
 1 Copyright © 2012 by ASME 

Proceedings of the ASME 2012 International Design Engineering Technical Conferences & 
Computers and Information in Engineering Conference 

IDETC/CIE 2012 
August 12-15, 2012, Chicago, Illinois, USA 

  DETC2012-70398 

FITTING WEIGHTED TOTAL LEAST-SQUARES PLANES AND PARALLEL PLANES 
TO SUPPORT TOLERANCING STANDARDS 

 
 

Craig M Shakarji 
Physical Measurement Laboratory 

National Institute of Standards and Technology 
Gaithersburg, Maryland 20899 

craig.shakarji@nist.gov 

Vijay Srinivasan 
Engineering Laboratory 

National Institute of Standards and Technology 
Gaithersburg, Maryland 20899 

vijay.srinivasan@nist.gov 
 

 
 
   
 
 

ABSTRACT 
We present elegant algorithms for fitting a plane, two 

parallel planes (corresponding to a slot or a slab) or many 
parallel planes in a total (orthogonal) least-squares sense to 
coordinate data that is weighted. Each of these problems is 
reduced to a simple 3×3 matrix eigenvalue/eigenvector 
problem or an equivalent singular value decomposition 
problem, which can be solved using reliable and readily 
available commercial software. These methods were 
numerically verified by comparing them with brute-force 
minimization searches. We demonstrate the need for such 
weighted total least-squares fitting in coordinate metrology to 
support new and emerging tolerancing standards, for instance, 
ISO 14405-1:2010. The widespread practice of unweighted 
fitting works well enough when point sampling is controlled 
and can be made uniform (e.g., using a discrete point contact 
Coordinate Measuring Machine). However, we demonstrate 
that nonuniformly sampled points (arising from many new 
measurement technologies) coupled with unweighted least-
squares fitting can lead to erroneous results. When needed, the 
algorithms presented also solve the unweighted cases simply by 
assigning the value one to each weight. We additionally prove 
convergence from the discrete to continuous cases of least-
squares fitting as the point sampling becomes dense. 

 
1.  INTRODUCTION 

The need for weighted total (orthogonal distance) least-
squares fitting of planes and parallel planes comes from at least 
two fronts: new tolerancing standards and new coordinate 
measuring instrumentation.  

 
Table 1. EXAMPLES OF ISO TOLERANCING SYNTAX. 

 
Syntax Semantics* 

 

ISO 14405-1: The linear size 
of the indicated feature of size, 
with least-squares association 
criterion, shall be within the 
indicated limits. 

 

ISO 14405-3 (emerging): The 
angular size of the indicated 
feature of size, with least-
squares association criterion, 
shall be within the indicated 
limits. 

 

ISO 1101 (emerging): The 
root-mean-square parameter of 
any extracted (actual) surface, 
measured from the total least-
squares associated plane, shall 
be less than or equal to  0,03 
mm. 

 

ISO 1101 (emerging): The 
root-mean-square parameter of 
extracted (actual) median 
plane of the indicated feature 
of size, measured from the 
total least-squares associated 
plane, shall be less than or 
equal to 0,02 mm. 

* These statements of semantics are composed from different statements in 
ISO 14405-1:2010 and the emerging ISO 1101. These are not the formal 
statements of explanation associated with the drawings in the official ISO 
standards. 
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First, ISO tolerancing standards such as ISO 14405-1:2010 
[1] and the future revisions of ISO 1101 [2], and ISO 14405-3 
[3] will allow specifications to be called out based on a total 
least-squares criterion (see Table 1). As will be shown in 
Section 2, these must be interpreted as weighted total least-
squares, where the weights are the discretely partitioned areas 
corresponding to the discretely sampled and measured points. 
Thus, there is an immediate need for weighted total least-
squares fitting of planes and parallel planes.  

Verification of slot and slab specifications requires fitting 
two parallel planes. One can also see the need for fitting several 
parallel planes, as in the case a door hinge [4], where there are 
several nominally parallel planes (perpendicular to multiple 
cylindrical surfaces representing holes that are nominally 
coaxial). Under such fitting, tolerancing a hinge can be treated 
as a one-dimensional tolerancing problem that is by no means 
trivial. 

The second reason for weighted (as opposed to 
unweighted) total least-squares fitting arises from newer 
instrumentation. Discrete point Coordinate Measuring 
Machines (CMMs) can be programmed to sample a surface 
predictably and uniformly. That is, before any CMM probing 
occurs, the number of points and their approximate sampling 
pattern can already be known, and the operator generally 
chooses the points. This luxury allows for more or less even 
sampling of surfaces that are then associated with ideal form 
geometries based on an unweighted total least-squares fitting 
criterion. 

But the introduction of newer measurement technologies 
takes away such a priori knowledge. An operator using—for 
example—an articulating arm CMM with a handheld laser 
scanner does not know how many points will be collected or, to 
a certain extent, how uniform the sampling will be (even 
considering deliberate attempts by the operator). The 
ramifications of this are important. Consider the problem of 
fitting two parallel planes to a slot—a task that can arise from a 
tolerance specification according to ISO 14405-1, which can 
specifically indicate a least-squares criterion. In this example, 
we suppose that the actual planar surfaces are not quite parallel. 
Figure 1 shows the effect that variations in sampling can have 
on the fit. In the figure, the unweighted least-squares parallel 
planes is shown by the dashed lines when fit to points having 
uniform sampling (left) and nonuniform sampling (right). (In 
this figure, the sampled points happen to lie exactly on the 
surface, but this does not affect the idea conveyed.) 

As Fig. 1 shows, when the sampling is uniform, the 
orientation of the fit planes matches what is expected and 
desired, namely the orientation matches what one would get in 
the continuous case. But when the sampling is not uniform all 
over, and the number of points on one planar surface is much 
higher than on the other, the orientation of the fit planes is 
skewed, an effect that deviates from the continuous case. The 
use of weighted least-squares (where the weights correspond to 
the area around each point) avoids this effect of sampling. 

