

Efficient Algorithms for T-Way Test Sequence Generation

Linbin Yu1, Yu Lei1, Raghu N. Kacker2, D. Richard Kuhn2, James Lawrence3

1Dept. of Computer Sci. and Eng. 2Information Technology Laboratory 3Dept. of Mathematical Sciences,
University of Texas at Arlington National Institute of Std. and Tech. George Mason University,

Arlington, TX 76019, USA Gaithersburg, MD 20899, USA Fairfax, VA 22030, USA
{linbin.yu@mavs.uta.edu, {raghu.kacker, kuhn}@nist.gov lawrence@gmu.edu

ylei@cse.uta.edu}

Abstract—Combinatorial testing has been shown to be a
very effective testing strategy. Most work on combinatorial
testing focuses on t-way test data generation, where each test is
an unordered set of parameter values. In this paper, we study
the problem of t-way test sequence generation, where each test
is an ordered sequence of events. Using a general labeled
transition system as the system model, we formally define the
notion of t-way sequence coverage, and introduce an efficient
algorithm to compute all valid t-way target sequences, i.e.,
sequences of t events that must be covered by at least one test
sequence. We then report several algorithms to generate a set
of test sequences that achieves the proposed t-way sequence
coverage. These algorithms are developed as the result of a
systematic exploration of the possible approaches to t-way test
sequence generation, and are compared both analytically and
experimentally. The results show that while these algorithms
have their own advantages and disadvantages, one of them is
more scalable than others while exhibiting very good
performance.

Keywords: Combinatorial Testing; T-way Sequence Coverage;
Test Sequence Generation;

I. INTRODUCTION

Combinatorial testing has been shown to be a very
effective testing strategy [4-7]. Most work on combinatorial
testing focuses on t-way test data generation, where each test
is an (unordered) set of values for parameters. T-way
combinatorial testing, or t-way testing, requires every
combination of values for any t parameters be covered by at
least one test. The rationale behind t-way testing is that many
faults involve only a few parameters, thus testing all t-way
combinations can effectively detect these faults. However,
many programs exhibit sequence-related behaviors. For
example, faults in graphical user interface (GUI) programs
may only be triggered by a certain sequence of user actions
[12]; faults in web applications may only be exposed when
some pages are viewed in a certain order [9]; and faults in
concurrent programs may not manifest unless some events
are exercised in a particular order [3]. Testing efforts for
these programs should not only focus on data inputs, but also
sequences of actions or events.

In this paper, we study the problem of t-way test
sequence generation. This problem is fundamentally
different from the problem of t-way test data generation in
several aspects: (1) Most t-way test data generation
techniques assume that all the tests are of fixed length, which

often equals the total number of parameters that are modeled.
In contrast, test sequences are typically of various lengths,
and this must be taken into account during t-way test
sequence generation. (2) By the definition of “sequence”, t-
way test sequence generation must deal with an extra
dimension, i.e., “order”, which is insignificant in t-way test
data generation. (3) Sequencing constraints are different
from, and typically more complex than, non-sequencing
constraints. In particular, sequencing constraints need to be
represented and checked in a way that is different from non-
sequencing constraints.

The theme of this paper is centered on how to address the
above challenges. We first introduce our system model, i.e.,
a labeled transition system, based on which we give a formal
definition of t-way sequence coverage. This system model
uses a graph structure to encode sequencing constraints. We
divide the problem of t-way test sequence generation into
two smaller problems, i.e., target sequence generation and
test sequence generation. The first problem deals with how to
generate the test requirements, i.e., all valid t-way sequences
that must be covered. The second problem deals with how to
generate a small set of test sequences to cover all the test
requirements. We systematically explore different strategies
to solve these problems and present a set of algorithms as the
result of our exploration. We compare these algorithms both
analytically and experimentally, with special attention paid
to scalability. The experiment results show that while these
algorithms have their own advantages and disadvantages,
one of them is more scalable than others while exhibiting
very good performance in test sequence generation.

To our best knowledge, our work is the first attempt to
systematically study the problem of t-way test sequence
generation using a general system model. The major
contributions of this paper are as follows.

1) We define the t-way sequence coverage for a general
system model that can be used to model different
types of programs, such as GUI applications, web
applications, and concurrent programs.

2) We propose a set of algorithms for t-way test
sequence generation, including an efficient
algorithm for generating valid t-way sequences that
must be covered, and four algorithms for generating
a small set of test sequences that achieve the t-way
sequence coverage. These algorithms are
implemented in a Java application which is freely
available to the public [15].

3) We report an experimental evaluation of the
proposed test generation algorithms. This evaluation
provides important insights about the advantages and
disadvantages of these proposed algorithms.

We point out that this paper focuses on t-way test
sequence generation, which is the first stage of a larger effort
that tries to expand the domain of t-way testing from test
data generation to test sequence generation. Empirical
studies on fault detection effectiveness of t-way test
sequences are planned as the next stage of this larger effort.

The remainder of this paper is organized as follows.
Section II introduces preliminary concepts and motivation
for t-way sequence testing. Section III presents an efficient
algorithm for t-way target sequence generation. Several
algorithms for test sequence generation are presented in
Section IV. Experimental results are presented in Section V.
In Section V we briefly overview related work. Finally, we
conclude this paper and discuss future work in Section VI.

II. PRELIMINARIES

A. System Model
We model a system under test as a labeled transition

system (LTS).

Definition 1. A labeled transition system M is a tuple <S,
Sl, Sf, L, R>, where S is a set of states, Sl ⊆ S is a set of initial
states, Sf ⊆ S is a set of final states, L is a set of event labels,
and R ⊆ S × L × S is a set of labeled transitions.

An LTS can be built from system requirements, high-
/low-level designs, or implementations at a certain level of
abstraction. The size of an LTS can be controlled by
choosing an appropriate level of abstraction and by modeling
system parts that are of interest, instead of the whole system.
Initial states in an LTS represent states where an execution of
system could start, and final states represent states where a
system could safely stop.

For ease of reference, we will refer to a labeled transition
as a transition, and refer to an event label as an event. For a
transition r, we use src(r)OS to denote the source state of r,
dest(r)OS to denote the destination state of r, and event(r)
OL to denote the event label of r.

