ξ0, η0, z0), respectively. If η≶ := min

max {η, η0} then

1

‖x − x0‖ = 2√
π

∫ ∞

0
e−k(ξ 2+η2

>+ξ 2
0 −η2

<)/2 cos k(z − z0)

×
∞∑

n=0

(−i)n

2n−1n!
Hn(

√
kξ )H−n−1(

√
kη>)Hn(

√
kξ0)Hn(i

√
kη<) dk.

If we interchange the order of the infinite series and the definite integral in the above
expression we obtain the following theorem.

Corollary 2.4. Under the same assumptions as in theorem 2.3 but with η0 �= η, we have

1

‖x − x0‖ = 2√
π

∞∑
n=0

(−i)n

2n−1n!

∫ ∞

0
e−k/2(ξ 2+η2

>+ξ 2
0 −η2

<)

×Hn(
√

kξ )H−n−1(
√

kη>)Hn(
√

kξ0)Hn(i
√

kη<) cos k(z − z0) dk.

Proof. We want to justify the interchange of sum and integral in theorem 2.3 based on the
Beppo Levi theorem [21, p 36]: Let fn : (0,∞) → R, n ∈ N0, be a sequence of integrable
functions. If ∫ ∞

0

∞∑
n=0

| fn(x)| dx < ∞

then ∫ ∞

0

∞∑
n=0

fn(x) dx =
∞∑

n=0

∫ ∞

0
fn(x) dx.

Let ξ, ξ0, η, η0 ∈ R with 0 � η0 < η (the case 0 � η < η0 can be treated the same
way.) Note that H−n−1(η) > 0 and (−i)nHn(iη0) � 0. Therefore, using first the inequality
2ab � ta2 + t−1b2 for a, b ∈ R, t > 0, and then theorem 2.2,
∞∑

n=0

∣∣∣∣ (−i)n

2n−1n!
Hn(ξ )H−n−1(η)Hn(ξ0)Hn(iη0)

∣∣∣∣
� 1

2

∞∑
n=0

(−i)n

2n−1n!

(
e(ξ 2

0 −ξ 2 )/2{Hn(ξ )}2 + e(ξ 2−ξ 2
0 )/2{Hn(ξ0)}2

)
H−n−1(η)Hn(iη0)

= 1

2
√

π
e(ξ 2

0 +η2+ξ 2−η2
0 )/2(K0(r(ξ , η, ξ, η0) + K0(r(ξ0, η, ξ0, η0)).

6
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Noting that

{r(ξ , η, ξ, η0)}2 = 1
4

(
4ξ 2 + (η + η0)

2
)
(η − η0)

2 � 1
4 (η2 − η2

0)
2,

and using [16, p 151],

K0(x) < K1/2(x) =
√

π

2x
e−x, x > 0,

we obtain

√
πe(η2

0−ξ 2
0 −ξ 2−η2)/2

∞∑
n=0

∣∣∣∣ (−i)n

2n−1n!
Hn(ξ )H−n−1(η)Hn(ξ0)Hn(iη0)

∣∣∣∣
� K1/2

(
1

2

(
η2 − η2

0

)) =
√

π

η2 − η2
0

e−(η2−η2
0 )/2.

If we multiply each ξ, η, ξ0, η0 by
√

k and integrate on k ∈ (0,∞) we see that the assumption
of the Beppo Levi theorem is satisfied. �

The interesting question arises whether the integrals appearing in corollary 2.4 can be
evaluated in closed form.

3. Expansion of J0(kr) for parabolic cylinder coordinates

Transforming equation (6) to parabolic coordinates (12) we obtain

∂2u

∂ξ 2
+ ∂2u

∂η2
+ k2(ξ 2 + η2)u = 0.

In order to simplify notation we will (temporarily) set k = 1
2 and ζ = iη with ζ real. Thus we

consider

∂2u

∂ξ 2
− ∂2u

∂ζ 2
+ 1

4
(ξ 2 − ζ 2)u = 0, ξ , ζ ∈ R. (23)

If u1(ξ ) and u2(ζ ) are solutions of the ordinary differential equation (11) for some λ then
u(ξ , ζ ) = u1(ξ )u2(ζ ) solves (23).

The function W1/2 from (5) transformed to (ξ , ζ ) becomes

w(ξ, ζ , ξ0, ζ0) = J0
(

1
2 r̃(ξ , ζ , ξ0, ζ0)

)
, (24)

where r̃2 is a symmetric polynomial defined by

4r̃2 := [
(ξ − ξ0)

2 − (ζ − ζ0)
2
] [

(ξ + ξ0)
2 − (ζ + ζ0)

2
]

= 8ξξ0ζ ζ0 + ξ 4 + ξ 4
0 + ζ 4 + ζ 4

0 − 2ξ 2
0 ζ 2 − 2ξ 2

0 ζ 2
0 − 2ζ 2ζ 2

0 − 2ξ 2ξ 2
0 − 2ξ 2ζ 2 − 2ξ 2ζ 2

0 ,

and J0 is the order zero Bessel function of the first kind (see (4)). For fixed ζ , ξ0, ζ0 ∈ R
consider the function f : R → R defined by

f (ξ ) := w(ξ, ζ , ξ0, ζ0). (25)

We wish to expand this function in terms of (modified) parabolic cylinder harmonics according
to a general expansion theorem that is derived in the following subsection.