 
 

 
 

Figure 1. POINT SAMPLING DENSITY ADVERSELY 
AFFECTING THE LEAST-SQUARES FIT. 

 
Note that the problem still exists when greater numbers of 

points are taken, provided the relative disparity remains 
between the numbers of points sampled on the two surfaces. 
And this case is realistic as optically based scanners can gather 
much more data on one surface than another based on various 
things such as distance, sampling time, lighting, and surface 
reflectivity. 

An easily grasped example is the use of a 3D laser scanner 
that collects points on two nominally parallel planar surfaces of 
the same nominal size. If one surface is a distance of 2 m from 
the instrument while the other is 10 m from the instrument, the 
inverse square law would have us expect there to be 25 times as 
many points collected on the closer surface than the farther one 
(apart from special handling). An unweighted least-squares 
parallel planes fit would be almost entirely determined by the 
orientation of the closer plane. This could be remedied by the 
algorithms presented in this paper, if the points on the closer 
surface were given weights 1/25 (or whatever the actual ratio 
of points turned out to be) of the weights given to the points on 
the farther surface. 

The problem can exist even when fitting a single plane to 
points taken on one surface, if one patch is sampled more 
densely than the rest of the surface. The characteristics of that 
patch would have undue influence on the fit when using an 
unweighted least-squares algorithm. 

While in this paper we will often associate the weights 
with the area of the patch of the surface corresponding to each 
point, the scope of this document does not include specific 
algorithms for calculating the weights, which is an interesting 
topic in itself. Further, making use of weights may be desired 
for other reasons such as sampled points with differing 
uncertainties. We also note that the case of unweighted least-
squares fitting of a single plane has been well documented, for 
example in [5-9]. The results and proofs in this paper for single-
plane fitting (Lemma 1 and Theorem 1) are straightforward 
extensions of work done for single plane fitting but now with 
weights included. An iterative search algorithm for weighted 
total least-squares line fitting is given in [10]. 

The remainder of this paper is organized as follows. 
Section 2 poses the problem in the continuous case and shows 
why this lends itself to weighted fitting in the discrete case. 
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Section 3 gives the algorithms themselves separate from any 
proofs for convenient access of the reader. Section 4 contains 
proofs the algorithms presented. Section 5 gives Matlab1 code 
of the algorithms along with results of numerical testing. 
Section 6 extends the algorithms to the continuous case. 
Section 7 contains the proof that the results from the discrete 
algorithms converge to their continuous counterparts as the 
points become dense, and Section 8 gives conclusions of this 
work. 
 
2. DEFINITIONS IN CONTINUOUS CASES AND THEIR 
DISCRETE APPROXIMATIONS 

As described in [11], to fit a total least-squares plane to a 
surface patch in space, we pose the following optimization 
problem (with reference to Fig. 2): 

 
TlsqPlane: Given a bounded surface S, find the plane P 

that minimizes � ���	, ���
. �   
 
Here ��	, �� denotes the signed perpendicular distance 

(hence the qualification ‘total’ for the least-squares fitting) of a 
point p on surface patch S from the plane P that will be fitted. 
Once such a plane P has been found, the root-mean-square 
parameter for the bounded surface S is given by  

�� ���	,���� � � �� � .                                           (1) 

We note that � �
 �  is the area of the surface patch. If the surface 
consists of several patches, then the integrals can be evaluated 
over each patch and then summed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. FITTING A PLANE TO A SURFACE PATCH. 
 
The objective function in TlsqPlane cannot, in general, be 

evaluated in closed form. So we resort to numerical integration 
                                                           

1 Certain commercial software packages are identified in this paper in 
order to specify the experimental procedures and code adequately. Such 
identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that 
the software tools identified are necessarily the best available for the purpose. 

over the surface S. We can sample points on a surface patch 
after dividing up the patch into discrete areas ∆Ai and 
approximate the objective function as 

 � ���	, ���
 �  ∑ ����	� , ��� · ∆��  ,�� ! �               (2) 
 
where pi are the N sampled points, one in each subdivision. 
Thus we are led to minimizing ∑ "����	� , ��� · ∆��#�� !  over the 
parameters of the plane P for TlsqPlane, where ∆Ai's are treated 
as the weights. 

When we need to fit two or more parallel planes, the 
problem can be formulated as follows. For simplicity, we will 
present the case of fitting two parallel planes (with 
corresponding illustration in Fig. 3): 

 
TlsqParallelPlanes: Given two bounded surfaces S1 and 

S2, find two parallel planes P1 and P2 that minimize  � ���	, �!��
 $  � ���	, ����
. ��
 �%  

 
Once such parallel planes P1 and P2 have been found, the 

distance between them is the linear size (that has been defined 
with the least-squares criterion) in ISO 14405-1:2010. The 
definition can be extended to any arbitrary number of parallel 
planes. A discrete approximation to the TlsqParallelPlanes 
problem can be defined as we did for the TlsqPlane problem. 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. FITTING TWO PARALLEL PLANES. 
 
 

3. FITTING ALGORITHMS 
For the convenience of the reader, the algorithms 

themselves are presented in this section, unencumbered by their 
proofs, which appear later. 

If a plane is defined by a point on the plane & ' �(, ), *� 
and the direction cosines of the normal to the plane (i.e., the 
unit vector normal to the plane) + ' �,, -, .�, then the signed 

P 

S 

ds 
p 

d(p,P) 

P1 

S1 

P2 

S2 
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orthogonal distance from a point &� ' �(� ,  )� ,  *�� to the plane 
is given by: 

 �� ' + · �&� / &� ' ,�(� / (� $ -�)� / )� $ .�*� / *�. 
 

3.1 Fitting a Single Plane 
Given:  
1) Data points &!,  &�,  &0, 1 ,  &�, where each &� '�(� ,  )� ,  *��, and 
2) The corresponding weights, 2!,  2�,  20, 1 ,  2�, 

where all the weights are positive.  