Figure 1. (a) an exampleAn LTS graph (b) an exercised-after matrix

An LTS can be represented by a directed graph, in which
each vertex represents a state, and each directed edge
represents a transition between two states and is labeled with

an event. An example graph is shown in Figure 1(a). We
refer to such a graph as an LTS graph.

Definition 2. A transition sequence p= r1 • r2 • …• rn is a
sequence of n transitions < r1 , r2 ,… , rn > such that dest(ri) =
src(ri+1), for i=1,2, …, n-1.

Intuitively, a transition sequence represents a path in an
LTS graph. We use these two terms interchangeably. Given a
transition sequence P = r1 • r2 • …• rn, we denote the
corresponding event sequence event(P) = event(r1) • event(r2)
• …• event(rn). We use event(P) to represent P if there is no
ambiguity, i.e., only one test sequence can be represented by
event(P). We distinguish the notion of transition sequence
from the notion of sequence of transitions. The former
requires transitions to be consecutive in a sequence, whereas
the latter does not require so. In the rest of this paper, we use
r1 • r2 • …• rn to indicate a transition sequence, and use < r1 ,
r2 ,… , rn > to indicate a sequence of transitions.

Definition 3. Let r and s be two transitions in a labeled
transition system M. Transition s can be exercised after
transition r, denoted as r → s, if there exists a transition
sequence P = r1 • r2 • …• rn, where n > 0, such that r1 = r and
rn = s.

As a special case, if r • s is a transition sequence, i.e.,
dest(r) = src(s), it is said that transition s can be exercised
immediately after r. If transition s can be exercised after
transition r, it is also said that transition r can be exercised
before transition s. Consider the example system in Figure
1(a). Transition r2 can be exercised before r3, r4 and r5. A
transition may be exercised after (or before) itself, implying
the existence of a cycle in the LTS graph.

Definition 4. Let e and f be two events in an LTS M.
Event f can be exercised after event e, denoted as e → f, if
there exist two transitions r and s such that event(r)=e,
event(s)=f, and r → s.

While the exercised-after relation between transitions is
transitive, the exercised-after relation between events is not.
For example, in Figure 1(a), for events a, b and d, we have
a→b, b→d, but a→d is inconsistent with the LTS graph.

Assume that there are n transitions in a labeled transition
system. We can build a n×n matrix E, where E(i,j)=1 if
ri →rj , and E(i,j)=0 otherwise. This exercised-after matrix
can be constructed in O(n3) time, using Warshall’s algorithm
[25]. This matrix will be used in t-way target sequence
generation, as shown in Section III. Figure1 (b) shows the
exercised-after matrix for the LTS graph in Figure 1(a).

B. T-way Sequence Coverage
We define the notion of t-way sequence coverage in

terms of t-way target sequences and test sequences. T-way
target sequences are test requirements, i.e., sequences that
must be covered; test sequences are test cases that are
generated to cover all the t-way target sequences.

Definition 5. A t-way target sequence is a sequence of t
events <e1, e2, …, et> such that there exists a single sequence
of t transitions <r1, r2, …, rt> where ri → ri+1, and ei=label(ri)
for i=1,2, …, t.

Intuitively, a t-way target sequence is a sequence of t
events that could be exercised in the given order,
consecutively or inconsecutively, by a single system
execution. The same event could be exercised for multiple
times in a t-way target sequence. Note that not every
sequence of t events is a t-way target sequence. For example,
in Figure 1(a), <a, c>, <a, d>, and <c, d> are not 2-way
target sequences.

One may attempt to define a t-way target sequence as a
sequence of t events <e1, e2, …, et> in which ei → ei+1, for
i=1,2, …, t. This definition is however incorrect. For
example, consider a sequence of 3 events <a, b, c> in Figure
1(a). We have a→b and b→c. However, <a, b, c> cannot be
executed in a single transition sequence, and therefore is not
a t-way target sequence.

Definition 6. A test sequence is a transition sequence r1 •
r2 • …• rn, where src(r1) OSi, dest(rn) OSf.

A test sequence is a transition sequence that starts from
an initial state and ends with a final state in the LTS graph.
Intuitively, a test sequence is a (complete) transition
sequence that can be exercised by a test execution.

Definition 7. A test sequence P = r1 • r2 • …• rn covers a
t-way target sequence Q=<e1, e2, …, et>, if there exist 1≤ i1<
i2< ...< it ≤ n such that event(rik) = ek, where k =1,2,…, t.

Intuitively, a target sequence Q is covered by a test
sequence P if all the events in Q appear in event(P) in order.
For example, in Figure 1(a), a test sequence r2 • r3 • r4 covers
three 2-way target sequences: <b, c>, <c, b>, and <b, b>.

Definition 8. Given an LTS M, let Ʃ be the set of all t-
way target sequences. A t-way test sequence set Π is a set of
test sequences such that for ∀QOƩ, ∃ POΠ that P covers Q.
Integer t is referred as the test strength.

The t-way sequence coverage requires that every t-way
target sequence be covered by at least one test sequence.
Consider the example in Figure 1(a). Three test sequences,
r1•r4, r2•r5 and r2•r3•r4 covers all 2-way target sequences <b,
b>, <b, c>, <b, d>, <c, b> and <a, b>.

The notion of t-way sequence coverage is similar to all-
transition-k-tuples coverage for web applications [11] and
length-n-event-sequence coverage for GUI applications [10].
All these coverage criteria require sequences of a certain
number of events be covered. However, they differ in that t-
way sequence coverage does not require events in a target
sequence to be covered consecutively by a test sequence
whereas the other two require so. This difference has a
significant implication on test sequence generation, which is
illustrated below.

Figure 2 shows a labeled transition system that represents
the life cycle of Java threads [16]. (This system is later used
as a subject system in our experiments in Section V.A.)

Figure 2. Real Example: JavaThread

Assume that a fault can be exposed only if a sequence of
three events, “start”, “IO completes”, “notify” (or event
sequence <a, h, g>), is exercised. A shortest path (transition
sequence) that covers <a, h, g>is a•b•d•e•h•f•b•d•g, which is
of length 9. If length-n-event-sequence coverage is used, all
paths of length 9 must be covered in order to cover this
faulty sequence <a, h, g>. This can significantly increase the
number of test sequences. In contrast, 3-way sequence
testing may generate a transition sequence of length 9 for this
3-way target sequence, but it does not require all paths of
length 9 be covered. This significantly reduces the number of
test sequences while still detecting this fault.

