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Abstract—Combinatorial testing has been shown to be a 
very effective testing strategy. Most work on combinatorial 
testing focuses on t-way test data generation, where each test is 
an unordered set of parameter values. In this paper, we study 
the problem of t-way test sequence generation, where each test 
is an ordered sequence of events. Using a general labeled 
transition system as the system model, we formally define the 
notion of t-way sequence coverage, and introduce an efficient 
algorithm to compute all valid t-way target sequences, i.e., 
sequences of t events that must be covered by at least one test 
sequence. We then report several algorithms to generate a set 
of test sequences that achieves the proposed t-way sequence 
coverage. These algorithms are developed as the result of a 
systematic exploration of the possible approaches to t-way test 
sequence generation, and are compared both analytically and 
experimentally. The results show that while these algorithms 
have their own advantages and disadvantages, one of them is 
more scalable than others while exhibiting very good 
performance. 

Keywords: Combinatorial Testing; T-way Sequence Coverage; 
Test Sequence Generation; 

I. INTRODUCTION 

Combinatorial testing has been shown to be a very 
effective testing strategy [4-7]. Most work on combinatorial 
testing focuses on t-way test data generation, where each test 
is an (unordered) set of values for parameters. T-way 
combinatorial testing, or t-way testing, requires every 
combination of values for any t parameters be covered by at 
least one test. The rationale behind t-way testing is that many 
faults involve only a few parameters, thus testing all t-way 
combinations can effectively detect these faults. However, 
many programs exhibit sequence-related behaviors. For 
example, faults in graphical user interface (GUI) programs 
may only be triggered by a certain sequence of user actions 
[12]; faults in web applications may only be exposed when 
some pages are viewed in a certain order [9]; and faults in 
concurrent programs may not manifest unless some events 
are exercised in a particular order [3]. Testing efforts for 
these programs should not only focus on data inputs, but also 
sequences of actions or events. 

In this paper, we study the problem of t-way test 
sequence generation. This problem is fundamentally 
different from the problem of t-way test data generation in 
several aspects: (1) Most t-way test data generation 
techniques assume that all the tests are of fixed length, which 

often equals the total number of parameters that are modeled. 
In contrast, test sequences are typically of various lengths, 
and this must be taken into account during t-way test 
sequence generation. (2) By the definition of “sequence”, t-
way test sequence generation must deal with an extra 
dimension, i.e., “order”, which is insignificant in t-way test 
data generation. (3) Sequencing constraints are different 
from, and typically more complex than, non-sequencing 
constraints. In particular, sequencing constraints need to be 
represented and checked in a way that is different from non-
sequencing constraints. 

The theme of this paper is centered on how to address the 
above challenges. We first introduce our system model, i.e., 
a labeled transition system, based on which we give a formal 
definition of t-way sequence coverage. This system model 
uses a graph structure to encode sequencing constraints. We 
divide the problem of t-way test sequence generation into 
two smaller problems, i.e., target sequence generation and 
test sequence generation. The first problem deals with how to 
generate the test requirements, i.e., all valid t-way sequences 
that must be covered. The second problem deals with how to 
generate a small set of test sequences to cover all the test 
requirements. We systematically explore different strategies 
to solve these problems and present a set of algorithms as the 
result of our exploration. We compare these algorithms both 
analytically and experimentally, with special attention paid 
to scalability. The experiment results show that while these 
algorithms have their own advantages and disadvantages, 
one of them is more scalable than others while exhibiting 
very good performance in test sequence generation. 

To our best knowledge, our work is the first attempt to 
systematically study the problem of t-way test sequence 
generation using a general system model. The major 
contributions of this paper are as follows. 

1) We define the t-way sequence coverage for a general 
system model that can be used to model different 
types of programs, such as GUI applications, web 
applications, and concurrent programs. 

2) We propose a set of algorithms for t-way test 
sequence generation, including an efficient 
algorithm for generating valid t-way sequences that 
must be covered, and four algorithms for generating 
a small set of test sequences that achieve the t-way 
sequence coverage. These algorithms are 
implemented in a Java application which is freely 
available to the public [15]. 



        
   

     
     

        
          
         

     
     

         
        
       

        
       
      

       
        

         

  

   
          
   

 
          

             
            

          
 

        
     

          
        

          
 

       
     
           

             
          

        
  

 

 
                

           
       

          

          
        

 
            

         
  

 
         

         
           

      

          
       

        
       

         
          

            
        

 
         

       
         
                

  
 

         
          

        
        

         
         

         
      

 
          

           
         

    
 

       
       

            
  

          
          

        
        

          
         

         

    
         

         
   

          
       

3) We report an experimental evaluation of the 
proposed test generation algorithms. This evaluation 
provides important insights about the advantages and 
disadvantages of these proposed algorithms. 

We point out that this paper focuses on t-way test 
sequence generation, which is the first stage of a larger effort 
that tries to expand the domain of t-way testing from test 
data generation to test sequence generation. Empirical 
studies on fault detection effectiveness of t-way test 
sequences are planned as the next stage of this larger effort. 

The remainder of this paper is organized as follows. 
Section II introduces preliminary concepts and motivation 
for t-way sequence testing. Section III presents an efficient 
algorithm for t-way target sequence generation. Several 
algorithms for test sequence generation are presented in 
Section IV. Experimental results are presented in Section V. 
In Section V we briefly overview related work. Finally, we 
conclude this paper and discuss future work in Section VI. 

II. PRELIMINARIES 

A. System Model 
We model a system under test as a labeled transition 

system (LTS). 

Definition 1. A labeled transition system M is a tuple <S, 
Sl, Sf, L, R>, where S is a set of states, Sl ⊆ S is a set of initial 
states, Sf ⊆ S is a set of final states, L is a set of event labels, 
and R ⊆ S × L × S is a set of labeled transitions. 

An LTS can be built from system requirements, high-
/low-level designs, or implementations at a certain level of 
abstraction. The size of an LTS can be controlled by 
choosing an appropriate level of abstraction and by modeling 
system parts that are of interest, instead of the whole system. 
Initial states in an LTS represent states where an execution of 
system could start, and final states represent states where a 
system could safely stop. 

For ease of reference, we will refer to a labeled transition 
as a transition, and refer to an event label as an event. For a 
transition r, we use src(r)OS to denote the source state of r, 
dest(r)OS to denote the destination state of r, and event(r) 
OL to denote the event label of r. 

Figure 1. (a) an exampleAn LTS graph (b) an exercised-after matrix 

An LTS can be represented by a directed graph, in which 
each vertex represents a state, and each directed edge 
represents a transition between two states and is labeled with 

an event. An example graph is shown in Figure 1(a). We 
refer to such a graph as an LTS graph. 