7
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3.1. Spectral theory of (modified) parabolic cylinder harmonics—a singular Sturm–Liouville
problem

We discuss the Sturm–Liouville problem

− u′′ − 1
4 x2u = λu, −∞ < x < ∞, (26)

involving the spectral parameter λ subject to

u ∈ L2(−∞,∞).

By replacing 1
4 x2 by − 1

4 x2, we obtain the equation describing the harmonic oscillator whose
eigenfunctions (Hermite functions) and the corresponding spectral theory is well-known. The
spectral problem associated with (26) is far less known. We will refer to these solutions of
Laplace’s equation as (modified) parabolic cylinder harmonics, because (1) they are different
from those parabolic cylinder harmonics usually encountered (those given in terms of Hermite
functions) and (2) they are not given by Hermite functions with argument multiplied by i,
as usually is the convention when defining modified solutions. In fact, these solutions are
given by the usual parabolic cylinder functions with argument multiplied by exp( ± iπ/4). A
discussion of differential equation (26) and its solutions can be found in [18] and in section
8.2 of [8] (see also [15], [28], [4] and [7]).

We will follow chapter 9 in [5]. First note that, by [5, corollary 2, p 231], equation (26) is
in the limit-point case at x = ±∞. Therefore, one can apply section 5 of chapter 9 in [5].

For λ, x ∈ C we define the functions u1(λ, x), u2(λ, x) as the solutions of (26) uniquely
determined by the initial conditions

u1(λ, 0) = u′
2(λ, 0) = 1, u′

1(λ, 0) = u2(λ, 0) = 0.

These functions may be expressed in terms of Kummer’s function of the first kind (18)

u1(λ, x) = e− i
4 x2

M

(
1

4
+ i

2
λ,

1

2
,

i

2
x2

)
, (27)

u2(λ, x) = e− i
4 x2

x M

(
3

4
+ i

2
λ,

3

2
,

i

2
x2

)
. (28)

For x > 0, the function

u3(λ, x) = e− i
4 x2

U

(
1

4
+ i

2
λ,

1

2
,

i

2
x2

)

=
√

π

�
(

3
4 + i

2λ
)u1(λ, x) − (1 + i)

√
π

�
(

1
4 + i

2λ
)u2(λ, x) (29)

is another solution of (26). Here the Kummer function of the second kind U : C × C × (C \
(−∞, 0]) → C can be defined as (see [20, (13.2.42)])

U (a, b, z) := �(1 − b)

�(a − b + 1)
M(a, b, z) + �(b − 1)

�(a)
z1−bM(a − b + 1, 2 − b, z).

Except when z = 0, each branch of U is entire in a and b. We assume that U (a, b, z) has
its principal value. The asymptotic behavior of the Kummer function of the second kind
[20, (13.2.6)] shows that u3(λ, ·) ∈ L2(0,∞) provided that �λ < 0. Since (26) is in the
limit-point case at +∞, u3 is the only solution with this property except for a constant
factor. The Titchmarsh–Weyl functions m±∞(λ), �λ �= 0, are defined by the property that
u1(λ, x) + m±∞(λ)u2(λ, x) is square-integrable at x = ±∞. Therefore,

m∞(λ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(1 + i)
�( 3

4 + i
2λ)

�( 1
4 + i

2λ)
if �λ < 0,

−(1 − i)
�( 3

4 − i
2λ)

�( 1
4 − i

2λ)
if �λ > 0.

8
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By symmetry, we have

m−∞(λ) = −m∞(λ).

Using the notation of [5, theorem 5.1, p 251], namely

M11(λ) = 1

m−∞(λ) − m∞(λ)
,

M12(λ) = M21(λ) = m−∞(λ) + m∞(λ)

2(m−∞(λ) − m∞(λ))
,

M22(λ) = m−∞(λ)m∞(λ)

m−∞(λ) − m∞(λ)
,

one obtains

M11(λ) = −1

2m∞(λ)
, M12 = M21 = 0, M22(λ) = m∞(λ)

2
.

Now using [5, p 250, last line], we find that, for λ ∈ R,

ρ ′
1(λ) := ρ ′

11(λ) = 1

π
lim

ε→0+
� (M11(λ + iε)) = e

π
2 λ

4
√

2π2

∣∣�(
1
4 + i

2λ
)∣∣2

,

since [20, (5.4.5)]

�
(

1
4 + iy

)
�

(
3
4 − iy

) = π
√

2

cosh(πy) + i sinh(πy)
.

Moreover, ρ12(λ) = ρ21(λ) = 0 and

ρ ′
2(λ) := ρ ′

22(λ) = 1

π
lim

ε→0+
� (M22(λ + iε)) = e

π
2 λ

2
√

2π2

∣∣�(
3
4 + i

2λ
)∣∣2

.