Then the weighted total least-squares plane is defined as the 

plane that minimizes3 2������ ! , where �� is the orthogonal 
distance from the i th data point to the plane. 

 
The weighted total least-squares plane can be found as 

follows: 
1) A point on the plane is the weighted centroid, namely 

&4 ' �(5, )6, *5� ' ∑ 78&898:%∑ 7898:% . 

2) The unit vector normal to the plane is the (right) 
singular vector corresponding to the smallest singular 
value in the singular-value decomposition (SVD) of 
the ; < 3 matrix given by: 
 

>?
?@ √2!�(! / (5� √2!�)! / )6� √2!�*! / *5�√2��(� / (5� √2��)� / )6� √2��*� / *5�B√2��(� / (5� B√2��)� / )6� B√2��*� / *5�CD

DE. 

The unweighted case (i.e., the equally weighted case) can 
be found by making the value of all the weights equal to one, 
thus removing their appearance from the matrix. Scaling all the 
weights by the any fixed, positive value does not affect the 
solution. 

There is a close connection between the smallest singular 
value and the root-mean-square (RMS) value between the fitted 
plane and the surface (as approximated by the sampled points). 
This RMS value is a quantity of interest in future ISO 1101 
revisions. As we will later see in the proof of Theorem 1, the 
square of the smallest singular value equals the objective 
function—the weighted sum-of-squares of residuals. If we 
denote the smallest singular value as F, and if the weights 
correspond to the discretely partitioned areas about the sampled 
points, totaling A, then the (discrete) RMS value can be simply 
obtained as:  

 

G F�
∑ 2��� ! ' F√� . 

 
 

3.2 Two Parallel Planes 
Given: 
1) Two sets of data points &!,  &�, 1 ,  &� and &�H!,  &�H�, 1 ,  &�HI, where each &� ' �(� ,  )� ,  *��,  

where it is known a priori which points belong to each 
plane, and 

2) The corresponding weights, 2!,  2�,  20, 1 ,  2�HI, 
where all the weights are positive. 

Then the weighted total least-squares fitting of two parallel 
planes (e.g., corresponding to a slot or slab) is defined as the 

pair of parallel planes that minimizes 3 2�����HI� ! , where �� is 
the orthogonal distance from the i th data point to the first plane 
when 1 J K J ; or to the second plane when ; $ 1 J K J ; $L. 

If two parallel planes are defined by a point on the first 
plane &M ' �(N, )N, *N�, a point on the second plane  &O '�(P , )P , *P�, and the unit vector normal to the parallel planes, + ' �,, -, .�, then the weighted total least-squares parallel 
planes can be found as follows: 

1) A point on the first plane is the weighted centroid of 
the first set of data points, namely, 

 &4M ' �(5N, )6N, *5N� ' ∑ 78&898:%∑ 7898:% . 

2) A point on the second plane is the weighted centroid 
of the second set of data points, namely, 

&4O ' �(5P , )6P , *5P� ' ∑ 78&89QR8:9Q%∑ 789QR8:9Q% . 

3) The unit vector normal to the plane is the singular 
vector corresponding to the smallest singular value of  
the �; $ L� <  3 matrix given by:  

 

>?
??
??
??
?@ S2!�(! / (5N� S2!�)! / )6N� S2!�*! / *5N�

S2��(� / (5N� S2��)� / )6N� S2��*� / *5N�BS2��(� / (5N�
S2�H!�(�H! / (5P�
S2�H��(�H� / (5P�BS2�HI�(�HI / (5P�

BS2��)� / )6N�
S2�H!�)�H! / )6P�
S2�H��)�H� / )6P�BS2�HI�)�HI / )6P�

BS2��*� / *5N�
S2�H!�*�H! / *5P�
S2�H��*�H� / *5P�BS2�HI�*�HI / *5P�CD

DD
DD
DD
DE

 

The distance between the two planes can be easily 
calculated as |+ · �&4M / &4O�|. 

The unweighted case (i.e., the equally weighted case) can 
be found by making the value of all the weights equal to one, 
thus removing their appearance from the matrix. Scaling all the 
weights (not just the weights for one plane) by the same factor 
does not affect the solution. 
 
3.3 Arbitrarily Many Parallel Planes 

The solution for two planes extends to arbitrarily many 
planes, where every plane passes through its weighted centroid, 
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and the SVD is performed on the matrix written out in 
Theorem 2. 

 
4. PROOFS OF ALGORITHMS 

We prove the correctness of the algorithms given in 
Section 3 above. Before giving lemmas and theorems, we note 
that the least-squares solutions might not be unique. While we 
do not rely on uniqueness in the proofs here, nonuniqueness 
arises only in pathological cases and is not a problem when we 
deal with planes in practical measurements on realistic parts 
[12]. Hence, we proceed, simply speaking of the least-squares 
plane. We start with a lemma related to the location of the 
weighted total least-squares plane.  

 
Lemma 1. Assume that we are given data points &!,  &�,  &0, 1 ,  &�, where &� ' �(� ,  )� ,  *��, corresponding 

positive weights 2!,  2�,  20, 1 ,  2�, and an arbitrary unit 
normal vector, + ' �,, -, .�. Then the weighted total least-
squares plane constrained to have normal + must pass through 

the weighted centroid, &4 ' �(5, )6, *5� ' ∑ 78&898:%∑ 7898:% . Furthermore, 

any plane with normal + but not passing through the weighted 
centroid has a weighted sum-of-squares strictly greater than the 
plane passing through the centroid. 

Proof: The equation of any plane having normal + can be 
written as + · & / � ' 0, where � is the signed distance from 
the plane to the origin. The signed orthogonal distance from 
any arbitrary point &� to this plane is + · &� / �. Thus the 
weighted sum-of-squares objective function for any plane of 
orientation + is given by V��� ' ∑ 2��+ · &� / ����� ! . 