Definition 2. A transition sequence p= r1 • r2 • …• rn is a 
sequence of n transitions < r1 , r2 ,… , rn > such that dest(ri) = 
src(ri+1), for i=1,2, …, n-1. 

Intuitively, a transition sequence represents a path in an 
LTS graph. We use these two terms interchangeably. Given a 
transition sequence P = r1 • r2 • …• rn, we denote the 
corresponding event sequence event(P) = event(r1) • event(r2) 
• …• event(rn). We use event(P) to represent P if there is no 
ambiguity, i.e., only one test sequence can be represented by 
event(P). We distinguish the notion of transition sequence 
from the notion of sequence of transitions. The former 
requires transitions to be consecutive in a sequence, whereas 
the latter does not require so. In the rest of this paper, we use 
r1 • r2 • …• rn to indicate a transition sequence, and use < r1 , 
r2 ,… , rn > to indicate a sequence of transitions. 

Definition 3. Let r and s be two transitions in a labeled 
transition system M. Transition s can be exercised after 
transition r, denoted as r → s, if there exists a transition 
sequence P = r1 • r2 • …• rn, where n > 0, such that r1 = r and 
rn = s. 

As a special case, if r • s is a transition sequence, i.e., 
dest(r) = src(s), it is said that transition s can be exercised 
immediately after r. If transition s can be exercised after 
transition r, it is also said that transition r can be exercised 
before transition s. Consider the example system in Figure 
1(a). Transition r2 can be exercised before r3, r4 and r5. A 
transition may be exercised after (or before) itself, implying 
the existence of a cycle in the LTS graph. 

Definition 4. Let e and f be two events in an LTS M. 
Event f can be exercised after event e, denoted as e → f, if 
there exist two transitions r and s such that event(r)=e, 
event(s)=f, and r → s. 

While the exercised-after relation between transitions is 
transitive, the exercised-after relation between events is not. 
For example, in Figure 1(a), for events a, b and d, we have 
a→b, b→d, but a→d is inconsistent with the LTS graph. 

Assume that there are n transitions in a labeled transition 
system. We can build a n×n matrix E, where E(i,j)=1 if 
ri →rj , and E(i,j)=0 otherwise. This exercised-after matrix 
can be constructed in O(n3) time, using Warshall’s algorithm 
[25]. This matrix will be used in t-way target sequence 
generation, as shown in Section III. Figure1 (b) shows the 
exercised-after matrix for the LTS graph in Figure 1(a). 

B. T-way Sequence Coverage 
We define the notion of t-way sequence coverage in 

terms of t-way target sequences and test sequences. T-way 
target sequences are test requirements, i.e., sequences that 
must be covered; test sequences are test cases that are 
generated to cover all the t-way target sequences. 



        
         

       
   
 

          
       

     
     

        
          

      
 

           
          

       
          

         
       

  
 

        

       
 
        

           
       

           
 

          
         

              
 

         
           

            
           

 
           

           
       

       
 

        
     

         
         

        
         

       
     

         
        

          
         

          
       

 

         
          

        

 
      

            
    

          
       

      
           
         

        
         
     
         

 

   
        

         
      

      
        

          
        
      

         
       

          
        

       
       

        
         

         
          

           
         

         
       

         
        
         

      
     

            
      

             

Definition 5. A t-way target sequence is a sequence of t 
events <e1, e2, …, et> such that there exists a single sequence 
of t transitions <r1, r2, …, rt> where ri → ri+1, and ei=label(ri) 
for i=1,2, …, t. 

Intuitively, a t-way target sequence is a sequence of t 
events that could be exercised in the given order, 
consecutively or inconsecutively, by a single system 
execution. The same event could be exercised for multiple 
times in a t-way target sequence. Note that not every 
sequence of t events is a t-way target sequence. For example, 
in Figure 1(a), <a, c>, <a, d>, and <c, d> are not 2-way 
target sequences. 

One may attempt to define a t-way target sequence as a 
sequence of t events <e1, e2, …, et> in which ei → ei+1, for 
i=1,2, …, t. This definition is however incorrect. For 
example, consider a sequence of 3 events <a, b, c> in Figure 
1(a). We have a→b and b→c. However, <a, b, c> cannot be 
executed in a single transition sequence, and therefore is not 
a t-way target sequence. 

Definition 6. A test sequence is a transition sequence r1 • 
r2 • …• rn, where src(r1) OSi, dest(rn) OSf. 

A test sequence is a transition sequence that starts from 
an initial state and ends with a final state in the LTS graph. 
Intuitively, a test sequence is a (complete) transition 
sequence that can be exercised by a test execution. 

Definition 7. A test sequence P = r1 • r2 • …• rn covers a 
t-way target sequence Q=<e1, e2, …, et>, if there exist 1≤ i1< 
i2< ...< it ≤ n such that event( rik ) = ek, where k =1,2,…, t. 

Intuitively, a target sequence Q is covered by a test 
sequence P if all the events in Q appear in event(P) in order. 
For example, in Figure 1(a), a test sequence r2 • r3 • r4 covers 
three 2-way target sequences: <b, c>, <c, b>, and <b, b>. 

Definition 8. Given an LTS M, let Ʃ be the set of all t-
way target sequences. A t-way test sequence set Π is a set of 
test sequences such that for ∀QOƩ, ∃ POΠ that P covers Q. 
Integer t is referred as the test strength. 

The t-way sequence coverage requires that every t-way 
target sequence be covered by at least one test sequence. 
Consider the example in Figure 1(a). Three test sequences, 
r1•r4, r2•r5 and r2•r3•r4 covers all 2-way target sequences <b, 
b>, <b, c>, <b, d>, <c, b> and <a, b>. 

The notion of t-way sequence coverage is similar to all-
transition-k-tuples coverage for web applications [11] and 
length-n-event-sequence coverage for GUI applications [10]. 
All these coverage criteria require sequences of a certain 
number of events be covered. However, they differ in that t-
way sequence coverage does not require events in a target 
sequence to be covered consecutively by a test sequence 
whereas the other two require so. This difference has a 
significant implication on test sequence generation, which is 
illustrated below. 

Figure 2 shows a labeled transition system that represents 
the life cycle of Java threads [16]. (This system is later used 
as a subject system in our experiments in Section V.A.) 