Since the ρ-functions are real-analytic functions (with no jumps), we see that the spectrum
of (26) is the whole real line R and there are no eigenvalues. The latter also follows from the
known asymptotic behavior of the solutions of (26) (see [20, chapter 12]).

Using a variant of Stirling’s formula (see (5.11.9) in [20])

|�(x + iy)| ∼
√

2π |y|x−1/2e−π |y|/2 as x, y ∈ R, |y| → ∞, (30)

we can determine the asymptotic behavior of ρ ′
j, namely

ρ ′
1(λ) ∼ 1

2π
|λ|−1/2eπ(λ−|λ|)/2 as |λ| → ∞, (31)

ρ ′
2(λ) ∼ 1

2π
|λ|1/2eπ(λ−|λ|)/2 as |λ| → ∞. (32)

Applying [5, theorem 5.2, p 251] to the analysis above, we obtain the following result on
the spectral resolution associated with equation (26).

Theorem 3.1. For a given function f ∈ L2(R), form the functions

g j(λ) =
∫ ∞

−∞
u j(λ, x) f (x) dx, j = 1, 2, λ ∈ R. (33)

Then

g j ∈ L2(R, ρ j), j = 1, 2,

or, equivalently,∫ ∞

−∞
|g j(λ)|2ρ ′

j(λ) dλ < ∞, j = 1, 2.

9
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The function f can be represented in the form

f (x) =
2∑

j=1

∫ ∞

−∞
u j(λ, x)g j(λ)ρ ′

j(λ) dλ. (34)

Moreover, we have Parseval’s equation∫ ∞

−∞
| f (x)|2 dx =

2∑
j=1

∫ ∞

−∞
|g j(λ)|2ρ ′

j(λ) dλ.

Equations (33), (34) establish a one-to-one correspondence between f and (g1, g2). The
integrals appearing in (33), (34) have to be interpreted in the L2-sense. For instance, (33)
means that ∫ n

−n
u j(λ, x) f (x) dx

converges to g j(λ) in L2(R, ρ j) as n → ∞. Of course, if∫ ∞

−∞

∣∣u j(λ, x) f (x)
∣∣ dx < ∞ for every λ ∈ R,

then (33) is also true pointwise.

3.2. Applying the spectral theory to the expansion of J0(kr) in parabolic cylinder coordinates

Since f (ξ ) = O(|ξ |−1) in (25) as |ξ | → ∞, we have that f ∈ L2(R). Therefore, we can
expand f using theorem 3.1, according to (34). For λ ∈ R, we form the integrals

g j(λ, ζ , ξ0, ζ0) =
∫ ∞

−∞
w(ξ, ζ , ξ0, ζ0)u j(λ, ξ ) dξ, j = 1, 2. (35)

These are absolutely convergent integrals because f (ξ ) = O(|ξ |−1) and u j(λ, ξ ) = O(|ξ |−1/2)

as |ξ | → ∞.
Since w(ξ, ζ , ξ0, ζ0) from (24) solves (23) for fixed (ξ0, ζ0), and u j(λ, ξ ) from (27), (28)

solves (26), it follows from differentiation under the integral sign followed by integration by
parts (see for instance [22, Satz 8, p 26]) that g j solves (26) as a function of ζ . Since the
function w is symmetric in its four variables, it is also true that gj solves (26) as a function of
ξ0 for fixed ζ0, ζ and as a function of ζ0 for fixed ξ0, ζ . From these properties of g j it follows
easily that there are functions c jk�m : R → R with j, k, �, m = 1, 2, depending on λ but not
on ζ , ξ0, ζ0 such that

g j(λ, ζ , ξ0, ζ0) =
2∑

k,�,m=1

c jk�m(λ)uk(λ, ζ )u�(λ, ξ0)um(λ, ζ0). (36)

This formula holds for all λ, ζ , ξ0, ζ0 ∈ R. Substituting ζ = ξ0 = ζ0 = 0 in (35), (36), we
obtain

c j111(λ) =
∫ ∞

−∞
J0

(
1

4
ξ 2

)
u j(λ, ξ ) dξ .

If j = 2, we integrate over an odd function, so c2111(λ) = 0. By differentiating (36) with
respect to ζ and/or ξ0 and/or ζ0 and then substituting ζ = ξ0 = ζ0 = 0 we find (after some
calculations)

c jk�m(λ) =

⎧⎪⎨
⎪⎩

c1(λ) if j = k = � = m = 1,

c2(λ) if j = k = � = m = 2,

0 otherwise.