Taking the first and second derivatives yields: 

V′��� ' /2 W 2��+ · &� / ���
� ! , and 

V′′��� ' 2 ∑ 2��� ! [ 0, as all weights are positive. 
 
The fact that the second derivative is a positive constant 

implies that the function is strictly convex, and has a unique 
minimum if and where its first derivative vanishes. This occurs 
when ∑ 2��+ · &� / ���� ! ' 0. Distributing the sum and 
solving for � yields 

 

          � ' ∑ 78�+·&8�98:%∑ 7898:% ' + · \∑ 78&898:%∑ 7898:% ] ' + · &4. 
 
But this means that the distance from &4 (the weighted 

centroid) to the plane is + · &4 / � ' 0, implying that the 
weighted centroid must lie on the weighted total least-squares 
plane constrained to have normal +. Furthermore, the objective 
function is strictly convex, meaning any other plane not passing 
through the weighted centroid must have a greater weighted 
sum-of-squares. ⁭ 

 
This result now enables us to prove a more general lemma 

involving multiple planes. 
 

Lemma 2. Assume that we are given ^ _ 2 sets of data 
points `&!,!,  &�,!, 1 ,  &�!,!a, `&!,�,  &�,�, 1 ,  &��,�a, …, `&!,�,  &�,�, 1 ,  &�b,ba, where each &�c ' d(�c ,  )�c ,  *�ce, and 
the corresponding positive weights: 2!,!,  2�,!, 1  2�!,!, 2!,�,  2�,�, 1 ,  2�b,b, where all the weights 
are positive. Then a set of  ^ parallel planes of weighted total 
least-squares has the property that each plane passes through 
the weighted centroid of its corresponding data set. 

Proof: For the sake of simplicity of notation and ease for 
the reader, we demonstrate the proof for the case of ^ ' 2. The 
proof can be simply extended for cases of ^ [ 2. Using 
simpler notation then, we assume two sets of data points, &!,  &�, 1 ,  &�, and &�H!,  &�H�, 1 ,  &�HI, and corresponding 
weights, 2!,  2�,  20, 1 ,  2�HI. 

The weighted sum-of-squares objective function is given 
by 
     V�+, �N, �P� ' ∑ 2�"+ · &� / �N#� $ ∑ 2�"+ · &� / �P#��HI� �H!�� ! .  
 
(Here, �N and �P are the distances from the two planes to the 
origin.) For a fixed orientation, +f, the objective function 
becomes: 

  V��N , �P� ' W 2�"+f · &� / �N#� $ W 2�"+f · &� / �P#��HI
� �H!

�
� ! . 

 
But we note that �N occurs in the first sum only and �P occurs 
in the second sum only, allowing us to express the objective 
function as V��N, �P� ' V��N� $ V��P�, where V��N� and V��P� are defined as in the proof of Lemma 1 and each 
corresponding to its own set of data. This decomposition allows 
us to see that V��N, �P� is minimized when each term in its sum 
is minimized. That is, 

 

        
ghi�N, �P"V��N, �P�# ' ghi�N "V��N�#  $  ghi�P "V��P�#.       (3) 

 
Thus for the fixed orientation, the parallel planes minimizing 
the objective function are in fact the planes that each 
individually minimize the weighted sum-of-squares for its own 
set of data. 

Lemma 1 can be applied then to the two minimization 
problems on the right hand side of Eq. (3), yielding that each 
plane must pass through the weighted centroid of its individual 
data set. Since this result is true for any fixed direction +f, it 
follows that it holds for the least-squares direction in particular.  
⁭ 

Armed with these lemmas, we can prove two theorems 
supporting the fitting algorithms presented in Section 3.  

 
Theorem 1. Assume that we are given data points &!,  &�,  &0, 1 ,  &�, where each &� ' �(� ,  )� ,  *��, and 

corresponding positive weights 2!,  2�,  20, 1 ,  2�, then a 
weighted total least-squares plane can be computed as the 
plane passing through its weighted centroid, &4, and having its 
orientation defined by the singular vector corresponding to the 
smallest singular value of the ; < 3 matrix 
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j '
>?
??
@ S2!�(! / (5� S2!�)! / )6� S2!�*! / *5�

S2��(� / (5� S2��)� / )6� S2��*� / *5�BS2��(� / (5� BS2��)� / )6� BS2��*� / *5�CD
DD
E. 

 
Proof: That the weighted least-squares plane passes 

through the weighted centroid is seen as an immediate 
consequence of Lemma 1. To find the orientation, we see the 
objective function to be minimized can be written as V�+� '∑ 2�"+ · �&� / &4�#�, (where the sum is understood to extend 
over all K) subject to the constraint that k�+� ' |+|� / 1 ' 0. 

We use Lagrange multipliers to note that the minimum of V—subject to the constraint—occurs when lV ' mlk for some 
real number λ. When these partial derivatives are calculated, we 
find that lk ' 2+, and that 
 

lV '
>?
??
?@
nVn,nVn-nVn. CD

DD
DE ' 2

>?
??
?@W 2�"+ · �&� / &4�# �(� / (5�
W 2�"+ · �&� / &4�# �)� / )6�
W 2�"+ · �&� / &4�# �*� / *5�CD

DD
DE , 

which can be rewritten as 
 

2
>?
??
?@ W 2��(� / (5�� W 2��(� / (5��)� / )6� W 2��(� / (5��*� / *5�
W 2��(� / (5��)� / )6� W 2��)� / )6�� W 2��)� / )6��*� / *5�
W 2��(� / (5��*� / *5� W 2��)� / )6��*� / *5� W 2��*� / *5�� CD

DD
DE o,-.p . 

 
If we denote this 3 < 3 matrix (without the multiplying 
coefficient 2) as q, we tind that lV ' mlk can be written as 
the elegant eigen-problem: 

q o,-.p ' m o,-.p. 
The orientation, �,, -, .�, can now be found solving this 3 < 3 
eigenvector problem by using well known methods (e.g., Jacobi 
iterations) or by using solvers in higher level languages.  