Figure 2. Real Example: JavaThread 

Assume that a fault can be exposed only if a sequence of 
three events, “start”, “IO completes”, “notify” (or event 
sequence <a, h, g>), is exercised. A shortest path (transition 
sequence) that covers <a, h, g>is a•b•d•e•h•f•b•d•g, which is 
of length 9. If length-n-event-sequence coverage is used, all 
paths of length 9 must be covered in order to cover this 
faulty sequence <a, h, g>. This can significantly increase the 
number of test sequences. In contrast, 3-way sequence 
testing may generate a transition sequence of length 9 for this 
3-way target sequence, but it does not require all paths of 
length 9 be covered. This significantly reduces the number of 
test sequences while still detecting this fault. 

III. TARGET SEQUENCE GENERATION 

Assume that a system contains n events. There are at 
most nt t-way target sequences. Some t-way sequences, i.e., 
sequences of t events, are not valid target sequences due to 
constraints encoded by the transition structure. One approach 
is to first generate all possible t-way sequences and then 
filter out those sequences that are not valid target sequences. 
A t-way sequence is a valid target sequence if there exists a 
transition sequence that covers this sequence. This approach 
is however not efficient. In the following we describe a more 
efficient, incremental approach to generate target sequences. 

The main idea of our approach is to first generate all 2-
way target sequences, and then extend 2-way target 
sequences to generate all 3-way target sequences, and 
continue to do so until we generate all the t-way target 
sequences. Given an LTS M, we first build the exercised-
after matrix for all the transitions of M. Next we find the set 
of all possible transition pairs <r, r’> that r’ can be exercised 
after r. We refer to this set as the 2-way transition sequence 
set. For each 2-way transition sequence <r, r’>, and for each 
transition r’’ that can be exercised after r’, we generate a 3-
way transition sequence <r, r’, r’’>. These 3-way transition 
sequences constitute the 3-way transition sequence set. We 
repeat this process until we build the t-way transition 
sequence set. At this point, we convert each t-way transition 
sequence to a t-way target sequence. Figure 3 shows the 
detailed algorithm that implements this approach. 

Complexity analysis: Assume there are n transitions, 
and the test strength is t. There are at most nt t-way transition 
sequences. As we discussed earlier, the time complexity for 
line 2 is O(n3), The time complexity for line 5 to 13 is 



         
       

         
         

         
 

 
  

     
           

          
           

      
       
        

  
      
           
            
       
    

     
  
  
   
          
          

                    
   

  

        

          
     

  

   
         

        
         

         
        

        
          

         
        

          
     

       
      
       

        

   
      

        
           

        
       

         
       
          

       
          
          

          
          

      
      

             
       
      

       
       

         
         

      
         

 
  

           
       

           
           
              
     
         

          
       
             
  
      

                 
          

  
    
               
  
       

 
            

       
    

         

         
       

      
          

         
          

       
         

          
      

       
   

        
         

dominated by the last iteration, which is O(nt). Line 14 to 16 
takes O(tnt) time. The time complexity of the entire 
algorithm is O(n3+tnt), which is O(n3) when t<3, and O(tnt) 
otherwise. The space complexity is O(n2+tnt) since we have 
to store the exercised-after matrix and all t-way transition 
sequences. 

Algorithm: GenTargetSeqs 
Input: a LTS M, test strength t 
Output: a set Σ consisting of all the t-way target sequences 
1. Let r1, r2, …, rn be all the transitions in M 
2.	 build the exercised-after matrix E such that E(i,j)=true if 

ri→rj , and E(i,j)=false otherwise 
3. let Ωi, 1 <= i <= t, be an empty set 
4.	 add into Ω1 each transition r1, r2, …, rn as a single-transition 

sequence 
5. for (k = 2 to t){ 
6. for (each sequence of transitions R in Ωk-1) { 
7. let rj be the last transition of R 
8. for( i = 1 to n) { 
9. if (E(j, i) == true) 
10. add sequence of transitions <R, ri> to Ωk 
11. } 
12. } 
13. } 
14. for (each sequence of transitions R = <rj1, rj2, …, rjt>in Ωt){ 
15.	 add into Σ an event sequence <event(rj1), event(rj2), … 

event(rjt)> if not exists 
16. } 
17.  return Σ 

Figure 3. Algorithm for t-way sequences generation 

In the next section we will present four test sequence 
generation algorithms based on t-way target sequences 
generated by GenTargetSeqs. 

IV. TEST SEQUENCE GENERATION 

The objective of test sequence generation is to generate a 
set of test sequences that covers all t-way target sequences 
and that requires minimal test effort. There are different 
factors to be considered. The more transitions exist in a test 
sequence, the longer time it takes to execute. Thus, it is 
typically desired to minimize the total length of these test 
sequences. Also, we often need to set up the environment 
before we execute a test sequence, and tear down the 
environment safely after we finish. Thus, in order to 
minimize such setup and teardown costs, it is often desired 
to reduce the number of test sequences. 

In this section, we present four algorithms for test 
sequence generation. These algorithms are developed from 
different perspectives. We compare them analytically in 
Section IV.E and experimentally in Section V. 

A. A Target-Oriented Algorithm 
Recall that in algorithm GenTargetSeqs, each t-way 

target sequence is derived from a sequence of t transitions 
(lines 14 and 15 in Figure 3). The main idea of this test 
generation algorithm is that, for each target sequence Q, we 
find a shortest test sequence to cover Q by extending the 

sequence of transitions from which Q is derived. Since a test 
sequence typically covers many target sequences, a greedy 
algorithm is then used to select a small subset of these test 
sequences that also covers all the target sequences. 

The key challenge in this algorithm is how to generate a 
shortest test sequence to cover each target sequence. Let Q 
be a target sequence and C be the sequence of transitions 
from which Q is derived. We first extend C to a transition 
sequence P by inserting a transition sequence between every 
two adjacent transitions that are not consecutive. For 
example, assume C = <r1 , r2 , …, rt>. If ri+1 cannot be 
exercised immediately after ri, we insert a shortest transition 
sequence between dest(ri) and src(ri+1). This path always 
exists (otherwise Q cannot be a t-way target sequence). Next, 
we make P a test sequence by inserting a shortest path from 
an initial state to the beginning state of P and a shortest path 
from the ending state of P to a final state, if necessary. The 
test sequence P, as constructed so, is a shortest test sequence 
that covers Q. Figure 4 shows the details of this algorithm. 