10
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Here c j : R → R for j = 1, 2 is given by (see appendix A)

c1(λ) :=
∫ ∞

−∞
J0

(
1

4
ξ 2

)
u1(λ, ξ ) dξ = 2

√
2πe−πλ/2

cosh(πλ)|� (
3
4 + iλ

2

) |2 , (37)

c2(λ) := −
∫ ∞

−∞
ξ−1J1

(
1

4
ξ 2

)
u2(λ, ξ ) dξ = −4

√
2πe−πλ/2

cosh(πλ)|� (
1
4 + iλ

2

) |2 . (38)

According to (34),

w(ξ, ζ , ξ0, ζ0) =
2∑

j=1

∫ ∞

−∞
c j(λ)ρ ′

j(λ)u j(λ, ξ )u j(λ, ζ )u j(λ, ξ0)u j(λ, ζ0) dλ. (39)

Note that

c1(λ)ρ ′
1(λ) = 1

2π cosh(πλ)

∣∣∣∣∣
�

(
1
4 + i λ

2

)
�

(
3
4 + i λ

2

)
∣∣∣∣∣
2

= 1

4π3

∣∣� (
1
4 + iλ

2

)∣∣4
, (40)

c2(λ)ρ ′
2(λ) = − 2

π cosh(πλ)

∣∣∣∣∣
�

(
3
4 + i λ

2

)
�

(
1
4 + i λ

2

)
∣∣∣∣∣
2

= −1

π3

∣∣� (
3
4 + iλ

2

)∣∣4
, (41)

where we used [20, (5.4.4), (5.5.5)]. It follows from (30) that

c1(λ)ρ ′
1(λ) ∼ 1

π |λ| cosh(πλ)
as |λ| → ∞, (42)

c2(λ)ρ ′
2(λ) ∼ − |λ|

π cosh(πλ)
as |λ| → ∞. (43)

It is known (see [1, (8.2.5)]) that, for fixed x ∈ C, there is a constant C such that
uj(λ, x) = O(eC|λ|1/2

). It follows from (42), (43), that the integrands in (39) decay exponentially
and therefore the corresponding integrals are absolutely convergent. By the identity theorem
for analytic functions we see that equation (39) is true for all ξ, ζ , ξ0, ζ0 ∈ C.

After setting ζ = iη and ζ0 = iη0 in (39), one obtains the following result.

Theorem 3.2. Let ξ, η, ξ0, η0 ∈ R. Then

J0

(
1

2
r(ξ , η, ξ0, η0)

)
=

2∑
j=1

∫ ∞

−∞
c j(λ)ρ ′

j(λ)u j(λ, ξ )u j(λ, iη)u j(λ, ξ0)u j(λ, iη0) dλ,

where r is given by (14) and c j(λ)ρ ′
j(λ) is given by (40), (41).

In the special case ξ0 = η0 = 0 (or correspondingly ξ = η = 0), theorem 3.2 can be found
in [3, (16), p 175]. Of course, if we multiply each ξ, η, ξ0, η0 by

√
2k we get the expansion

of J0(k r(ξ , η, ξ0, η0)). This leads to the J0(kr) expansion of a fundamental solution for the
three-dimensional Laplace equation in parabolic cylindrical coordinates.

Theorem 3.3. Let x, x0 be distinct points on R3 with parabolic cylinder coordinates (ξ , η, z)
and (ξ0, η0, z0), respectively. Then

1

‖x − x0‖ =
2∑

j=1

∫ ∞

0

∫ ∞

−∞
c j(λ)ρ ′

j(λ)

× u j(λ,
√

2kξ )u j(λ, i
√

2kη)u j(λ,
√

2kξ0)u j(λ, i
√

2kη0) e−k|z−z0| dλ dk.

11
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elliptic cylinder coordinates
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-1.0
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Figure 2. The (x, y) plane of elliptic cylinder coordinates (with c = 1/2) on R3. The curves of
constant ξ (solid) represent elliptic cylinders (ellipses with foci at ±c extended infinitely in the
positive and negative z directions). The curves of constant η (dashed) represent hyperbolic cylinders
(hyperbolas with foci at ±c extended infinitely in the positive and negative z directions).

4. Expansion of J0(kr) for elliptic cylinder coordinates

Consider equation (6) for k > 0 and elliptic coordinates on the plane (see figure 2), defined by

x = c cosh ξ cos η, y = c sinh ξ sin η, (44)

where ξ ∈ [0,∞), η ∈ R, and c > 0. Transforming u(ξ , η) = U (x, y) we obtain

∂2u

∂ξ 2
+ ∂2u

∂η2
+ k2c2(cosh2 ξ − cos2 η)u = 0. (45)

Separating variables u(ξ , η) = u1(ξ )u2(η), leads to

− u′′
1(ξ ) + (λ − 2q cosh 2ξ )u1(ξ ) = 0, (46)

u′′
2(η) + (λ − 2q cos 2η)u2(η) = 0, (47)

where q = 1
4 c2k2 > 0.

12
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For q ∈ R, Mathieu’s equation (47) is a Hill’s differential equation with period π ; see
[20] or [17]. Here q is positive but in the next section q will be negative. As a Hill’s equation,
Mathieu’s equation (47) admits nontrivial 2π -periodic solutions if and only if λ is equal to
one of its eigenvalues an(q), n ∈ N0 or bn(q), n ∈ N. If λ = an(q), then Mathieu’s equation
has an even 2π -periodic solution cen(η, q), and if λ = bn(q) then Mathieu’s equation has an
odd 2π -periodic solution sen(η, q). These functions are normalized according to∫ 2π

0
ce2

n(η, q) dη =
∫ 2π

0
se2

n(η, q) dη = π.