However, we note further that the symmetric matrix above 
can be written as jxj, where j is defined above in the 
theorem statement. The eigenvectors of jxj are also the 
singular vectors of  j. This allows us to gain better numerical 
results by applying the SVD to j without ever computing jxj. 

Finally, we must determine how to select the correct 
eigenvector (i.e., singular vector) of the three produced by the 
SVD. The normal equations can be written as follows: W 2��(� / (5�"+ · �&� / &4�# ' m, 

W 2��)� / )6�"+ · �&� / &4�# ' m- 

W 2��*� / *5�"+ · �&� / &4�# ' m.. 
 

Multiplying these equations by ,, -, and . respectively, and 
then summing the equations gives ∑ 2�"+ · �&� / &4�#� 'm|+|y ' m. 

But the sum on the left is exactly the objective function, V�+�, hence the correct eigenvector for the solution corresponds 
to the smallest eigenvalue (since V�+� ' m, and we seek to 
minimize V). When using the SVD, we choose the singular 
vector corresponding to the smallest singular value, since under 
these conditions the singular values are the square roots of the 
eigenvalues. ⁭ 
 

While this paper deals with planes, we note that the 
weighted total least-squares line in space can be found in an 
almost identical fashion. The weighted centroid lies on the 
solution line, and the orientation of the line in space can be 
found by choosing the singular vector corresponding to the 
largest singular value of j. 

The next theorem deals with fitting parallel planes. It is a 
pleasing result that the fitting of parallel planes turns out to be 
solved by such an easy-to-implement extension of the already-
elegant single plane case.  

 
Theorem 2. Assume that we are given ^ sets of data points `&!,!,  &�,!, 1 ,  &�!,!a, `&!,�,  &�,�, 1 ,  &��,�a, …, `&!,�,  &�,�,1 ,  &�b,b�, where &�c ' d(�c ,  )�c ,  *�ce, and the corresponding 

positive weights: 2!,!,  2�,!, 1  2�!,!, 2!,�,  2�,�, 1 ,  2�b,b, 
where all the weights are positive. Then a set of ^ parallel 
planes of weighted total least-squares can be computed as the 
planes passing through the respective weighted centroids of the 
data sets and all sharing the same orientation defined by the 
singular vector corresponding to the smallest singular value of 
the matrix 

 

>?
??
??
??
?@ S2!,!d(!,! / (5N!e S2!,!d)!,! / )6N!e S2!,!d*!,! / *5N!e

S2�,!d(�,! / (5N!e S2�,!d)�,! / )6N!e S2�,!d*�,! / *5N!eBS2�!,!d(�!,! / (5N!e
S2!,�d(!,� / (5N�e
S2�,�d(�,� / (5N�eBS2�b,bd(�b,b / (5Nbe

BS2�,!d)�!,! / )6N!e
S2!,�d)!,� / )6N�e
S2�,�d)�,� / )6N�eBS2�b,bd)�b,b / )6Nbe

BS2�!,!d*�!,! / *5N!e
S2!,��*�H! / *5N��
S2�,��*�H� / *5N��BS2�b,bd*�b,b / *5NbeCD

DD
DD
DD
DE

. 

 
Proof: For the sake of simplicity of notation and ease for 

the reader, we demonstrate the proof for the case of ^ ' 2, as 
we did in Lemma 2. Using simpler notation then, we assume 
two sets of data points, &!,  &�, 1 ,  &�, and &�H!,  &�H�,1 ,  &�HI, and corresponding weights, 2!,  2�,  20, 1 ,  2�HI. 

That each plane passes through the weighted centroid of its 
respective data set is an immediate consequence of Lemma 2. 
We denote these weighted centroids as &4M and &4O, respectively. 
Knowing this, the objective function to be minimized can be 
written as a function of + alone: 

 

V�+� ' W 2�"+ · �&� / &4M�#� $ W 2�"+ · �&� / &4O�#��HI
� �H!

�
� ! . 
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To solve the orientation problem, we again use the method 

of Lagrange multipliers. The minimum of V�+� subject to k�+� ' 0 (where k�+� ' |+|� / 1) occurs when lV ' mlk. 
In this case we have,  

lV '
>?
??
?@
nVn,nVn-nVn. CD

DD
DE , 

 
which, when expanded becomes: 

2
>?
??
??
@W 2�"+ · �&� / &4N�#�(� / (5N��

� ! $ W 2�"+ · �&� / &4P�#�(� / (5P��HI
� �H!

W 2�"+ · �&� / &4N�#�)� / )6N��
� ! $ W 2�"+ · �&� / &4P�#�)� / )6P��HI

� �H!
W 2�"+ · �&� / &4N�#�*� / *5N��

� ! $ W 2�"+ · �&� / &4P�#�*� / *5P��HI
� �H! CD

DD
DD
E
 

Similar to the single plane case, computing the gradients 
yields an eigenvector problem, but the sum in each matrix entry 
is replaced by the two corresponding sums for data sets � and z. 

As in the proof of Theorem 1, we have lk ' 2+ and lV ' 2q+ ' 2�j{j�+, where q is defined to be j{j, and 
where j is now defined as the �; $ L� < 3 matrix given as 

 

>?
??
??
??
?@ S2!�(! / (5N� S2!�)! / )6N� S2!�*! / *5N�

S2��(� / (5N� S2��)� / )6N� S2��*� / *5N�BS2��(� / (5N�
S2�H!�(�H! / (5P�
S2�H��(�H� / (5P�BS2�HI�(�HI / (5P�

BS2��)� / )6N�
S2�H!�)�H! / )6P�
S2�H��)�H� / )6P�BS2�HI�)�HI / )6P�

BS2��*� / *5N�
S2�H!�*�H! / *5P�
S2�H��*�H� / *5P�BS2�HI�*�HI / *5P�CD

DD
DD
DD
DE

. 