Algorithm: GenTestSeqsFromTargets 
Input: an LTS M, a set Σ of target sequences, test strength t 
Output: a t-way test sequence set Π 
1. let Π and Ω be an empty set of test sequences 
2. find a shortest path for every pair of states 
3. for each target sequence Q = <e1, e2, …, et> in Σ { 
4.	 let P be an empty transition sequence 
5.	 let C = <r1, r2, …, rt> be a sequence of transitions such 

that Q is derived from C 
6.	 for (i = 1 to t - 1){ 
7.	 append to P a shortest path from dest(ri) to src(ri+1) 
8.	 } 
9.	 if (src(r1) is not an initial state) { 
10.	 append to P a shortest path from an initial state to 

src(r1) 
11.	 } 
12.	 if (dest(rt) is not a final state){ 
13.	 append to P a shortest path from dest(ri) to a final state 
14.	 } 
15.	 add test sequence P into Ω. 
16.  } 
17.	 use a greedy algorithm to select a subset Π of Ω that can 

cover all the target sequences in Σ 
18. return Π 

Figure 4. A target-oriented algorithm for test sequences generation 

Note that in line 2, all shortest paths between two nodes 
in a graph can be effectively calculated using Floyd-
Warshall algorithm [21]. During target sequence generation, 
we keep all the sequence of transitions from which the target 
sequence is derived. These sequences are used in line 5. A 
greedy algorithm is used in line 17 to select a subset of test 
sequences that can cover all the target sequences. This 
algorithm is similar to a classic greedy set cover algorithm 
[21]. It works iteratively, i.e., at each iteration we choose a 
test sequence that covers the most number of uncovered 
target sequences, and remove covered ones, until all target 
sequences are covered. 

Complexity analysis: Assume there are n transitions and 
|Σ| target sequence in an LTS. Assume the test strength is t, 



       
       
        
       

           
         

       
      

    
         

          
       

           
        

    
            
       

        
       

       
       

         
           

         
     

      
   

 
  

          
       

      
             

      
            

      
            
     
        

                   
      
   
    

          

      
          

           
           

     
       

           
       

     
      

         
        

            

        
       

      
        

      

     
      

       
           

       
      

    
         

        
          

       
       

     
           

       
  

       
        

         
         
          

          
         

           
        

         
          
        
        

    
        

         
        
          

        
    

 
         

      
         

        
        

and m test sequences are generated. Finding all pair-wise 
shortest paths takes O(n3) time [21]. In order to build a 
shortest test sequence for each target sequence, we have to 
append at most (t+1) shortest paths, which takes O(t) time. 
Thus the total time from line 3 to 16 is O(t|Σ|). The greedy 
algorithm in line 17 takes O(m|Σ|2) time. Therefore the time 
complexity for the entire algorithm is O(n3+t|Σ|+m|Σ|2) = 
O(n3+ m|Σ|2). The space complexity is O(n2+|Σ|). 

B. A Brute Force Algorithm 
This algorithm finds all test sequences of length up to h, 

in a Brute force manner. Then it selects a subset of these test 
sequences to cover as many target sequences as possible. 
Note that the value of h is specified by the user. This 
algorithm can be considered as a baseline in our effort to 
develop more efficient algorithms. 

The first step of this algorithm uses a strategy similar to 
the breadth-first search (BFS) to generate all test sequences 
of length up to h. The difference is that in BFS, a node is 
only explored once, while in our strategy, a node is explored 
multiple times as it may lead to different test sequences. 
After all test sequences of length up to h are found, we apply 
the same greedy algorithm as mentioned in Section IV.A 
(Figure 4, line 17) to select a subset of test sequences to 
cover as many target sequences as possible. If there are any 
target sequences that remain uncovered, we use algorithm 
GenTestSeqsFromTargets to cover them. Figure 5 shows the 
detailed algorithm, named GenTestSeqsBF. 

Algorithm: GenTestSeqsBF 
Input: a LTS M, a target sequence set Σ, test strength t, max 

test sequence length h 
Output: a t-way test sequence set Π 
1.	 use a BFS-like algorithm to generate the set Ω of all the test 

sequences of length up to h 
2.	 use a greedy algorithm to select a subset Π ⊆ Ω that covers 

all the target sequences in Σ that could be covered. 
3. remove from Σ the target sequences covered by Π 
4. if (Σ is not empty) { 
5.	 use algorithm GenTestSeqsFromTargets to generate a test 

sequence set Π’ to cover the target sequences in Σ 
6. Π = Π ∪ Π’ 
7. } 
8. return Π 

Figure 5. A brute force algorithm for test sequences generation 

As discussed in Section IV.A, for each target sequence, 
we can generate a shortest test sequence to cover it. This 
information can be used to select a proper value for h. In 
particular, if we set h to the maximal length of all these 
shortest test sequences, then all the target sequences are 
guaranteed to be covered, because all test sequence of length 
up to h will be found in this algorithm. However the number 
of test sequences of length up to h increases exponentially 
with respect to h, so do the execution time and memory cost. 

Complexity analysis: Assume there are n transitions, 
and |Σ| target sequences in an LTS. Assume the test strength 
is t, maximal length is h, and m test sequences are generated. 
There are at most nh candidates of length up to h, which takes 

O(nh) to generate. The greedy algorithm in line 2 takes 
O(|Σ|mnh) time, as discussed earlier. The entire algorithm is 
dominated by line 2, and the total time complexity is 
O(|Σ|mnh). We have to store all nh candidate test sequences, 
so the total space complexity is O(|Σ|+nh). 

C. An Increamental Extension Algortihm 
This algorithm is motivated by the observation that, a 

longer test sequence can cover more t-way targets. 
Theoretically, a test sequence of length l can cover as many 
as C(l, t) t-way target sequences. Therefore longer sequences 
are preferred. However, the test sequences generated by 
algorithms GenTestSeqsFromTargets and GenTestSeqsBF 
are either selected from a set of shortest test sequences, or 
limited by the maximal length h. Therefore these sequences 
tend to be relatively short. This algorithm is designed to 
generate longer test sequences by extending a test sequence 
in an incremental manner. Once a long test sequence is 
generated, we remove covered targets and start generating 
another long test sequence. We keep doing so until no more 
targets can be covered. Similarly, the remaining targets are 
then covered by algorithm GenTestSeqsFromTarget. 

The incremental extension is performed as follows. 
Given a transition sequence P = r1 •r2 •…• rn, we generate the 
set Q of all maximal transition sequences that start from the 
ending state of this sequence, i.e., dest(rn), and that are of 
length up to h. A maximal transition sequence of length up to 
h is a transition sequence that is not a prefix of any other 
transition sequence of length up to h. A transition sequence P’ 
is selected from Q such that sequence P • P’ covers the most 
number of target sequences. Then we set P = P • P’, i.e., 
appending P’ to P. An example of incremental extension is 
illustrated in Figure 6. In the previous extension (step k-1), a 
transition sequence that ends with transition a being the last 
transition was found. Now we explore all maximal transition 
sequences staring from dest(a), and of length up to 3. 
Assume that a transition sequence b•c•d is selected as it 
covers the most number of target sequences. This process is 
then repeated and the next extension will start from dest(d). 
This extension is terminated when it reaches a final transition 
(successfully generated a long test sequence), or no targets 
can be covered (terminated). 