Moreover,

cen(η + π, q) = (−1)nce(η, q), sen(η + π, q) = (−1)nse(η, q).

Note that all solutions of Mathieu’s equation are entire functions of η.
For these 2π -periodic solutions of the Mathieu equation, we have the following expansion

theorem (see for instance [20, section 28.11]).

Theorem 4.1. Let f (z) be a 2π -periodic function that is analytic in an open doubly-infinite
strip S that contains the real axis. Then

f (z) = α0ce0(z, q) +
∞∑

n=1

(αncen(z, q) + βnsen(z, q)), (48)

where

αn = 1

π

∫ π

−π

f (x)cen(x, q)dx, βn = 1

π

∫ π

−π

f (x)sen(x, q) dx.

The series (48) converges absolutely and uniformly on any compact subset of the strip S.

Let (x0, y0) and (x, y) be points on R2 with distance r. Let (x0, y0), (x, y) have elliptic
coordinates (ξ0, η0) and (ξ , η), respectively. Then

r2 = c2
[
(cosh ξ cos η − cosh ξ0 cos η0)

2 + (sinh ξ sin η − sinh ξ0 sin η0)
2
]
. (49)

Clearly, J0(kr) as a function of (ξ , η) solves (45). We substitute ζ = iξ and ζ0 = iξ0. Then
(45) changes to

∂2u

∂ζ 2
− ∂2u

∂η2
+ k2c2(cos2 η − cos2 ζ )u = 0, (50)

and J0(kr) is transformed to

w(ζ , η, ζ0, η0) = J0(kr̃),

where

r̃2 = c2[(cos ζ cos η − cos ζ0 cos η0)
2 − (sin ζ sin η − sin ζ0 sin η0)

2]

= c2(cos(ζ − η) − cos(ζ0 − η0))(cos(ζ + η) − cos(ζ0 + η0)).

The function w(ζ , η, ζ0, η0) is an analytic function on C4 and it solves equation (50) as
a function of (ζ , η). It is the Riemann function [9] of this differential equation because
w(ζ , η, ζ0, η0) = 1 if ζ − ζ0 = ±(η − η0). For fixed η, ζ0, η0 we wish to expand the function
ζ 
→ w(ζ , η, ζ0, η0) in a series of Mathieu functions according to theorem 4.1. To this end we
have to evaluate the integral∫ π

−π

w(ζ , η, ζ0, η0)cen(ζ , q) dζ ,

13
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and a similar integral with cen replaced by sen. Using Riemann’s method of integration (see
section 4.4 in [9]) applied to a pentagonal curve, it has been shown in [25] that∫ π

−π

w(ζ , η, ζ0, η0)cen(ζ , q) dζ = μn(q)cen(η, q)cen(ζ0, q)cen(η0, q), (51)

∫ π

−π

w(ζ , η, ζ0, η0)sen(ζ , q) dζ = νn(q)sen(η, q)sen(ζ0, q)sen(η0, q). (52)

There do not exist explicit formulas for the quantities μn(q) and νn(q) but they can be
determined as follows. Mathieu’s equation (47) with λ = an(q), n ∈ N0, has the solution
u1(η) = cen(η, q). We choose a second linear independent solution u2(η). Then there is σ

such that

u2(η + π) = σu1(η) + (−1)nu2(η)

and

μn(q) = 2(−1)nσ

W [u1, u2]
, (53)

where W [u1, u2] denotes the Wronskian of u1 and u2. Similarly, Mathieu’s equation (47) with
λ = bn(q), n ∈ N, has the solution u3(η) = sen(η, q). We choose a second linear independent
solution u4(η). Then there is τ such that

u4(η + π) = τu3(η) + (−1)nu4(η)

and

νn(q) = 2(−1)nτ

W [u3, u4]
. (54)

Now applying theorem 4.1 and substituting ζ = iξ , ζ0 = iξ0, we obtain the following result.

Theorem 4.2. Let ξ, η, ξ0, η0 ∈ C, and let k > 0, c > 0, q = 1
4 c2k2. Then

J0(kr) = 1

π

∞∑
n=0

μn(q)cen(iξ, q)cen(η, q)cen(iξ0, q)cen(η0, q)

+ 1

π

∞∑
n=1

νn(q)sen(iξ, q)sen(η, q)sen(iξ0, q)sen(η0, q),

where r is given by (49).

Theorem 4.2 agrees with expansion (23) (for j = 1 and ν = 0), section 2.66 in Meixner
and Schäfke [17], who have a slightly different notation. They use men(z, q), n ∈ Z, where

men(z, q) :=
√

2cen(z, q) if n ∈ N0,

me−n(z, q) := −
√

2isen(z, q) if n ∈ N.

Moreover, the coefficients μn(q) and νn(q) are represented in a different form. The proof of
theorem 4.2 based on Riemann’s method of integration appears to be new.