III. TARGET SEQUENCE GENERATION

Assume that a system contains n events. There are at
most nt t-way target sequences. Some t-way sequences, i.e.,
sequences of t events, are not valid target sequences due to
constraints encoded by the transition structure. One approach
is to first generate all possible t-way sequences and then
filter out those sequences that are not valid target sequences.
A t-way sequence is a valid target sequence if there exists a
transition sequence that covers this sequence. This approach
is however not efficient. In the following we describe a more
efficient, incremental approach to generate target sequences.

The main idea of our approach is to first generate all 2-
way target sequences, and then extend 2-way target
sequences to generate all 3-way target sequences, and
continue to do so until we generate all the t-way target
sequences. Given an LTS M, we first build the exercised-
after matrix for all the transitions of M. Next we find the set
of all possible transition pairs <r, r’> that r’ can be exercised
after r. We refer to this set as the 2-way transition sequence
set. For each 2-way transition sequence <r, r’>, and for each
transition r’’ that can be exercised after r’, we generate a 3-
way transition sequence <r, r’, r’’>. These 3-way transition
sequences constitute the 3-way transition sequence set. We
repeat this process until we build the t-way transition
sequence set. At this point, we convert each t-way transition
sequence to a t-way target sequence. Figure 3 shows the
detailed algorithm that implements this approach.

Complexity analysis: Assume there are n transitions,
and the test strength is t. There are at most nt t-way transition
sequences. As we discussed earlier, the time complexity for
line 2 is O(n3), The time complexity for line 5 to 13 is

dominated by the last iteration, which is O(nt). Line 14 to 16
takes O(tnt) time. The time complexity of the entire
algorithm is O(n3+tnt), which is O(n3) when t<3, and O(tnt)
otherwise. The space complexity is O(n2+tnt) since we have
to store the exercised-after matrix and all t-way transition
sequences.

Algorithm: GenTargetSeqs
Input: a LTS M, test strength t
Output: a set Σ consisting of all the t-way target sequences
1. Let r1, r2, …, rn be all the transitions in M
2.	 build the exercised-after matrix E such that E(i,j)=true if

ri→rj , and E(i,j)=false otherwise
3. let Ωi, 1 <= i <= t, be an empty set
4.	 add into Ω1 each transition r1, r2, …, rn as a single-transition

sequence
5. for (k = 2 to t){
6. for (each sequence of transitions R in Ωk-1) {
7. let rj be the last transition of R
8. for(i = 1 to n) {
9. if (E(j, i) == true)
10. add sequence of transitions <R, ri> to Ωk
11. }
12. }
13. }
14. for (each sequence of transitions R = <rj1, rj2, …, rjt>in Ωt){
15.	 add into Σ an event sequence <event(rj1), event(rj2), …

event(rjt)> if not exists
16. }
17. return Σ

Figure 3. Algorithm for t-way sequences generation

In the next section we will present four test sequence
generation algorithms based on t-way target sequences
generated by GenTargetSeqs.

IV. TEST SEQUENCE GENERATION

The objective of test sequence generation is to generate a
set of test sequences that covers all t-way target sequences
and that requires minimal test effort. There are different
factors to be considered. The more transitions exist in a test
sequence, the longer time it takes to execute. Thus, it is
typically desired to minimize the total length of these test
sequences. Also, we often need to set up the environment
before we execute a test sequence, and tear down the
environment safely after we finish. Thus, in order to
minimize such setup and teardown costs, it is often desired
to reduce the number of test sequences.

In this section, we present four algorithms for test
sequence generation. These algorithms are developed from
different perspectives. We compare them analytically in
Section IV.E and experimentally in Section V.

A. A Target-Oriented Algorithm
Recall that in algorithm GenTargetSeqs, each t-way

target sequence is derived from a sequence of t transitions
(lines 14 and 15 in Figure 3). The main idea of this test
generation algorithm is that, for each target sequence Q, we
find a shortest test sequence to cover Q by extending the

sequence of transitions from which Q is derived. Since a test
sequence typically covers many target sequences, a greedy
algorithm is then used to select a small subset of these test
sequences that also covers all the target sequences.

The key challenge in this algorithm is how to generate a
shortest test sequence to cover each target sequence. Let Q
be a target sequence and C be the sequence of transitions
from which Q is derived. We first extend C to a transition
sequence P by inserting a transition sequence between every
two adjacent transitions that are not consecutive. For
example, assume C = <r1 , r2 , …, rt>. If ri+1 cannot be
exercised immediately after ri, we insert a shortest transition
sequence between dest(ri) and src(ri+1). This path always
exists (otherwise Q cannot be a t-way target sequence). Next,
we make P a test sequence by inserting a shortest path from
an initial state to the beginning state of P and a shortest path
from the ending state of P to a final state, if necessary. The
test sequence P, as constructed so, is a shortest test sequence
that covers Q. Figure 4 shows the details of this algorithm.

Algorithm: GenTestSeqsFromTargets
Input: an LTS M, a set Σ of target sequences, test strength t
Output: a t-way test sequence set Π
1. let Π and Ω be an empty set of test sequences
2. find a shortest path for every pair of states
3. for each target sequence Q = <e1, e2, …, et> in Σ {
4.	 let P be an empty transition sequence
5.	 let C = <r1, r2, …, rt> be a sequence of transitions such

that Q is derived from C
6.	 for (i = 1 to t - 1){
7.	 append to P a shortest path from dest(ri) to src(ri+1)
8.	 }
9.	 if (src(r1) is not an initial state) {
10.	 append to P a shortest path from an initial state to

src(r1)
11.	 }
12.	 if (dest(rt) is not a final state){
13.	 append to P a shortest path from dest(ri) to a final state
14.	 }
15.	 add test sequence P into Ω.
16. }
17.	 use a greedy algorithm to select a subset Π of Ω that can

cover all the target sequences in Σ
18. return Π

Figure 4. A target-oriented algorithm for test sequences generation

Note that in line 2, all shortest paths between two nodes
in a graph can be effectively calculated using Floyd-
Warshall algorithm [21]. During target sequence generation,
we keep all the sequence of transitions from which the target
sequence is derived. These sequences are used in line 5. A
greedy algorithm is used in line 17 to select a subset of test
sequences that can cover all the target sequences. This
algorithm is similar to a classic greedy set cover algorithm
[21]. It works iteratively, i.e., at each iteration we choose a
test sequence that covers the most number of uncovered
target sequences, and remove covered ones, until all target
sequences are covered.