Figure 6. Illustration of test sequence extension. 

Figure 7 shows the detailed GenTestSeqsInc algorithm. 
The parameter h>t indicates the search depth in each 
extension. Note that the extension process may get stuck in a 
long cycle, and make no progress. In this case, the extension 



    
       

 
  

         
       

      
     

         
       
     
            

          
             

          
           

           
       
    

            
    

             
             
              

          
  

 
   

       
                
      
    
    

       

        
           
          

          
         

          
         

       
       

   

    
       

         
       

       
    

          
        

       
           

        
         

           
        

     

        
 

    
      

             
         

           
          

           

 
        

       
          

         
           

         
       

        
         

           
         

           
     

          
        

       
          
         

        
          
          

          
         

         
         

       
        

    
  

   
         
        

          
        
       

  
       

     
         

process is terminated and the GenTestSeqsFromTargets 
algorithm is used to cover any remaining targets. 

Algorithm: GenTestSeqsInc 
Input: an LTS M, a set Σ of target sequences, test strength t, 

search depth h 
Output: a t-way test sequence set Π 
1. initialize Π to be empty 
2.  let S be a set consisting of all the initial states 
3. let P be an empty test sequence 
4. while (true){ 
5.	 use a BFS-like algorithm to generate the set Ω of all 

maximal transition sequences that begins with a state 
in S and that are of length up to h 

6.	 select a transition sequence P’ in Ω such that the extended 
transition sequence P • P’ covers the most targets 

7. let P = P • P’, and s be the last transition of P 
8. clear S and add s to S 
9. if (P covers no target sequence) { 
10.	 break //may be stuck in a cycle, terminate 
11.     }else if (s is a final state) { 
12.	 add P to Π // generated a long test sequence 
13.	 remove target sequences covered by P from Σ 
14.  	 reset S to a set consisting of all the initial states 
15.	 reset P to an empty test sequence 
16. } 
17.  } 
18.  if (Σ is not empty) { 
19.	 use algorithm GenTestSeqsFromTargets to generate a 

a test sequences set Π’ to cover remaining targets 
20. Π = Π ∪ Π’ 
21. } 
22. return Π 

Figure 7. An increamental extension algorithm 

Complexity analysis: Assume that there are n transitions 
and |Σ| t-way target sequences in an LTS. Also assume that 
the test strength is t, the search depth for each extension is h. 
Assume that there is a total of d extensions. For each 
extension, there are at most nh possible transition sequence of 
length up to h, and it takes O(|Σ|nh) to find the best one. 
Therefore the time complexity for the entire algorithm is 
O(|Σ|dnh). The space complexity is O(|Σ|+nh), since we only 
have to keep the possible transition sequences for one 
extension at a time. 

D. An SCC-Base Algortihm 
One of the biggest challenges in test sequence generation 

is how to handle transition cycles, as they could cause 
transition sequences to be extended infinitely. To address 
this problem, we either limit the maximal length of each test 
sequences (algorithm GenTestSeqsBF), or we terminate 
extension process when we are stuck in a cycle (algorithm 
GenTestSeqsInc). We use a different strategy to treat cycles 
in this SCC-based algorithm, which has three major steps. In 
the first step, we build an acyclic LTS M’ from the original 
LTS M. In the second step, we find all necessary test 
sequences in the acyclic LTS M’, referred as abstract paths 
as they need to be mapped back to the original LTS later. In 
the last step, we extend all the abstract paths to test 
sequences for the original LTS M, such that all target 

sequences are covered. We will explain each step with more 
details. 

1) Build Acyclic LTS 
In graph theory, a strongly connected component (SCC) 

is defined as a set of nodes in which any two nodes can reach 
each other. An SCC detection algorithm can be found in [21]. 
We can collapse each SCC in a LTS graph to a special node, 
called an SCC node. Doing this converts the original LTS to 
an acyclic LTS. An example is shown in Figure 8. 

Figure 8. Example of SCC in an LTS graph 

We generalize some important properties for SCCs 
which will be used later: (1) There exists a path from any 
node to another node in an SCC; (2) Any sequence of t 
events in an SCC is a t-way target sequence; (3) All the t-
way target sequences in an SCC can be covered by a single 
transition sequence. Property (1) is derived from the 
definition of SCC. For property (2), given a sequence of t 
events, there exists a path that traverses t proper transitions 
in the given order and thus covers the given sequence of t 
events. Therefore any sequence of t events is a t-way target 
sequence. Property (3) is the key point for the last step of this 
SCC-based algorithm. We denote a single transition 
sequence that covers all t-way target sequences in an SCC as 
a t-touring path, which can be generated using the following 
approach. First we build a 1-touring path P1, i.e., a path that 
traverses all transitions at least once in an SCC. Note that it’s 
different with an Eulerian path which requires every edge to 
be visited exactly once. Then starting from the last transition 
of P1, we build another 1-touring path P2 and append P2 to P1. 
By doing this, we make a 2-touring path. This process is 
repeated until we have a t-touring path. It can be verified that 
a t-touring path contains a sequence of t 1-touring path, and 
therefore it covers all sequence of t events in the given SCC. 
For example, in Figure 8(a), a 3-touring path for SCC2 is 
x•y•z•x•y•z•x•y•z which covers all 3-way target sequences 
consisting of events x, y and z. A detailed algorithm for t-
touring path generation is described in Figure 9. 