 
The orientation, �,, -, .�, can be found by solving the 

3 < 3 eigen-problem given by q o,-.p ' m o,-.p, by using well 

known methods . 
As in the proof of Theorem 1, the eigenvectors of j{j are 

also the singular vectors of j. This allows us to gain better 
numerical results by applying the SVD to j without ever 
computing j{j. 

We further mimic the proof of Theorem 1 to select the 
proper eigenvector (singular vector). The normal equations can 
be written as follows: 
 

W 2��(� / (5�"+ · �&� / &4N�#�
� ! $ W 2��(� / (5�"+ · �&� / &4P�#�HI

� �H! ' m, 

W 2��)� / )6�"+ · �&� / &4N�#�
� ! $ W 2��)� / )6�"+ · �&� / &4P�#�HI

� �H! ' m- 

W 2��*� / *5�"+ · �&� / &4N�#�
� ! $ W 2��*� / *5�"+ · �&� / &4P�#�HI

� �H! ' m. 

 
Multiplying these equations by ,, -, and . respectively, 

then summing the equations gives 

 

W 2�"+ · �&� / &4M�#� $ W 2�"+ · �&� / &4O�#��HI
� �H!

�
� ! ' m|+|y ' m 

 
But the sum on the left is just the objective function, V�+�, 
hence the correct eigenvector for the solution corresponds to 
the smallest eigenvalue (since V�+� ' m, and since we seek to 
minimize V). When using the SVD, we choose the singular 
vector corresponding to the smallest singular value, since under 
these conditions the singular values are the square roots of the 
eigenvalues. ⁭ 
 
5. MATLAB CODE AND NUMERICAL TESTING 

Matlab code for the cases of fitting one or two planes is 
included here. The function names should be understood as 
wtlsqPlane  = “weighted total least-squares plane,” and 
wtlsq2pp  = “weighted total least-squares two parallel 
planes.” In this code, w1 and w2 are column vectors of weights. 
pts1  and pts2  are matrices three columns wide containing 
the coordinates of the points, one point per row. q is a point on 
the single least-squares plane; q1  and q2  are points on the two 
parallel least-squares planes. In both cases, v  is the unit vector 
normal to the least-squares plane(s). The distance between the 
least-squares parallel planes can be computed as  
abs((q1-q2)*v) . 
 
function [q, v] = wtlsqPlane(w1, pts1) 
 
  q = sum(bsxfun(@times,w1,pts1))/sum(w1); 
  A1 = bsxfun(@minus,pts1,q); 
   
  A = [bsxfun(@times,sqrt(w1),A1)]; 
 
  [U,S,V] = svd(A,0); % Can use [V, S] = eig(A'*A);  
  [s, i] = min(diag(S)); 
  v = V(:, i); 
return;  

 
 
function [q1, q2, v] = wtlsq2pp(w1, pts1, w2, pts2)  
 
  q1 = sum(bsxfun(@times,w1,pts1))/sum(w1); 
  q2 = sum(bsxfun(@times,w2,pts2))/sum(w2); 
 
  A1 = bsxfun(@minus,pts1,q1); 
  A2 = bsxfun(@minus,pts2,q2); 
   
  A = [bsxfun(@times,sqrt(w1),A1); ... 
       bsxfun(@times,sqrt(w2),A2)]; 
 
  [U, S, V] = svd(A,0); % Can use [V, S] = eig(A'*A ); 
  [s, i] = min(diag(S)); 
  v = V(:, i); 
return;  
 

The algorithms in this paper were also implemented in 
Mathematica for the cases of fitting one, two, and three parallel 
planes. The Matlab and Mathematica algorithms were 
compared with each other to assure they give the same results 
(up to computational precision limits). The Mathematica code 
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was also used to test the algorithms presented in this paper 
against a brute-force minimization search algorithm. 

Test data sets were simulated randomly. Planar data sets 
were generated having varying aspect ratios, varying distances 
between them, varying numbers of points per plane, varying 
weights assigned, varying perturbations of the points from an 
exact plane, and varying nominal orientations of the planes to 
one another. 

The brute force iterative search was performed using 
Mathematica’s FindMinimum  function. The options were 
tweaked to improve the desired accuracy and increase the 
working precision beyond machine precision in seeking 
accurate answers. The required initial guess for the function 
was obtained using knowledge of how the test data sets were 
generated. In contrast to the iterative search method, the 
algorithms presented in this paper were coded using normal 
machine precision, purposely not taking advantage of 
Mathematica’s ability to increase the precision. 

Results are shown here for the cases of two parallel planes 
for 100 simulated data sets. Figure 4 shows a histogram of the 
anglular differences between the normal directions computed 
by the two methods. Figure 5 shows a histogram of the relative 
distances between the two computed parallel plane pairs. In 
both figures, the deviations are given on a log base 10 scale, 
meaning the greatest deviation shown in Fig. 4 is 10|!} radians 
and the greatest deviation shown in Fig. 5 is 10|!~ mm. The 
magnitudes of these maximum deviations are more important 
than the histograms themselves, since they show that in all of 
the cases tested, the two methods agreed to within amounts 
attributable to machine precision. 

 

 
Figure 4. HISTOGRAM OF ANGULAR DEVIATIONS IN 

RADIANS (LOG BASE 10 SCALING). 
 

 
Figure 5. HISTOGRAM OF RELATIVE DISTANCE DEVIATIONS 

(mm, LOG BASE 10 SCALING). 
 
 
6. EXTENSIONS TO CONTINUOUS CASES 

The preceding work has important extensions to the 
continuous cases. We begin with a lemma before giving the general 
theorem for the continuous extension. 

 
Lemma 3. Assume that we are given a bounded, piecewise 

continuous surface, S of finite area, and an orientation, a. Then 
the total least-squares plane constrained to have normal + must 

pass through the centroid, &4 ' �(5, )6, *5�, where (5 ' � � �� �� �� � , 

)6 ' � � �� �� �� � , and *5 ' � � �� �� �� � . Furthermore, any plane with normal 

+ but not passing through the centroid has a weighted sum-of-
squares strictly greater than the plane passing through the 
centroid. 