Complexity analysis: Assume there are n transitions and
|Σ| target sequence in an LTS. Assume the test strength is t,

and m test sequences are generated. Finding all pair-wise
shortest paths takes O(n3) time [21]. In order to build a
shortest test sequence for each target sequence, we have to
append at most (t+1) shortest paths, which takes O(t) time.
Thus the total time from line 3 to 16 is O(t|Σ|). The greedy
algorithm in line 17 takes O(m|Σ|2) time. Therefore the time
complexity for the entire algorithm is O(n3+t|Σ|+m|Σ|2) =
O(n3+ m|Σ|2). The space complexity is O(n2+|Σ|).

B. A Brute Force Algorithm
This algorithm finds all test sequences of length up to h,

in a Brute force manner. Then it selects a subset of these test
sequences to cover as many target sequences as possible.
Note that the value of h is specified by the user. This
algorithm can be considered as a baseline in our effort to
develop more efficient algorithms.

The first step of this algorithm uses a strategy similar to
the breadth-first search (BFS) to generate all test sequences
of length up to h. The difference is that in BFS, a node is
only explored once, while in our strategy, a node is explored
multiple times as it may lead to different test sequences.
After all test sequences of length up to h are found, we apply
the same greedy algorithm as mentioned in Section IV.A
(Figure 4, line 17) to select a subset of test sequences to
cover as many target sequences as possible. If there are any
target sequences that remain uncovered, we use algorithm
GenTestSeqsFromTargets to cover them. Figure 5 shows the
detailed algorithm, named GenTestSeqsBF.

Algorithm: GenTestSeqsBF
Input: a LTS M, a target sequence set Σ, test strength t, max

test sequence length h
Output: a t-way test sequence set Π
1.	 use a BFS-like algorithm to generate the set Ω of all the test

sequences of length up to h
2.	 use a greedy algorithm to select a subset Π ⊆ Ω that covers

all the target sequences in Σ that could be covered.
3. remove from Σ the target sequences covered by Π
4. if (Σ is not empty) {
5.	 use algorithm GenTestSeqsFromTargets to generate a test

sequence set Π’ to cover the target sequences in Σ
6. Π = Π ∪ Π’
7. }
8. return Π

Figure 5. A brute force algorithm for test sequences generation

As discussed in Section IV.A, for each target sequence,
we can generate a shortest test sequence to cover it. This
information can be used to select a proper value for h. In
particular, if we set h to the maximal length of all these
shortest test sequences, then all the target sequences are
guaranteed to be covered, because all test sequence of length
up to h will be found in this algorithm. However the number
of test sequences of length up to h increases exponentially
with respect to h, so do the execution time and memory cost.

Complexity analysis: Assume there are n transitions,
and |Σ| target sequences in an LTS. Assume the test strength
is t, maximal length is h, and m test sequences are generated.
There are at most nh candidates of length up to h, which takes

O(nh) to generate. The greedy algorithm in line 2 takes
O(|Σ|mnh) time, as discussed earlier. The entire algorithm is
dominated by line 2, and the total time complexity is
O(|Σ|mnh). We have to store all nh candidate test sequences,
so the total space complexity is O(|Σ|+nh).

C. An Increamental Extension Algortihm
This algorithm is motivated by the observation that, a

longer test sequence can cover more t-way targets.
Theoretically, a test sequence of length l can cover as many
as C(l, t) t-way target sequences. Therefore longer sequences
are preferred. However, the test sequences generated by
algorithms GenTestSeqsFromTargets and GenTestSeqsBF
are either selected from a set of shortest test sequences, or
limited by the maximal length h. Therefore these sequences
tend to be relatively short. This algorithm is designed to
generate longer test sequences by extending a test sequence
in an incremental manner. Once a long test sequence is
generated, we remove covered targets and start generating
another long test sequence. We keep doing so until no more
targets can be covered. Similarly, the remaining targets are
then covered by algorithm GenTestSeqsFromTarget.

The incremental extension is performed as follows.
Given a transition sequence P = r1 •r2 •…• rn, we generate the
set Q of all maximal transition sequences that start from the
ending state of this sequence, i.e., dest(rn), and that are of
length up to h. A maximal transition sequence of length up to
h is a transition sequence that is not a prefix of any other
transition sequence of length up to h. A transition sequence P’
is selected from Q such that sequence P • P’ covers the most
number of target sequences. Then we set P = P • P’, i.e.,
appending P’ to P. An example of incremental extension is
illustrated in Figure 6. In the previous extension (step k-1), a
transition sequence that ends with transition a being the last
transition was found. Now we explore all maximal transition
sequences staring from dest(a), and of length up to 3.
Assume that a transition sequence b•c•d is selected as it
covers the most number of target sequences. This process is
then repeated and the next extension will start from dest(d).
This extension is terminated when it reaches a final transition
(successfully generated a long test sequence), or no targets
can be covered (terminated).

Figure 6. Illustration of test sequence extension.

Figure 7 shows the detailed GenTestSeqsInc algorithm.
The parameter h>t indicates the search depth in each
extension. Note that the extension process may get stuck in a
long cycle, and make no progress. In this case, the extension

process is terminated and the GenTestSeqsFromTargets
algorithm is used to cover any remaining targets.

Algorithm: GenTestSeqsInc
Input: an LTS M, a set Σ of target sequences, test strength t,

search depth h
Output: a t-way test sequence set Π
1. initialize Π to be empty
2. let S be a set consisting of all the initial states
3. let P be an empty test sequence
4. while (true){
5.	 use a BFS-like algorithm to generate the set Ω of all

maximal transition sequences that begins with a state
in S and that are of length up to h

6.	 select a transition sequence P’ in Ω such that the extended
transition sequence P • P’ covers the most targets

7. let P = P • P’, and s be the last transition of P
8. clear S and add s to S
9. if (P covers no target sequence) {
10.	 break //may be stuck in a cycle, terminate
11. }else if (s is a final state) {
12.	 add P to Π // generated a long test sequence
13.	 remove target sequences covered by P from Σ
14. 	 reset S to a set consisting of all the initial states
15.	 reset P to an empty test sequence
16. }
17. }
18. if (Σ is not empty) {
19.	 use algorithm GenTestSeqsFromTargets to generate a

a test sequences set Π’ to cover remaining targets
20. Π = Π ∪ Π’
21. }
22. return Π

Figure 7. An increamental extension algorithm

Complexity analysis: Assume that there are n transitions
and |Σ| t-way target sequences in an LTS. Also assume that
the test strength is t, the search depth for each extension is h.
Assume that there is a total of d extensions. For each
extension, there are at most nh possible transition sequence of
length up to h, and it takes O(|Σ|nh) to find the best one.
Therefore the time complexity for the entire algorithm is
O(|Σ|dnh). The space complexity is O(|Σ|+nh), since we only
have to keep the possible transition sequences for one
extension at a time.