Algorithm: GenTouringPath 
Input: an SCC M, strength t, state p, state q 
Output: a t-touring path P from state p to state q 
1. find a shortest path between any two states in M 
2. let P be an empty transition sequence 
3. let state s = p 
4.  for (i = 1 to t) { 
5.  let T be all transitions in M 
6. while (T is not empty){ 
7.	 let r be a transition in T 



      

             
         

         
  
   
          
    

        

    
         

        
     

        
          

        
         

      
         

        
         

    
           

      
                

              
         

         
          

      
        

     
     

       
   

 
   

           
        

       
   

           
            
              
          

              
      

              
     

       
     

            
 

         
        

 
     

  

          

       
         

        
           

         
        

         
          

      
       

     

      
        

     

     

  
 

 
 

  
 

  
 

  
     

     

     

       

 
     

       
        
       

         
         

      
      
 

  
        

        
        

       
      

       
         

        
         

      
      
  

       
          

        
        

           
        

         
        
     

8. add into P a shortest path H from s to src(r) 
9. remove from T any transitions traversed by H 
10. let s be the last state of P 
11. } 
12. } 
13. add into P a shortest path H from s to r 
14. return P 

Figure 9. An algortihm for t-touring path generation 

2) Find Abstract Paths 
The abstract paths are actually test sequences of the 

acyclic LTS M’, which can be generated using any test 
generation algorithm such as algorithm GenTestSeqsBF and 
GenTestSeqsInc. The main challenge is that, we have to find 
all necessary abstract paths in M’ such that, all target 
sequence of M can be covered by the test sequences derived 
from these abstract paths. To derive a test sequence from an 
abstract path, we simply insert a t-touring path after each 
transition ends with an SCC node. Therefore in abstract path 
generation, we have to maintain the set of target sequences 
of M which can be potentially covered. 

3) Generate Test Sequences 
As we discussed in step 2, we extend each abstract path 

by inserting a t-touring path after each transition ends with 
an SCC node, to extend it to a test sequence for M. Let S = s1 
• s2 • …• sn be an abstract path of M’. If dest(si) is an SCC 
node, we insert a t-touring path P from dest(si) to src(si+1). 
Similar insertions are made for all the transitions that end 
with an SCC node. In Figure 8 (b), there are five abstract 
paths: a•d•f, a•c•e•f, a•c•g, b•e•f and b•g. Assume the test 
strength is 3. For path b•g, we insert a 3-touring path 
x•y•z•x•y•z•x•y•z•x•y after b, making a test sequence of the 
original LTS b•x•y•z•x•y•z•x•y•z•x•y•g. Similar insertions are 
made for other abstract paths. The whole SCC-based 
algorithm GenTestSeqsSCC is presented in Figure 10. 

Algorithm: GenTestSeqsSCC 
Input: an LTS M, a set Σ of target sequences, test strength t 
Output: a t-way test sequence set Π for M 
1. build an acyclic graph M’ by finding and collapsing all SCCs 

in M 
2. generate a set Ω consisting of abstract paths in M’ 
3. for (each abstract path P = c1 • c2 • …• cn in Ω){ 
4. for( i = 1 to n-1) { 
5. if( dest(ci) is an SCC node){ 
6.	 use algorithm GenTouringPath to generate a t-

touring path T from dest(ci) to src(ci+1), 
7. insert T into P after transition ci 
8.         } 
9.  } 
10.  if (the length of P is no less than t) 
11.  add P to Π 
12.  } 
13. if Π cannot cover all targets in Σ, generate a test sequences 

set Π’ to cover remaining targets using algorithm 
GenTestSeqsFromTargets 

14. Π = Π ∪ Π’ 
15.  return Π 

Figure 10. An SCC-base algortihm for test sequences generation 

Complexity analysis: The complexity of this algorithm 
highly depends on the structure of graph. Assume that the 
original LTS contains n transitions. Finding SCCs takes O(n). 
Assume there are d transitions that end with an SCC nodes in 
m selected abstract paths, and there are in total k abstract 
paths. Assume each SCC contains ns transitions. For each 
SCC, it takes O(tns) to build a t-touring path. The time 
complexity of line 2 is O(|Σ|mk). There are d t-touring paths 
are inserted, therefore the total time is O(dtns). The time 
complexity for the entire algorithm is O(n+|Σ|mk+dtns). The 
space complexity is O(|Σ|mk +dtns). 

E. Comparison of Test Generation Algorithms 
We provide a brief analytic comparison of the four test 

sequence generation algorithms in Table 1. 

TABLE I.	 COMPARISON OF TEST GENERATION ALGORITHMS 

Algorithm Time 
cost 

Space 
Cost 

Length of 
single test 

# of 
generate 

tests 
GenTestSeqsFromTargets Low Low Short Many 

GenTestSeqsBF High High Depends Few 

GenTestSeqsInc High Low Long Few 

GenTestSeqsSCC Low Low Very Long Very Few 

Algorithm GenTestSeqsFromTargets tends to generate 
many short test sequences, while algorithms GenTestSeqsInc 
and GenTestSeqsSCC tend to generate a small number of 
long test sequences. Algorithm GenTestSeqsBF has the 
highest time and space complexity but it can generate a small 
number of test sequences, when h is sufficiently large. 
Algorithm GenTestSeqsSCC has the lowest time and space 
complexity since it avoids explicitly enumerating all target 
sequences. 

V. EXPERIMENTS 

We have built a tool that implements the proposed 
algorithms. This tool is written in Java, and is freely 
available to the public [15]. To evaluate the performance of 
the proposed algorithms, we conducted experiments on both 
real and synthesized systems on a laptop with Corei5-2410M 
2.30GHz CPU and 4GB memory, running Windows 7 (64-
bit) and Java 6 SE (32-bit) with the default heap size. 

The performances of the test generation algorithms are 
compared based on three metrics: the total length of 
generated test sequences, the number of generated test 
sequences, and the execution time taken to generate the test 
sequences. 

A. Case Study: The Java Threads System 
In this study we used the labeled transition system shown 

in Figure 2. Recall that this system describes the lifecycle of 
a Java thread, and it contains 7 states, 9 events and 16 
transitions. The test strength is set to 3 in the experiments. 
There are 448 unique 3-way target sequences. Table II shows 
the results of applying the four test generation algorithms to 
this system. The columns in Table II are self-explanatory. 
For algorithm GenTestSeqsInc, we set h=5. For algorithm 



        
         

       
 

      

 
   

 
 

  
 

 
 

  
 

     

     
     
     

      
     

 
       

     
      

      
        

    

   
         

       
        

        
          

       
        

       
         

  
       

        
        

   

      

   
 

 
 

 
 

   
   

     
     
     
     
     
     
     
     
     
     

 
         

       
       

          
 

     
 

    
  

  
  

  
  

  
  

     
     
     
     
     
     
     
     
     
     

  

        

 
    

 
 

  
 

 
 

 
 

 
 

   
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

  
 

 
 

 
 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

GenTestSeqsBF, we use h=16, 18, 20 in three different runs, TABLE III. CHARACTERISTICS OF SYNTHESIZED SYSTEMS 

since 16 is the critical length, i.e., the smallest h such that all 
target sequences will be covered by test sequences of length 
up to h. 