Proof: The equation of any plane having normal + can be 
written as + · & / � ' 0, where � is the signed distance from 
the plane to the origin. The orthogonal distance from any 
arbitrary point 	 to this plane is + · 	 / �. Thus the objective 
function for any plane of orientation + is given by V��� '� "+ · 	 / �#y�
. �  

Taking the first and second derivatives yields: 
 

V′��� ' /2 � "+ · 	 / �#�
 
� , and 

V′′��� ' 2 � �
 � [ 0. 
 
The fact that the second derivative is a positive constant 

implies that the function is strictly convex and has a unique 
minimum if and where its first derivative vanishes. This occurs 
when � "+ · 	 / �#�
 � ' 0. Distributing the integral and solving 
for � yields 

 

          � ' � "+·	#�� �� �� � ' + · \� 	�� �� �� � ] ' + · &4. 
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But this means that that the distance from &4 (the centroid) 
to the plane, which is + · &4 / �, is equal to zero, implying that 
the centroid must lie on the total least-squares plane constrained 
to have normal +. Furthermore, the objective function is strictly 
convex, meaning any other plane not passing through the 
centroid must have a greater objective function value. ⁭ 
 

Theorem 3. Assume that we are given  ^ surfaces, �!, ��, … , �b, where each surface is bounded, piecewise 
continuous, of finite area, and each ��  having centroid &4� ' �(5� ,  )6� ,  *5��. Then a set of  ̂  parallel planes of total least-
squares can be computed as the planes passing through the 
respective centroids of the surfaces and all sharing the same 
orientation defined by the eigenvector corresponding to the 
smallest eigenvalue of the 3 < 3 matrix (written as a sum of 
matrices for reasons of space): 

 

W
>?
??
??
@ � �( / (5����
 

�8
� �( / (5���) / )6���
 

�8
� �( / (5���* / *5���
 

�8
� �( / (5���) / )6���
 

�8
� �) / )6����
 

�8
� �) / )6���* / *5���
 

�8
� �( / (5���* / *5���
 

�8
� �) / )6���* / *5���
 

�8
� �* / *5����
 

�8 CD
DD
DD
E

b
� !

 

 
Proof: For the sake of simplicity of notation and ease for 

the reader, we demonstrate the proof for the case of ^ ' 2, as 
we did in Theorem 2. Using simpler notation then, we assume 
two surfaces, �N and �P. 

If two parallel planes have normal orientation + and pass 
through the points &M and &O, then the objective function to be 
minimized is  

V�+, &M, &O� ' � "+ · �	 / &M�#y�
 
��

$ � "+ · �	 / &O�#y�
 
�z

. 
 

Since &M occurs in the first integral only, and &O occurs in 
the second integral only, then for any fixed orientation + we see 
that the minimization problem can be separated into two 
minimization problems as:  

 ghi(N, (P"V�(N, (P�# ' ghi(N "V�(N�#  $  ghi(P "V�(P�#.      (4) 

 
This means that Lemma 3 can be applied to each 

minimization on the right hand side of Eq (4) indicating to us 
that when fitting parallel planes, each least-squares plane passes 
through the centroid of its respective surface. We denote these 
centroids as &4M, and &4O, respectively. Knowing this, the 
objective function to be minimized can be written as a function 
of + alone: 

 

V�+� ' � "+ · �	 / &4M�#y�
 
��

$ � "+ · �	 / &4O�#y�
 
�z

. 
 
To solve the orientation problem, we again use the method 

of Lagrange multipliers. The minimum of V�+� subject to k�+� ' 0 (where k�+� ' |+|� / 1) occurs when lV ' mlk. 

In this case,  

lV '
>?
??
?@
nVn,nVn-nVn. CD

DD
DE
 

 

' 2
>?
??
??
@ � "+ · �	 / &4M�#�( / (4���
 

�� $ � "+ · �	 / &4O�#�( / (4z��
 
�z

� "+ · �	 / &4M�#d) / )4�e�
 
�� $ � "+ · �	 / &4O�#d) / )4ze�
 

�z
� "+ · �	 / &4M�#�* / *4���
 

�� $ � "+ · �	 / &4O�#�* / *4z��
 
�z CD

DD
DD
E
 

 
Let q denote the 3 < 3 matrix (written as a sum of two 

matrices for reasons of space): 
 

>?
?@ � �( / (5N���
 �� � �( / (5N��) / )6N��
 �� � �( / (5N��* / *5N��
 ��� �( / (5N��) / )6N��
 �� � �) / )6N���
 �� � �) / )6N��* / *5N��
 ��� �( / (5N��* / *5N��
 �� � �) / )6N��* / *5N��
 �� � �* / *5N���
 �� CD

DE 
+

>?
?@ � �( / (5P���
 �� � �( / (5P��) / )6P��
 �� � �( / (5P��* / *5P��
 ��� �( / (5P��) / )6P��
 �� � �) / )6P���
 �� � �) / )6P��* / *5P��
 ��� �( / (5P��* / *5P��
 �� � �) / )6P��* / *5P��
 �� � �* / *5P���
 �� CD

DE, 
 
Then the orientation of the least-squares planes arising from lV ' mlk can be written as the elegant eigen-problem: 
 

q o,-.p ' m o,-.p. 
 
We mimic the proof of Theorem 1 to select the proper 

eigenvector. The normal equations can be written as follows: 
 

� "+ · �	 / &4M�#�( / (5N��
 
��

$ � "+ · �	 / &4O�#�( / (5P��
 
��

' m, 

� "+ · �	 / &4M�#�) / )6N��
 
��

$ � "+ · �	 / &4O�#�) / )6P��
 
��

' m- 

� "+ · �	 / &4M�#�* / *5N��
 
��

$ � "+ · �	 / &4O�#�* / *5P��
 
��

' m. 