We now use (3) to obtain our final result in this section.

Theorem 4.3. Let x, x0 be distinct points on R3 with elliptic cylinder coordinates (ξ , η, z) and
(ξ0, η0, z0), respectively. Then

1

‖x − x0‖ = 1

π

∫ ∞

0

∞∑
n=0

μn(q)cen(iξ, q)cen(η, q)cen(iξ0, q)cen(η0, q) e−k|z−z0| dk

+ 1

π

∫ ∞

0

∞∑
n=1

νn(q)sen(iξ, q)sen(η, q)sen(iξ0, q)sen(η0, q)e−k|z−z0| dk,

where q = 1
4 c2k2.

14
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5. Expansion of K0(kr) for elliptic cylinder coordinates

Consider equation (10) for k > 0. Transforming to elliptic coordinates (44), we obtain

∂2u

∂ξ 2
+ ∂2u

∂η2
− k2c2(cosh2 ξ − cos2 η)u = 0. (55)

Separating variables u(ξ , η) = u1(ξ )u2(η), leads again to (46), (47) but now q = − 1
4 c2k2 is

negative.
We will need the following solutions of the modified Mathieu equation (46) when q < 0;

see [20, section 28.20]. Set q = −h2 with h > 0. For n ∈ N0, Ien(ξ , h) is the even solution of
(46) with λ = an(q) with asymptotic behavior

Ien(ξ , h) ∼ In(2h cosh ξ ) as ξ → +∞,

while Ken(ξ , h) is the recessive solution determined by

Ken(ξ , h) ∼ Kn(2h cosh ξ ) as ξ → +∞,

where In(z) := i−nJn(iz) and Kn(z) are the modified Bessel functions of the first [20, (10.27.6)]
and second kinds, respectively, with integer order n (see (4), (8)). Similarly, for n ∈ N, Ion(ξ , h)

is the odd solution of (46) with λ = bn(q) with asymptotic behavior

Ion(ξ , h) ∼ In(2h cosh ξ ) as ξ → +∞,

while Kon(ξ , h) is the recessive solution determined by

Kon(ξ , h) ∼ Kn(2h cosh ξ ) as ξ → +∞.

For fixed ξ, ξ0, η0 ∈ R we wish to expand the function

v(ξ, η, ξ0, η0) := K0(kr(ξ , η, ξ0, η0))

with r given by (49) into a series of periodic Mathieu functions according to theorem 4.1. The
corresponding integrals appearing in the expansion will be computed based on the observation
that (ξ , η) 
→ v(ξ, η, ξ0, η0) is a fundamental solution of (55). In fact, it is a solution of (55)
and it has logarithmic singularities at the points ±(ξ0, η0 + 2mπ), where m is any integer.
Arguing as in [26, theorem 1.11], we have the following representation theorem for a solution
of (55).

Theorem 5.1. Let u ∈ C2(R2) be a solution of (55). Let (ξ0, η0) ∈ R2, and let C be a closed
rectifiable curve on R2 which does not pass through any of the points ±(ξ0, η0 +2mπ), m ∈ Z.
Let n±

m be the winding number of C with respect to ±(ξ0, η0 + 2mπ). Then we have

2π
∑

m

[
n+

mu(ξ0, η0 + 2mπ) + n−
mu(−ξ0,−η0 − 2mπ))

]

=
∫

C
(u∂2v − v∂2u)dξ + (v∂1u − u∂1v) dη,

where ∂1, ∂2 denote partial derivatives with respect to ξ , η, respectively.

In theorem 5.1 we choose

u(ξ , η) = u1(ξ )u2(η),

where

u1(ξ ) = Ken(ξ , h), u2(η) = cen(η, q).

Let ξ0 > 0 and η0 ∈ R. We take the curve C to be the positively oriented boundary of the
rectangle ξ1 � ξ � ξ2, η0 −π � η � η0 +π , where |ξ1| < ξ0 < ξ2. Consider the line integral

15
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∫
C in theorem 5.1. Since u2 has period 2π, the line integrals along the horizontal segments of

C cancel each other. When ξ2 → +∞ the asymptotic behavior of u1(ξ ) shows that the integral
along the right-hand vertical segment of C tends to 0 as ξ2 → +∞. Therefore, setting

f (ξ ) =
∫ π

−π

v(ξ, η, ξ0, η0)u2(η) dη =
∫ η0+π

η0−π

v(ξ, η, ξ0, η0)u2(η) dη

for |ξ | < ξ0, one obtains

2πu1(ξ0)u2(η0) = u1(ξ ) f ′(ξ ) − u′
1(ξ ) f (ξ ). (56)

We now argue as in section 2. By differentiating (56) with respect to ξ , we find that f (ξ )

satisfies the modified Mathieu equation (46). It is easy to see that f (ξ ) is an even function, so
f (ξ ) = cu3(ξ ), where u3(ξ ) = Ien(ξ , h) and c is a constant. Then (56) implies that

2πu1(ξ0)u2(η0) = cW [u1, u3].