TABLE II. RESULT OF THE JAVATHREADS SYSTEM 

JavaThreads 
(448 3-way targets) 

total 
length 

num. of 
test seqs 

avg. 
length 

time 
(s) 

GenTestSeqsFromTargets 399 36 11.1 0.02 

GenTestSeqsBF(h=16) 174 11 15.8 5.7 
GenTestSeqsBF(h=18) 146 9 16.2 34.5 
GenTestSeqsBF(h=20) 116 6 19.3 461.9 
GenTestSeqsInc (h=5) 128 5 25.6 0.05 

GenTestSeqsSCC 35 1 35.0 0.03 

It is clear that, algorithm GenTestSeqsBF generates better 
test sequences as h increases, but execution time increases 
very fast. Algorithm GenTestSeqsSCC works very well for 
this system. In particular, it has the lowest number and total 
length of test sequences while running as fast as the fastest 
algorithm, i.e., algorithm GenTestSeqsFromTarget. 

B. Synthesied Systems 
In this study, we implemented a random LTS generator 

to generate synthesized systems. This generator takes three 
parameters, i.e., number of states, number of transitions, and 
number of events. The generation process consists of three 
major steps. First, it generates the given number of states and 
transitions, where each transition is placed between two 
random states. Second, it randomly assigns the given number 
of event labels to the transitions. Finally, it checks whether 
the generated graph is connected. A system is discarded if it 
is not connected. 

We randomly generated 10 different systems, as shown 
in Table III. Note that SYS-n denotes a system with n 
transitions. We also report the number of transitions which 
belong to any SCC in Table III. 

System # of 
states 

# of 
events 

# of 
transitions 

# of transitions 
in SCC 

SYS-10 8 10 10 5 
SYS-15 8 10 15 9 
SYS-20 8 15 20 17 
SYS-25 10 20 25 19 
SYS-30 10 20 30 26 
SYS-40 10 30 40 33 
SYS-50 15 35 50 45 
SYS-60 15 40 60 56 
SYS-80 20 50 80 75 

SYS-100 20 60 100 96 

Table IV shows the number of t-way target sequences 
generated by algorithm GenTargetSeqs, where t = 2, 3, 4, 5. 
It’s obvious that the number of t-way target sequences 
increases very fast as test strength t and number of events 
increase. 

TABLE IV. RESULTS OF T-WAY TARGET SEQUENCE GENERATION FOR 
SYSTEHSIZED SYSTEMS 

System # of 2-way 
target seqs 

# of 3-way 
target seqs 

# of 4-way 
target seqs 

# of 5-way 
target seqs 

SYS-10 55 276 1380 6900 
SYS-15 60 360 2160 12960 
SYS-20 210 2940 41160 576240 
SYS-25 303 4545 68175 1022625 
SYS-30 360 6480 116640 2099520 
SYS-40 750 18750 468750 11718750 
SYS-50 1085 33635 1042685 32323235 
SYS-60 1480 54760 2026120 74966440 
SYS-80 2400 115200 5529600 265420800 

SYS-100 3420 194940 11111580 633360060 

TABLE V. RESULTS OF TEST SEQUENCE GENERATION FOR SYNTHESIZED SYSTEMS (3-WAY, 100% COVERAGE) 

System 
GenTestSeqsFromTargets GenTestSeqsBF GenTestSeqsInc GenTestSeqsSCC 

total 
length 

# of test 
seqs 

avg. 
length 

time 
(s) 

total 
length 

# of test 
seqs 

avg. 
length 

time 
(s) 

total 
length 

# of test 
seqs 

avg. 
length 

time 
(s) 

total 
length 

# of test 
seqs 

avg. 
length 

time 
(s) 

SYS-10 184 16 11.5 0.01 55 3 18.3 4.1 123 11 11.1 0.01 55 3 18.3 0.01 

SYS-15 273 26 10.5 0.01 80 4 20 9.6 297 22 13.5 0.03 84 4 21.0 0.08 

SYS-20 5346 547 9.8 0.09 2083 164 12.7 84.5 477 16 29.8 1.3 74 1 74.0 0.2 

SYS-25 5049 446 11.3 0.1 1534 104 14.8 693.9 1066 62 19.4 2.6 188 4 47.0 0.2 

SYS-30 8833 890 9.9 0.2 - - - - 1381 55 25.1 32.5 132 2 66.0 0.4 

SYS-40 35432 4163 8.5 3.0 - - - - 7832 729 10.7 412.8 132 2 66.0 0.2 

SYS-50 60047 5192 11.2 5.4 - - - - 44058 1680 26.2 1080.7 439 4 109.8 2.4 

SYS-60 113391 11097 10.0 30.7 - - - - - - - - 403 3 134.3 6.2 

SYS-80 211975 18829 11.3 110.8 - - - - - - - - 354 2 177.0 10.2 

SYS-100 500022 47166 10.6 526.0 - - - - - - - - 557 3 185.7 14.6 



   
        

       
        
        

     
           
       

         
          

      
        

       
          

   
         
      
          

     
      

          
     

   
     

        
       

       
        

      
     

       
      

      
         

       
       

        
     

       
     

      
        

       
      

      
 

    
           
        

         
        

         
       

       
       

      
 

    
          

     
   

  

     
       

      
       

     
     

       
       

        
       

         
      

         
    

    
      

       
    

       
 

     

    
          

      
        

     
        

    
          

     
          

         
         

     
    

         
        

     
         

      
       

 

     
         

        
      

        
            
            

         
         

C. Results and discussions 
Table V shows the test generation results of synthesized 

systems using four proposed algorithms. The test strength t is 
set to 3, and the columns in Table V are self-explanatory. 
The coverage is verified by an independent procedure. Note 
that “-” indicates the process of test sequence generation 
took more than one hour to complete or ran out of memory 
with the default heap size. For algorithm GenTestSeqsBF, we 
set h to the critical length and increase it until timeout or out-
of-memory. The h finally used in the first four systems is 30, 
25, 15 and 13, respectively. For algorithm GenTestSeqsInc, 
we set h=5 such that every extension takes a reasonable time. 
For algorithm GenTestSeqsSCC we use GenTestSeqsInc to 
generate abstract paths, and the search depth is set to 10 in 
our experiments. 

Some observations can be made from these results. First, 
algorithm GenTestSeqsFromTargets is relatively fast, but it 
generates a large number of test sequences as well as the 
total length. Algorithm GenTestSeqsBF is very slow, but for 
small systems such as SYS-10 and SYS-15, it generates the 
best results in terms of the number of test sequences and total 
length. The GenTestSeqsInc algorithm achieves a good 
trade-off between total length and execution time. The 
GenTestSeqsSCC algorithm has very good performance, i.e., 
it generates very few test sequences in a very short time, and 
displays good scalability on large systems. 