D. An SCC-Base Algortihm
One of the biggest challenges in test sequence generation

is how to handle transition cycles, as they could cause
transition sequences to be extended infinitely. To address
this problem, we either limit the maximal length of each test
sequences (algorithm GenTestSeqsBF), or we terminate
extension process when we are stuck in a cycle (algorithm
GenTestSeqsInc). We use a different strategy to treat cycles
in this SCC-based algorithm, which has three major steps. In
the first step, we build an acyclic LTS M’ from the original
LTS M. In the second step, we find all necessary test
sequences in the acyclic LTS M’, referred as abstract paths
as they need to be mapped back to the original LTS later. In
the last step, we extend all the abstract paths to test
sequences for the original LTS M, such that all target

sequences are covered. We will explain each step with more
details.

1) Build Acyclic LTS
In graph theory, a strongly connected component (SCC)

is defined as a set of nodes in which any two nodes can reach
each other. An SCC detection algorithm can be found in [21].
We can collapse each SCC in a LTS graph to a special node,
called an SCC node. Doing this converts the original LTS to
an acyclic LTS. An example is shown in Figure 8.

Figure 8. Example of SCC in an LTS graph

We generalize some important properties for SCCs
which will be used later: (1) There exists a path from any
node to another node in an SCC; (2) Any sequence of t
events in an SCC is a t-way target sequence; (3) All the t-
way target sequences in an SCC can be covered by a single
transition sequence. Property (1) is derived from the
definition of SCC. For property (2), given a sequence of t
events, there exists a path that traverses t proper transitions
in the given order and thus covers the given sequence of t
events. Therefore any sequence of t events is a t-way target
sequence. Property (3) is the key point for the last step of this
SCC-based algorithm. We denote a single transition
sequence that covers all t-way target sequences in an SCC as
a t-touring path, which can be generated using the following
approach. First we build a 1-touring path P1, i.e., a path that
traverses all transitions at least once in an SCC. Note that it’s
different with an Eulerian path which requires every edge to
be visited exactly once. Then starting from the last transition
of P1, we build another 1-touring path P2 and append P2 to P1.
By doing this, we make a 2-touring path. This process is
repeated until we have a t-touring path. It can be verified that
a t-touring path contains a sequence of t 1-touring path, and
therefore it covers all sequence of t events in the given SCC.
For example, in Figure 8(a), a 3-touring path for SCC2 is
x•y•z•x•y•z•x•y•z which covers all 3-way target sequences
consisting of events x, y and z. A detailed algorithm for t-
touring path generation is described in Figure 9.

Algorithm: GenTouringPath
Input: an SCC M, strength t, state p, state q
Output: a t-touring path P from state p to state q
1. find a shortest path between any two states in M
2. let P be an empty transition sequence
3. let state s = p
4. for (i = 1 to t) {
5. let T be all transitions in M
6. while (T is not empty){
7.	 let r be a transition in T

8. add into P a shortest path H from s to src(r)
9. remove from T any transitions traversed by H
10. let s be the last state of P
11. }
12. }
13. add into P a shortest path H from s to r
14. return P

Figure 9. An algortihm for t-touring path generation

2) Find Abstract Paths
The abstract paths are actually test sequences of the

acyclic LTS M’, which can be generated using any test
generation algorithm such as algorithm GenTestSeqsBF and
GenTestSeqsInc. The main challenge is that, we have to find
all necessary abstract paths in M’ such that, all target
sequence of M can be covered by the test sequences derived
from these abstract paths. To derive a test sequence from an
abstract path, we simply insert a t-touring path after each
transition ends with an SCC node. Therefore in abstract path
generation, we have to maintain the set of target sequences
of M which can be potentially covered.

3) Generate Test Sequences
As we discussed in step 2, we extend each abstract path

by inserting a t-touring path after each transition ends with
an SCC node, to extend it to a test sequence for M. Let S = s1
• s2 • …• sn be an abstract path of M’. If dest(si) is an SCC
node, we insert a t-touring path P from dest(si) to src(si+1).
Similar insertions are made for all the transitions that end
with an SCC node. In Figure 8 (b), there are five abstract
paths: a•d•f, a•c•e•f, a•c•g, b•e•f and b•g. Assume the test
strength is 3. For path b•g, we insert a 3-touring path
x•y•z•x•y•z•x•y•z•x•y after b, making a test sequence of the
original LTS b•x•y•z•x•y•z•x•y•z•x•y•g. Similar insertions are
made for other abstract paths. The whole SCC-based
algorithm GenTestSeqsSCC is presented in Figure 10.

Algorithm: GenTestSeqsSCC
Input: an LTS M, a set Σ of target sequences, test strength t
Output: a t-way test sequence set Π for M
1. build an acyclic graph M’ by finding and collapsing all SCCs

in M
2. generate a set Ω consisting of abstract paths in M’
3. for (each abstract path P = c1 • c2 • …• cn in Ω){
4. for(i = 1 to n-1) {
5. if(dest(ci) is an SCC node){
6.	 use algorithm GenTouringPath to generate a t-

touring path T from dest(ci) to src(ci+1),
7. insert T into P after transition ci
8. }
9. }
10. if (the length of P is no less than t)
11. add P to Π
12. }
13. if Π cannot cover all targets in Σ, generate a test sequences

set Π’ to cover remaining targets using algorithm
GenTestSeqsFromTargets

14. Π = Π ∪ Π’
15. return Π

Figure 10. An SCC-base algortihm for test sequences generation

Complexity analysis: The complexity of this algorithm
highly depends on the structure of graph. Assume that the
original LTS contains n transitions. Finding SCCs takes O(n).
Assume there are d transitions that end with an SCC nodes in
m selected abstract paths, and there are in total k abstract
paths. Assume each SCC contains ns transitions. For each
SCC, it takes O(tns) to build a t-touring path. The time
complexity of line 2 is O(|Σ|mk). There are d t-touring paths
are inserted, therefore the total time is O(dtns). The time
complexity for the entire algorithm is O(n+|Σ|mk+dtns). The
space complexity is O(|Σ|mk +dtns).