 
Multiplying these equations by ,, -, and . respectively, then 
summing the equations gives 
 

� "+ · �	 / &4M�#y�
 
��

$ � "+ · �	 / &4O�#y�
 
��

' m|+|y ' m 

 
But the sum on the left is just the objective function, V�+�, 
hence the correct eigenvector for the solution corresponds to 
the smallest eigenvalue (since V�+� ' m, and since we seek to 
minimize V). ⁭ 
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7. CONVERGENCE OF THE DISCRETE TO 
CONTINUOUS CASE 

Tolerance specifications according to standards are 
considered to apply to the continuous surface. Verification of 
such specifications is done using discrete points. Thus the 
fundamental connection between the discrete and continuous 
cases must be assured. Specifically, the discrete case should 
converge to the continuous case as the sampled points become 
dense (under idealized conditions of no measurement error). 

We seek to prove convergence for surfaces over which 2nd 
degree polynomials (as encountered in the continuous case in 
Theorem 3) are Riemann integrable—surfaces that are 
piecewise smooth, bounded, having finite area—conditions that 
are reasonable for real workpieces.2 In order to prove that the 
discrete solution converges to the continuous solution as the 
points become dense (when the weights are assigned the values 
of the areas of the surface corresponding to the points, as 
shown in Section 2) we show the following two steps: 

1) Every individual cell value of the 3 < 3 matrix in the 
discrete case (denoted q in the proof of Theorem 2) 
converges to its corresponding cell value in the matrix 
in the continuous case (also denoted q in the proof of 
Theorem 3) as the points become dense. 

2) The fact that the individual cell values converge 
implies that the eigenvalues and eigenvectors from the 
discrete case also converge to their continuous case 
counterparts as the points become dense. 

Step 1: That the sum converges to the surface integral for each 
of the nine cells is immediate from the definition of the 
Riemann surface integral (see, e.g., 1.5.1 in [13]). Specifically 
then, if a partition of a surface called S is given by ���� '��!���, �����, … , ������ where these disjoint subsets have well 

defined areas, and if n points are chosen such that &� � �����, for  K ' 1, 2, … , �, then the Riemann sum for a real valued function 
f over S is defined by 

�� ' Wd∆�����e�
� !

��&��,                         �5� 

where ∆�����represents the area of the subset �����. If all 
sequences ���� approach the same limit � with  ∆�� max�Aread�!���e, … , Aread�����e�  � 0 as � � ∞, then  � 

is defined as Riemann integrable over � and the surface integral 
of �over � is defined by � ��&��� � � � . 

In our discrete case, each cell in the matrix L contains one 
or more sums of the form ∑ 2���&���� ! . But since we are 
assigning each 2� to have the value of its point’s associated 
area, we have in fact a Riemann sum as in Eq. (5). Futhermore, 

                                                           
2 When considering convergence to the continuous case, we treat the 

surfaces as mathematical, ignoring the fact that, at small scales, the molecular 
makeup of the material differs from our understanding of the continuous, 
mathematical surface. 

as the points become dense, we then have a sequence of 
Riemann sums where the maximum area of a partition 
approaches zero. Then by definition, this must converge to its 
corresponding integral when the function is integrable over S. 
However, since the function f is simply a second degree 
polynomial, it is uniformily continuous over the piecewise 
smooth S and thus is integrable. Hence Step 1 is shown. 
 
Step 2:  We now show that, since the individual cell values 
converge, the smallest eigenvalue and its corresponding 
eigenvector converge as well (when the smallest eigenvalue is 
unique, i.e., simple). 

We first note that since there are a finite number of cells 
(namely nine) the convergence is uniform. That is, for any � [ 0 the points will become dense enough that every cell in 
the discrete case differs from the continuous case by less than �. 
We look at the sensitivities of the eigenvalues and eigenvectors 
in this case. Since the matrix is symmetric, we gain the 
advantage of several theorems that bound the changes in 
eigenvalues and eigenvectors under small changes to the 
matrix.  

First, in this symmetric case, Stewart shows (p. 309 of  
[14]) that the eigenvalues are perfectly conditioned—that 
sufficiently small �-sized perturbations in the cells of the matrix 
yield differences in the eigenvalues essentially no greater than �. Thus convergence of eigenvalues is assured. Furthermore, 
this ensures that if the smallest eigenvalue in the continuous 
case is unique, then the smallest eigenvalue in the discrete case 
will eventually be as well. 
     It is also shown (p. 310 of [14]; see also [15, 16]) that the 
eigenvector associated with the smallest (unique) eigenvalue, m, 
is also well conditioned. Specifically, if the unit eigenvector 
associated with the smallest eigenvalue of the matrix q is 
denoted �, and the corresponding unit eigenvector of matrix q $ ∆q is � $ ∆�, then the size of ∆� is bounded as follows:  
 

�∆��� J �∆q��min�m / mc�  $ ���∆q����, 
 
where mc (j = 1, 2) represents the other two eigenvalues of the 
matrix. Thus (eventually) as the points become dense, we can 
find a constant � such that if every element of ∆q is less than �, 
then �∆��� J ��. This means that—provided the smallest 
eigenvalue is unique—its eigenvector must also converge from 
the discrete to continuous case as the points become dense. ⁭ 
 
8. CONCLUSIONS  

We have presented and proved elegant solutions to the 
problems of weighted total least-squares fitting of planes and 
parallel planes. Furthermore, the solutions are conducive to 
implementation in computer algorithms using reliable and 
readily available linear algebra functions. The weighted fitting 
cases can be easily simplified to equally-weighted fitting if 
desired. The need for such algorithms has been demonstrated 
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and is relevant to newer tolerancing standards and 
instrumentation. 

Furthermore, these fits in the discrete cases converge to 
their corresponding continuous cases as the points becomes 
dense (independent of the sampling strategy). This result is not 
generally true in the case of unweighted fitting. 
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