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Table 1. EXAMPLES OF ISO TOLERANCING SYNTAX.

Syntax Semantics*

parallel planes in a total (orthogonal) least-sqearsense to
coordinate data that is weighted. Each of theseblanms is
reduced to a simple 3x3 matrix eigenvalue/eigerect
problem or an equivalent singular value decompositi
problem, which can be solved using reliable anddilga

D

ISO 14405-1: The linear size
of the indicated feature of size,
with least-squares associatign
criterion, shall be within the
\ indicated limits.

F 2001 (G6)

available commercial software. These methods werg
numerically verified by comparing them with bruteeke
minimization searches. We demonstrate the needstmh
weighted total least-squares fitting in coordinaetrology to
support new and emerging tolerancing standards,jrietance,

ISO 14405-3 (emerging): Th
angular size of the indicate
feature of size, with least-
squares association criterion,
shall be within the indicatec
limits.

oW

ISO 14405-1:2010. The widespread practice of unltei
fitting works well enough when point sampling itrolled
and can be made uniform (e.g., using a discretatpointact
Coordinate Measuring Machine). However, we demaistr
that nonuniformly sampled points (arising from mangw
measurement technologies) coupled with unweighesbtd

squares fitting can lead to erroneous results. Wheaded, the
algorithms presented also solve the unweightedscsiseply by
assigning the value one to each weight. We additiprprove

convergence from the discrete to continuous cageleast-

squares fitting as the point sampling becomes dense

ISO 1101 (emerging): The

] ogscal root-mean-square parameter of
any extracted (actual) surfacg,
measured from the total least-
squares associated plane, shall
be less than or equal to 0,03
mm.

[~ oozea | ISO 1101 (emerging): The

root-mean-square parameter
extracted (actual) mediah
plane of the indicated feature
- of size, measured from the
total least-squares associated
plane, shall be less than or
equal to 0,02 mm.

1. INTRODUCTION

The need for weighted total (orthogonal distanagst-
squares fitting of planes and parallel planes cofireas at least
two fronts: new tolerancing standards and new doatd
measuring instrumentation.

* These statements of semantics are composed frderetif statements in
ISO 14405-1:2010 and the emerging ISO 1101. Thesenat the formal
statements of explanation associated with the dgsvin the official ISO
standards.
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First, ISO tolerancing standards such as 1SO 1442610
[1] and the future revisions of 1ISO 1101 [2], aig®Dl 14405-3
[3] will allow specifications to be called out basen a total
least-squares criterion (see Table 1). As will Bewn in
Section 2, these must be interpretedwasghtedtotal least-
squares, where the weights are the discretelytipagd areas
corresponding to the discretely sampled and medspots.
Thus, there is an immediate need for weighted ttaabt-
squares fitting of planes and parallel planes.

Verification of slot and slab specifications re@sirfitting
two parallel planes. One can also see the ne€fitting several
parallel planes, as in the case a door hinge [Agravthere are
several nominally parallel planes (perpendicularntaltiple
cylindrical surfaces representing holes that areminally
coaxial). Under such fitting, tolerancing a hingade treated
as a one-dimensional tolerancing problem that i:éwyneans
trivial.

The second reason for weighted (as opposed
unweighted) total least-squares fitting arises frarawer
instrumentation. Discrete point Coordinate Meagyrin
Machines (CMMs) can be programmed to sample a ceirfa
predictably and uniformly. That is, before any CMobing
occurs, the number of points and their approxinsampling
pattern can already be known, and the operator rgtiye
chooses the points. This luxury allows for moreless even
sampling of surfaces that are then associated idéhl form
geometries based on an unweighted total least-sgudting
criterion.

But the introduction of newer measurement techriebog
takes away such priori knowledge. An operator using—for
example—an articulating arm CMM with a handheldetas
scanner does not know how many points will be ctdié or, to
a certain extent, how uniform the sampling will keven
considering deliberate attempts by the operatorhe T
ramifications of this are important. Consider thekpem of
fitting two parallel planes to a slot—a task thaharise from a
tolerance specification according to ISO 14405-hjc can
specifically indicate a least-squares criterionthis example,
we suppose that the actual planar surfaces arguitetparallel.
Figure 1 shows the effect that variations in sangplian have
on the fit. In the figure, the unweighted leasta®s parallel
planes is shown by the dashed lines when fit totpdhaving
uniform sampling (left) and nonuniform samplinggfr). (In
this figure, the sampled points happen to lie dyach the
surface, but this does not affect the idea convgyed

As Fig. 1 shows, when the sampling is uniform, the

orientation of the fit planes matches what is efg@dcand
desired, namely the orientation matches what ongldvget in
the continuous case. But when the sampling is ndoum all

over, and the number of points on one planar serfsanuch
higher than on the other, the orientation of thepfanes is
skewed, an effect that deviates from the continutase. The
use of weighted least-squares (where the weightegmond to
the area around each point) avoids this effecaofpding.