E. Comparison of Test Generation Algorithms
We provide a brief analytic comparison of the four test

sequence generation algorithms in Table 1.

TABLE I.	 COMPARISON OF TEST GENERATION ALGORITHMS

Algorithm Time
cost

Space
Cost

Length of
single test

of
generate

tests
GenTestSeqsFromTargets Low Low Short Many

GenTestSeqsBF High High Depends Few

GenTestSeqsInc High Low Long Few

GenTestSeqsSCC Low Low Very Long Very Few

Algorithm GenTestSeqsFromTargets tends to generate
many short test sequences, while algorithms GenTestSeqsInc
and GenTestSeqsSCC tend to generate a small number of
long test sequences. Algorithm GenTestSeqsBF has the
highest time and space complexity but it can generate a small
number of test sequences, when h is sufficiently large.
Algorithm GenTestSeqsSCC has the lowest time and space
complexity since it avoids explicitly enumerating all target
sequences.

V. EXPERIMENTS

We have built a tool that implements the proposed
algorithms. This tool is written in Java, and is freely
available to the public [15]. To evaluate the performance of
the proposed algorithms, we conducted experiments on both
real and synthesized systems on a laptop with Corei5-2410M
2.30GHz CPU and 4GB memory, running Windows 7 (64-
bit) and Java 6 SE (32-bit) with the default heap size.

The performances of the test generation algorithms are
compared based on three metrics: the total length of
generated test sequences, the number of generated test
sequences, and the execution time taken to generate the test
sequences.

A. Case Study: The Java Threads System
In this study we used the labeled transition system shown

in Figure 2. Recall that this system describes the lifecycle of
a Java thread, and it contains 7 states, 9 events and 16
transitions. The test strength is set to 3 in the experiments.
There are 448 unique 3-way target sequences. Table II shows
the results of applying the four test generation algorithms to
this system. The columns in Table II are self-explanatory.
For algorithm GenTestSeqsInc, we set h=5. For algorithm

GenTestSeqsBF, we use h=16, 18, 20 in three different runs, TABLE III. CHARACTERISTICS OF SYNTHESIZED SYSTEMS

since 16 is the critical length, i.e., the smallest h such that all
target sequences will be covered by test sequences of length
up to h.

TABLE II. RESULT OF THE JAVATHREADS SYSTEM

JavaThreads
(448 3-way targets)

total
length

num. of
test seqs

avg.
length

time
(s)

GenTestSeqsFromTargets 399 36 11.1 0.02

GenTestSeqsBF(h=16) 174 11 15.8 5.7
GenTestSeqsBF(h=18) 146 9 16.2 34.5
GenTestSeqsBF(h=20) 116 6 19.3 461.9
GenTestSeqsInc (h=5) 128 5 25.6 0.05

GenTestSeqsSCC 35 1 35.0 0.03

It is clear that, algorithm GenTestSeqsBF generates better
test sequences as h increases, but execution time increases
very fast. Algorithm GenTestSeqsSCC works very well for
this system. In particular, it has the lowest number and total
length of test sequences while running as fast as the fastest
algorithm, i.e., algorithm GenTestSeqsFromTarget.

B. Synthesied Systems
In this study, we implemented a random LTS generator

to generate synthesized systems. This generator takes three
parameters, i.e., number of states, number of transitions, and
number of events. The generation process consists of three
major steps. First, it generates the given number of states and
transitions, where each transition is placed between two
random states. Second, it randomly assigns the given number
of event labels to the transitions. Finally, it checks whether
the generated graph is connected. A system is discarded if it
is not connected.

We randomly generated 10 different systems, as shown
in Table III. Note that SYS-n denotes a system with n
transitions. We also report the number of transitions which
belong to any SCC in Table III.

System # of
states

of
events

of
transitions

of transitions
in SCC

SYS-10 8 10 10 5
SYS-15 8 10 15 9
SYS-20 8 15 20 17
SYS-25 10 20 25 19
SYS-30 10 20 30 26
SYS-40 10 30 40 33
SYS-50 15 35 50 45
SYS-60 15 40 60 56
SYS-80 20 50 80 75

SYS-100 20 60 100 96

Table IV shows the number of t-way target sequences
generated by algorithm GenTargetSeqs, where t = 2, 3, 4, 5.
It’s obvious that the number of t-way target sequences
increases very fast as test strength t and number of events
increase.

TABLE IV. RESULTS OF T-WAY TARGET SEQUENCE GENERATION FOR
SYSTEHSIZED SYSTEMS

System # of 2-way
target seqs

of 3-way
target seqs

of 4-way
target seqs

of 5-way
target seqs

SYS-10 55 276 1380 6900
SYS-15 60 360 2160 12960
SYS-20 210 2940 41160 576240
SYS-25 303 4545 68175 1022625
SYS-30 360 6480 116640 2099520
SYS-40 750 18750 468750 11718750
SYS-50 1085 33635 1042685 32323235
SYS-60 1480 54760 2026120 74966440
SYS-80 2400 115200 5529600 265420800

SYS-100 3420 194940 11111580 633360060

TABLE V. RESULTS OF TEST SEQUENCE GENERATION FOR SYNTHESIZED SYSTEMS (3-WAY, 100% COVERAGE)

System
GenTestSeqsFromTargets GenTestSeqsBF GenTestSeqsInc GenTestSeqsSCC

total
length

of test
seqs

avg.
length

time
(s)

total
length

of test
seqs

avg.
length

time
(s)

total
length

of test
seqs

avg.
length

time
(s)

total
length

of test
seqs

avg.
length

time
(s)