Since W [u1, u3] = 1,
1

π

∫ π

−π

v(ξ, η, ξ0, η0)u2(η) dη = 2u1(ξ0)u2(η0)u3(ξ ) if |ξ | < ξ0. (57)

By the same reasoning, we see that (57) is also true when u1(ξ ) = Kon(ξ , h), u2(η) =
sen(η, q), u3(ξ ) = Ion(ξ , h). By taking limits, we can also allow |ξ | = ξ0.

Expanding the function η 
→ v(ξ, η, ξ0, η0) according to theorem 4.1, the following result
is obtained. Strictly speaking we can use theorem 4.1 only if |ξ | < ξ0. Otherwise we apply
[17, Satz 16, p 128].

Theorem 5.2. Let ξ, η, ξ0, η0 ∈ R such that |ξ | � ξ0, η − η0 �∈ 2πZ, and let k > 0,
c > 0, q = − 1

4 c2k2, h = 1
2 ck. Then

K0(kr) = 2
∞∑

n=0

Ien(ξ , h)cen(η, q)Ken(ξ0, h)cen(η0, q)

+2
∞∑

n=1

Ion(ξ , h)sen(η, q)Kon(ξ0, h)sen(η0, q),

where r is given by (49).

Theorem 5.2 agrees with [17, section 2.66] although our notation and proof are different.
Inserting this result in (7), we obtain our final result.

Theorem 5.3. Let x, x0 be distinct points on R3 with elliptic cylinder coordinates (ξ , η, z) and
(ξ0, η0, z0), respectively. If ξ≶ := min

max {ξ, ξ0} then

1

‖x − x0‖ = 4

π

∫ ∞

0

∞∑
n=0

Ien(ξ<, h)cen(η, q)Ken(ξ>, h)cen(η0, q) cos k(z − z0) dk

+ 4

π

∫ ∞

0

∞∑
n=1

Ion(ξ<, h)sen(η, q)Kon(ξ>, h)sen(η0, q) cos k(z − z0) dk,

where q = − 1
4 c2k2, h = 1

2 ck.

As a final comment, we should mention that our theorems 2.2, 3.2, 4.2, 5.2, and therefore
their corollaries 2.3, 3.3, 4.3, 5.3, are based on the spectral theorem for certain Sturm–Liouville
problems and that all these expansion theorems represent infinite sums, except for theorem
3.2 which is expressed in terms of an improper integral. In this one case the spectrum is
continuous, as opposed to all the other cases where the spectrum is discrete. Continuous
spectra for Sturm–Liouville problems is also known to occur in connection with harmonic
expansions in circular cylinder coordinates and in rotationally-invariant parabolic coordinates
(see for instance [19, p 1263, 1298]).
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Appendix A. Integrals for the (modified) parabolic cylinder harmonic expansion of
J0(kr)

The following formulas are valid for �λ < 0 :

I1 :=
∫ ∞

0
J0

(
1

4
ξ 2

)
u3(λ, ξ ) dξ = 1

2

√
π(1 − i)

G1

G2
2

, (A.1)

I2 :=
∫ ∞

0
ξ−1J1

(
1

4
ξ 2

)
u3(λ, ξ ) dξ = − √

π

(
λ

1

G2
+ 2i

G2

G2
1

)
, (A.2)

where

G1 = G1(λ) = �

(
1

4
+ i

2
λ

)
,

G2 = G2(λ) = �

(
3

4
+ i

2
λ

)
.

We believe that these integrals may be known but do not have a reference. We will derive
(A.2). In (29) we use the integral representation [20, (13.4.4)]

�(a)U (a, b, z) =
∫ ∞

0
e−ztta−1(1 + t)b−a−1 dt, z,a > 0.

Substituting 4s = ξ 2 and changing the order of integration, one obtains

I2 = 1

2G1

∫ ∞

0
t−

3
4 + i

2 λ(1 + t)−
3
4 − i

2 λ

∫ ∞

0
s−1J1(s)e

−is(2t+1) ds dt. (A.3)

From [27, p 405], we have, for t > 0,∫ ∞

0
s−1J1(s) cos(s(2t + 1)) ds = 0,

∫ ∞

0
s−1J1(s) sin(s(2t + 1)) ds = t + (t + 1) − 2

√
t
√

t + 1.

Substituting these formulas in (A.3), we can evaluate I2 using three times the formula for the
beta function [20, (5.12.3)]

B(z, w) = �(z)�(w)

�(z + w)
=

∫ ∞

0
tz−1(1 + t)−z−w dt, z,w > 0.

This gives (A.2).
The proof of (A.1) is similar, but in (29) one should first use [20, (13.2.40)]

U (a, b, z) = z1−bU (1 + a − b, 2 − b, z).