These algorithms have their own advantage and 
disadvantages, and can be used for different purposes and in 
different situations. Algorithm GenTestSeqsFromTargets is a 
useful strategy in general cases, and is preferred to be used in 
conjunction with other algorithms for covering remaining 
targets or speeding up the final stage. Algorithm 
GenTestSeqsBF can generate good test sequences for small 
systems. However the time and space complexity is very 
high and thus does not scale for large systems. Algorithm 
GenTestSeqsInc has small memory cost and reasonable 
performance. It is very flexible to work with various 
requirements. For example, it can control the length of test 
sequences, or generate test sequences with a specific prefix. 
Algorithm GenTestSeqsSCC has the best scalability and 
performance among these algorithms and is suitable for 
larger systems. However, its performance highly depends on 
the structure of system graph. Furthermore, it generates long 
test sequences, which are not effective for fault localization, 
i.e., it’s hard to identify which event sequence actually 
triggered the fault. 

D. Threats to Validity 
The external threat to validity is mainly due to the fact 

that the subject systems used in our experiments may not be 
representative of true practice. We used a real-life system 
and a number of randomly generated systems to reduce this 
threat. The internal threat to validity is mainly due to the fact 
that mistakes that could be made when conducting the 
experiments. We tried to automate the process as much as 
possible to reduce chances for human errors. We have also 
tried to cross-check the correctness of our results whenever 
there was a reasonable doubt. 

VI. RELATED WORK 

In this section, we discuss related work in three areas, 
including combinatorial test data generation, combinatorial 
test sequence generation, and coverage criteria for test 
sequence generation. 

A. Combinatorial Test Data Generation 
Different strategies for combinatorial test data generation 

have been proposed in recent years. These strategies can be 
roughly classified into two groups, computational methods 
and algebraic methods [17, 22]. Computational methods 
usually involve an explicit enumeration of all possible 
combinations, and employ a greedy or heuristic search 
strategy to select tests. Examples of these methods include 
AETG [18], IPOG [19], and methods based on simulated 
annealing and hill climbing [22]. In contrast, algebraic 
methods build a t-way test set based on some pre-defined 
formulas, without enumerating any combinations. Examples 
of algebraic methods include orthogonal arrays [13, 24] and 
doubling-construction [14]. A survey on combinatorial test 
generation methods can be found in [2]. 

Although computational methods are more expensive 
than algebraic methods, they can be applied to general 
system configurations, whereas algebraic methods cannot. 
Nonetheless, test data generation methods cannot be directly 
applied to test sequence generation, due to some fundamental 
differences between the two problems discussed in Section I. 

B. Test Sequence Generation 
Several efforts have been reported that try to apply the 

idea of combinatorial testing to test systems that exhibit 
sequence-related behaviors. Wang et al. [8, 9] introduced a 
combinatorial approach to test dynamic web applications, 
which mainly investigates the fault detection effectiveness of 
a notion called pairwise interaction coverage on web 
applications. This is different from our work in that our focus 
is on efficient algorithms for test sequence generation. 

X. Yuan et al. introduced a covering array method for 
GUI test case generation in [23]. This method first generates 
a covering array for abstract GUI events, and then generates 
executable sequences from this covering array. A more in-
depth study on GUI testing is presented in [24], in which 
they incorporated the context of event. Similar to the work in 
[8, 9], their work mainly investigates the fault detection 
effectiveness of different coverage criteria. The test 
generation methods used in their work are based on covering 
arrays. All test sequences are extended from some fixed-
length smoke tests. Our algorithms do not impose similar 
restrictions. 

C. Test Sequence Coverage Criteria 
We focus on coverage criteria that require “sequence of 

elements” to be covered. In other words, we do not consider 
coverage criteria such as all-nodes and all-branches [20]. 

Pairwise interaction coverage is used in some literatures 
such as Wang et al. [8, 9], which requires all possible pair of 
web page interactions to be covered by at least once. This is 
the special case of t-way sequence testing when t=2. Lucca 
and Penta [11] applied several coverage criteria for web 



        
       

      
    
        

         
        

         
 

        
      

        
       

        
       

          
    

    
          

         
         
        

        
      

         
       

     
         

        
       

        
  
             

       
       

     
      

        
     

    
      

        
     

         
      

    

 
        
           

       
       

          
      

           
       

     

            
      

      
  

         
      

       
             

      
        

           
        
       

              
      

       
      

            
       

        
      

    
        

        
     

           
       

       
          

          
       

    
           

       
  
  
           

    
              

          
     

               
       

       
        

 
             

      
            

         
       

  
             

         
      
    

           
       

       
          

       
          

     

 

application testing from [1]. One of their criteria is all-
transition-k-tuples, which requires all possible sequence of k 
consecutive transitions to be covered. Similarly, a coverage 
criterion, called length-n-event-sequence coverage, was 
proposed for GUI testing [10]. These coverage criteria 
require a sequence of elements to be covered consecutively. 
This is different from our t-way sequence coverage criterion, 
which only requires a sequence of elements to be covered in 
the same order, not necessarily consecutively. 

The coverage criterion that is most closely related to ours 
is called t*-coverage coverage [24]. This coverage is 
proposed for GUI interaction testing and requires all 
permutation of t events are executed consecutively at least 
once and inconsecutively at least once. In t-way sequence 
coverage proposed in this paper, a sequence of elements is 
considered to be covered as long as it is covered once, 
consecutively or inconsecutively. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we presented our work on the problem of t-
way test sequence generation. Our system model is defined 
in a general manner and can be used to model different types 
of systems, e.g., GUI applications, web applications and 
concurrent systems. We proposed an efficient algorithm for 
generating t-way target sequences that avoids redundant 
computations in checking the validity of all t-permutations of 
given events. We also presented several algorithms for 
generating test sequences to achieve t-way sequence 
coverage, i.e., to cover all the t-way target sequences. We 
believe that these algorithms represent the first effort to 
systematically explore the possible strategies for solving the 
problem of t-way test sequence generation in a general 
context. 

This work is the first stage of a larger effort that tries to 
expand the domain of combinatorial testing from test data 
generation to test sequence generation. In the next stage, we 
plan to conduct controlled experiments and case studies to 
investigate the fault detection effectiveness of t-way 
sequence testing for practical applications. In particular, we 
plan to apply and adapt the algorithms reported in this paper 
to test concurrent programs. Concurrency-related faults are 
notoriously difficult to detect because a concurrent program 
may exercise different synchronization behaviors due to the 
existence of race conditions. We believe that t-way sequence 
testing can be an effective technique to explore the different 
sequences of synchronization events that could be exercised 
by a concurrent program. 
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