SYS-10 184 16 11.5 0.01 55 3 18.3 4.1 123 11 11.1 0.01 55 3 18.3 0.01

SYS-15 273 26 10.5 0.01 80 4 20 9.6 297 22 13.5 0.03 84 4 21.0 0.08

SYS-20 5346 547 9.8 0.09 2083 164 12.7 84.5 477 16 29.8 1.3 74 1 74.0 0.2

SYS-25 5049 446 11.3 0.1 1534 104 14.8 693.9 1066 62 19.4 2.6 188 4 47.0 0.2

SYS-30 8833 890 9.9 0.2 - - - - 1381 55 25.1 32.5 132 2 66.0 0.4

SYS-40 35432 4163 8.5 3.0 - - - - 7832 729 10.7 412.8 132 2 66.0 0.2

SYS-50 60047 5192 11.2 5.4 - - - - 44058 1680 26.2 1080.7 439 4 109.8 2.4

SYS-60 113391 11097 10.0 30.7 - - - - - - - - 403 3 134.3 6.2

SYS-80 211975 18829 11.3 110.8 - - - - - - - - 354 2 177.0 10.2

SYS-100 500022 47166 10.6 526.0 - - - - - - - - 557 3 185.7 14.6

C. Results and discussions
Table V shows the test generation results of synthesized

systems using four proposed algorithms. The test strength t is
set to 3, and the columns in Table V are self-explanatory.
The coverage is verified by an independent procedure. Note
that “-” indicates the process of test sequence generation
took more than one hour to complete or ran out of memory
with the default heap size. For algorithm GenTestSeqsBF, we
set h to the critical length and increase it until timeout or out-
of-memory. The h finally used in the first four systems is 30,
25, 15 and 13, respectively. For algorithm GenTestSeqsInc,
we set h=5 such that every extension takes a reasonable time.
For algorithm GenTestSeqsSCC we use GenTestSeqsInc to
generate abstract paths, and the search depth is set to 10 in
our experiments.

Some observations can be made from these results. First,
algorithm GenTestSeqsFromTargets is relatively fast, but it
generates a large number of test sequences as well as the
total length. Algorithm GenTestSeqsBF is very slow, but for
small systems such as SYS-10 and SYS-15, it generates the
best results in terms of the number of test sequences and total
length. The GenTestSeqsInc algorithm achieves a good
trade-off between total length and execution time. The
GenTestSeqsSCC algorithm has very good performance, i.e.,
it generates very few test sequences in a very short time, and
displays good scalability on large systems.

These algorithms have their own advantage and
disadvantages, and can be used for different purposes and in
different situations. Algorithm GenTestSeqsFromTargets is a
useful strategy in general cases, and is preferred to be used in
conjunction with other algorithms for covering remaining
targets or speeding up the final stage. Algorithm
GenTestSeqsBF can generate good test sequences for small
systems. However the time and space complexity is very
high and thus does not scale for large systems. Algorithm
GenTestSeqsInc has small memory cost and reasonable
performance. It is very flexible to work with various
requirements. For example, it can control the length of test
sequences, or generate test sequences with a specific prefix.
Algorithm GenTestSeqsSCC has the best scalability and
performance among these algorithms and is suitable for
larger systems. However, its performance highly depends on
the structure of system graph. Furthermore, it generates long
test sequences, which are not effective for fault localization,
i.e., it’s hard to identify which event sequence actually
triggered the fault.

D. Threats to Validity
The external threat to validity is mainly due to the fact

that the subject systems used in our experiments may not be
representative of true practice. We used a real-life system
and a number of randomly generated systems to reduce this
threat. The internal threat to validity is mainly due to the fact
that mistakes that could be made when conducting the
experiments. We tried to automate the process as much as
possible to reduce chances for human errors. We have also
tried to cross-check the correctness of our results whenever
there was a reasonable doubt.

VI. RELATED WORK

In this section, we discuss related work in three areas,
including combinatorial test data generation, combinatorial
test sequence generation, and coverage criteria for test
sequence generation.

A. Combinatorial Test Data Generation
Different strategies for combinatorial test data generation

have been proposed in recent years. These strategies can be
roughly classified into two groups, computational methods
and algebraic methods [17, 22]. Computational methods
usually involve an explicit enumeration of all possible
combinations, and employ a greedy or heuristic search
strategy to select tests. Examples of these methods include
AETG [18], IPOG [19], and methods based on simulated
annealing and hill climbing [22]. In contrast, algebraic
methods build a t-way test set based on some pre-defined
formulas, without enumerating any combinations. Examples
of algebraic methods include orthogonal arrays [13, 24] and
doubling-construction [14]. A survey on combinatorial test
generation methods can be found in [2].

Although computational methods are more expensive
than algebraic methods, they can be applied to general
system configurations, whereas algebraic methods cannot.
Nonetheless, test data generation methods cannot be directly
applied to test sequence generation, due to some fundamental
differences between the two problems discussed in Section I.

B. Test Sequence Generation
Several efforts have been reported that try to apply the

idea of combinatorial testing to test systems that exhibit
sequence-related behaviors. Wang et al. [8, 9] introduced a
combinatorial approach to test dynamic web applications,
which mainly investigates the fault detection effectiveness of
a notion called pairwise interaction coverage on web
applications. This is different from our work in that our focus
is on efficient algorithms for test sequence generation.

X. Yuan et al. introduced a covering array method for
GUI test case generation in [23]. This method first generates
a covering array for abstract GUI events, and then generates
executable sequences from this covering array. A more in-
depth study on GUI testing is presented in [24], in which
they incorporated the context of event. Similar to the work in
[8, 9], their work mainly investigates the fault detection
effectiveness of different coverage criteria. The test
generation methods used in their work are based on covering
arrays. All test sequences are extended from some fixed-
length smoke tests. Our algorithms do not impose similar
restrictions.

C. Test Sequence Coverage Criteria
We focus on coverage criteria that require “sequence of

elements” to be covered. In other words, we do not consider
coverage criteria such as all-nodes and all-branches [20].

Pairwise interaction coverage is used in some literatures
such as Wang et al. [8, 9], which requires all possible pair of
web page interactions to be covered by at least once. This is
the special case of t-way sequence testing when t=2. Lucca
and Penta [11] applied several coverage criteria for web

application testing from [1]. One of their criteria is all-
transition-k-tuples, which requires all possible sequence of k
consecutive transitions to be covered. Similarly, a coverage
criterion, called length-n-event-sequence coverage, was
proposed for GUI testing [10]. These coverage criteria
require a sequence of elements to be covered consecutively.
This is different from our t-way sequence coverage criterion,
which only requires a sequence of elements to be covered in
the same order, not necessarily consecutively.