The formulas (A.1), (A.2) remain valid for real λ. By separating real and imaginary parts,
we obtain for λ ∈ R,∫ ∞

0
J0

(
1

4
ξ 2

)
u1(λ, ξ ) dξ = (G1G2) + �(G1G2)

|G2|2 , (A.4)
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∫ ∞

0
J0

(
1

4
ξ 2

)
u2(λ, ξ ) dξ = 1

2

∣∣∣∣G1

G2

∣∣∣∣
2

, (A.5)

∫ ∞

0
ξ−1J1

(
1

4
ξ 2

)
u1(λ, ξ ) dξ = 2

∣∣∣∣G2

G1

∣∣∣∣
2

− λ, (A.6)

∫ ∞

0
ξ−1J1

(
1

4
ξ 2

)
u2(λ, ξ ) dξ = 2

(G1G2) + �(G1G2)

|G1|2 . (A.7)

We may use

(G1G2) + �(G1G2) = π
√

2e− 1
2 πλ

cosh(πλ)
.

Formulas (A.4), (A.7) give us the integrals (37), (38) noting that we integrate even functions
in (37), (38).

Appendix B. The Riemann method of integration revisited

When we compare the proofs of the main theorems 2.2, 3.2, 4.2, 5.2, we notice that in
each case certain integrals had to be evaluated. For instance, in section 2 we evaluated the
integral (20). In sections 2 and 5 we applied integral formulas of Green’s type involving
the fundamental solutions of certain elliptic partial differential equations. In section 4 we used
the Riemann method of integration involving the Riemann function of a certain hyperbolic
partial differential equation. The obvious question arises whether the integrals (A.4)–(A.7)
can also be evaluated by the Riemann method of integration.

The function w(ξ, ζ , ξ0, ζ0) (24) as a function of (ξ , ζ ) is a solution of the partial
differential equation (23) and it satisfies the condition w(ξ, ζ , ξ0, ζ0) = 1 if ξ−ξ0 = ±(ζ−ζ0).
This shows that w is the Riemann function of (23).

The Riemann method of integration applied to the partial differential equation (23) as in
[24] gives, for all ζ , ξ0, ζ0 ∈ R,

2u(ξ0, ζ0) = u(ζ − ζ0 + ξ0, ζ ) + u(−ζ + ζ0 + ξ0, ζ )

−
∫ ζ−ζ0+ξ0

−ζ+ζ0+ξ0

[w(ξ, ζ , ξ0, ζ0)∂2u(ξ , ζ ) − ∂2w(ξ, ζ , ξ0, ζ0)u(ξ , ζ )] dξ, (B.1)

where u ∈ C2(R2) is a solution of (23). This formula for ξ0 = ζ = 0 and u(ξ , ζ ) =
u1(λ, ξ )u2(λ, ζ ) with u1, u2 from (27), (28) (after replacing ζ0 by ζ ), implies that∫ ζ

−ζ

J0

(
1

4
(ξ 2 − ζ 2)

)
u1(λ, ξ ) dξ = 2u2(λ, ζ ). (B.2)

This equation allows us to transform the even solution u1 into the odd solution u2 of
equation (26). One can prove (B.2) directly by denoting the left-hand side of (B.2) by f (ζ )

and then showing that f is an odd solution of (26) with f ′(0) = 2.
By differentiating (B.1) with u(ξ , ζ ) = u1(λ, ξ )u2(λ, ζ ) first with respect to ξ0, ζ0, we

obtain (after a lengthy calculation) that∫ ζ

−ζ

ξζ

ξ 2 − ζ 2
J1

(
1

4
(ξ 2 − ζ 2)

)
u2(λ, ξ ) dξ = 2u1(λ, ζ ) − 2u′

2(λ, ζ ).

This formula can also be proved directly.
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Let h : R2 → R be the function defined by

h(ξ , ζ ) :=
⎧⎨
⎩

J0

(
1

4
(ξ 2 − ζ 2)

)
if |ξ | < |ζ |,

0 otherwise.

For fixed ζ this is an even function in L2(R) which can be expanded according to theorem 3.1
(without knowing c j(λ)), so that

sign(ζ )h(ξ , ζ ) = 2
∫ ∞

−∞
u1(λ, ξ )u2(λ, ζ )ρ ′

1(λ) dλ.

If ξ = 0, we obtain

sign(ζ )J0

(
1

4
ζ 2

)
= 2

∫ ∞

−∞
u2(λ, ζ )ρ ′

1(λ) dλ.

By theorem 3.1, this formulas allows us to conclude∫ ∞

0
J0

(
1

4
ζ 2

)
u2(λ, ζ ) dζ = ρ ′

1(λ)

ρ ′
2(λ)

,

and this is in agreement with (A.5).
By using the Riemann method of integration, we have only been partially successful in

obtaining the integrals from appendix A. We pose as a problem for the reader to obtain all
these integrals using this method.

References

[1] Atkinson F V 1964 Discrete and Continuous Boundary Problems (Mathematics in Science and Engineering
vol 8) (New York: Academic)

[2] Barton G 1986 Quantum mechanics of the inverted oscillator potential Ann. Phys. 166 322–63
[3] Buchholz H 1953 Die Konfluente Hypergeometrische Funktion Mit Besonderer Berücksichtigung Ihrer
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