The coverage criterion that is most closely related to ours
is called t*-coverage coverage [24]. This coverage is
proposed for GUI interaction testing and requires all
permutation of t events are executed consecutively at least
once and inconsecutively at least once. In t-way sequence
coverage proposed in this paper, a sequence of elements is
considered to be covered as long as it is covered once,
consecutively or inconsecutively.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented our work on the problem of t-
way test sequence generation. Our system model is defined
in a general manner and can be used to model different types
of systems, e.g., GUI applications, web applications and
concurrent systems. We proposed an efficient algorithm for
generating t-way target sequences that avoids redundant
computations in checking the validity of all t-permutations of
given events. We also presented several algorithms for
generating test sequences to achieve t-way sequence
coverage, i.e., to cover all the t-way target sequences. We
believe that these algorithms represent the first effort to
systematically explore the possible strategies for solving the
problem of t-way test sequence generation in a general
context.

This work is the first stage of a larger effort that tries to
expand the domain of combinatorial testing from test data
generation to test sequence generation. In the next stage, we
plan to conduct controlled experiments and case studies to
investigate the fault detection effectiveness of t-way
sequence testing for practical applications. In particular, we
plan to apply and adapt the algorithms reported in this paper
to test concurrent programs. Concurrency-related faults are
notoriously difficult to detect because a concurrent program
may exercise different synchronization behaviors due to the
existence of race conditions. We believe that t-way sequence
testing can be an effective technique to explore the different
sequences of synchronization events that could be exercised
by a concurrent program.

REFERENCES

[1]	 R. Binder, Testing Object-Oriented Systems. AddisonWesley, 2000.
[2]	 M. Grindal, J. Offutt, and S. F. Andler, Combination Testing

Strategies: A Survey. Journal of Software Testing, Verification and
Reliability, 15, (2), pp. 97-133, 2005.

[3]	 C. E. McDowell and D. P. Helmbold, Debugging concurrent
programs. ACM Computing Surveys (CSUR), 21(4):593–622, 1989.

[4]	 D. R. Wallace, D. R. Kuhn, Failure modes in medical device
software: An analysis of 15 years of recall data. International Journal
of Reliability, Quality and Safety Engineering 2001; 8(4):351–371.

[5]	 D. R. Kuhn, M. J. Reilly, An investigation of the applicability of
design of experiments to software testing. Proceedings of 27th
NASA/IEEE Software Engineering Workshop, Greenbelt, Maryland,
2002; 91–95.

[6]	 Y.W. Tung, W. S. Aldiwan, Automating test case generation for the
new generation mission software system. Proceedings of IEEE
Aerospace Conference, Big Sky, Montana, 2000; 431–437.

[7]	 D. R. Kuhn, D. R. Wallace, A. J. Gallo, Jr., Software fault
interactions and implications for software testing. Software
Engineering, IEEE Transactions on, Volume: 30 Issue:6, 2004.

[8]	 W. Wang, S. Sampath, Y. Lei, R. Kacker, An Interaction-Based Test
Sequence Generation Approach for Testing Web Applications. High
Assurance Systems Engineering Symposium. Nanjing, 3-5 Dec. 2008.

[9]	 W. Wang, Y. Lei, S. Sampath, R. Kacker, D. Kuhn, J. Lawrence, A
Combinatorial Approach to Building Navigation Graphs for Dynamic
Web Applications. Proceedings of 25th IEEE International
Conference on Software Maintenance, 2009.

[10] A. M. Memon, M. L. Soffa, and M. E. Pollack, Coverage criteria for
GUI testing. In ESEC/FSE-9: Proceedings of the 8th European
software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software
engineering, 2001, pp. 256-267.

[11] G. D. Lucca, M. D. Penta, Considering Browser Interaction in Web
Application Testing. In 5th International Workshop on Web Site
Evolution, pp. 74-81, 2003.

[12] P.	 Brooks, B. Robinson, and A. M. Memon, An initial
characterization of industrial graphical user interface systems.
Proceedings of the 2nd IEEE International Conference on Software
Testing, Verification and Validation. Washington, DC, USA, 2009.

[13] A. W.	 Williams, Determination of test configurations for pair-wise
interaction coverage. Proceedings of 13th International Conference on
the Testing of Communicating Systems, Ottawa, Canada, 2000.

[14] M. A. Chateauneuf, C. J. Colbourn, D. L. Kreher, Covering arrays of
strength 3. Designs, Codes, and Cryptography 1999;16:235–242.

[15] http://barbie.uta.edu/~lyu/seq
[16] http://docs.oracle.com/javase/
[17] A. Hartman, L. Raskin, Problems and algorithms for covering arrays.

Discrete Mathematics 2004; 284(1–3):149–156.
[18] D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton, The AETG

system: An approach to testing based on combinatorial design. IEEE
Transactions on Software Engineering 1997; 23(7):437–444.

[19] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, IPOG /
IPOG-D: Efficient Test Generation for Multi-way Combinatorial
Testing. Software Testing, Verification and Reliability, 2007.

[20] A.	 Mathur, Foundations of Software Testing. Pearson Education,
2008.

[21] T.	 H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd edition. The MIT Press, 2001

[22] M. 	B. Cohen, C. J. Colbourn, P. B. Gibbons, W. B. Mugridge,
Constructing test suites for interaction testing. Proceedings of 25th
IEEE International Conference on Software Engineering, Portland,
Oregon, 2003.

[23] X. Yuan, M. B. Cohen, and A. M. Memon, Covering Array Sampling
of Input Event Sequences for Automated GUI Testing. In 22nd
IEEE/ACM international conference on Automated Software
Engineering, pp. 405-408, 2007.

[24] X. Yuan, M. B. Cohen. and A. M. Memon, GUI Interaction Testing:
Incorporating Event Context. IEEE Transactions on Software
Engineering, vol. NN, no. N, 2011.

[25] S. Warshall, A theorem on boolean matrices. Journal of the ACM,
Volume 9, Number 1, pp. 11-12, 1962.

[26] R. Mandl, Orthogonal Latin squares: An application of experiment
design to compiler testing. Communications of the ACM 1985;
28(10):1054–1058.

http://docs.oracle.com/javase
http://barbie.uta.edu/~lyu/seq