Figure 1. POINT SAMPLING DENSITY ADVERSELY
AFFECTING THE LEAST-SQUARES FIT.

Note that the problem still exists when greater bers of
points are taken, provided the relative disparigmains

to between the numbers of points sampled on the twiacas.

And this case is realistic as optically based seenan gather
much more data on one surface than another basedrmus

things such as distance, sampling time, lightimyj aurface
reflectivity.

An easily grasped example is the use of a 3D Ilssanner
that collects points on two nominally parallel [aisurfaces of
the same nominal size. If one surface is a distafi@m from
the instrument while the other is 10 m from therinment, the
inverse square law would have us expect there @bliemes as
many points collected on the closer surface tharfdtther one
(apart from special handling). An unweighted lesptares
parallel planes fit would be almost entirely detered by the
orientation of the closer plane. This could be réied by the
algorithms presented in this paper, if the pointstlee closer
surface were given weights/25 (or whatever the actual ratio
of points turned out to be) of the weights giverhe points on
the farther surface.

The problem can exist even when fitting a singlenpl to
points taken on one surface, if one patch is sainphere
densely than the rest of the surface. The charsitsr of that
patch would have undue influence on the fit whemgian
unweighted least-squares algorithm.

While in this paper we will often associate the giws
with the area of the patch of the surface corredmonto each
point, the scope of this document does not incladecific
algorithms for calculating the weights, which is iateresting
topic in itself. Further, making use of weights mas desired
for other reasons such as sampled points with rdiffe
uncertainties. We also note that the case of uriwedyleast-
squares fitting of a single plane has been weludwnted, for
example in [5-9]. The results and proofs in thipgrafor single-
plane fitting (Lemma 1 and Theorem 1) are stramfward
extensions of work done for single plane fitting Imow with
weights included. An iterative search algorithm feeighted
total least-squares line fitting is given in [10].

The remainder of this paper is organized as follows
Section 2 poses the problem in the continuous aagdeshows
why this lends itself to weighted fitting in thesdrete case.
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Section 3 gives the algorithms themselves sepdrate any
proofs for convenient access of the reader. Sediaontains
proofs the algorithms presented. Section 5 givediaifacode
of the algorithms along with results of numericalsting.
Section 6 extends the algorithms to the continucase.
Section 7 contains the proof that the results fthm discrete
algorithms converge to their continuous countegpas the
points become dense, and Section 8 gives conckigibrthis
work.

2. DEFINITIONS IN CONTINUOUS CASES AND THEIR
DISCRETE APPROXIMATIONS

As described in [11], to fit a total least-squapésne to a
surface patch in space, we pose the following dpétion
problem (with reference to Fig. 2):

TlsgPlane: Given a bounded surfacg find the planeP
that minimizesf, d*(p, P)ds.

Here d(p, P) denotes the signed perpendicular distance
(hence the qualification ‘total’ for the least-scem fitting) of a
point p on surface patcB from the planeP that will be fitted.
Once such a plan@ has been found, the root-mean-square
parameter for the bounded surf&is given by

d%(p,P)ds
[ @

We note thaff, ds is the area of the surface patch. If the surface

consists of several patches, then the integralsheagvaluated
over each patch and then summed.

Figure 2. FITTING A PLANE TO A SURFACE PATCH.

The objective function in TIsgPlane cannot, in gahebe
evaluated in closed form. So we resort to numeiidalgration

! Certain commercial software packages are idedtiiie this paper in
order to specify the experimental procedures andecadequately. Such
identification is not intended to imply recommeridator endorsement by the
National Institute of Standards and Technology, isdt intended to imply that
the software tools identified are necessarily tbst lavailable for the purpose.

over the surfac&s. We can sample points on a surface patch
after dividing up the patch into discrete area8; and
approximate the objective function as

~
=~

Jsd*(p, P)ds i=1{d*(:, P)} - A4y, (2)
where p;, are theN sampled points, one in each subdivision.
Thus we are led to minimizing™_, [{d?(p;, P)} - AA;] over the
parameters of the plaiefor TIsqPlane, wheraA's are treated
as the weights.

When we need to fit two or more parallel planeg th
problem can be formulated as follows. For simplicite will
present the case of fitting two parallel planes thwi
corresponding illustration in Fig. 3):

TlsqgParallelPlanes: Given two bounded surface&y and
S, find two parallel planesP; and P, that minimize

fsl d*(p, Pyds + fsz d*(p, P,)ds.

Once such parallel planés and P, have been found, the
distance between them is the linear size (thatdeas defined
with the least-squares criterion) in 1SO 14405-120The
definition can be extended to any arbitrary numtfeparallel
planes. A discrete approximation to the TIsqPaRibames
problem can be defined as we did for the TIsqPfanélem.

Py

P,

Figure 3. FITTING TWO PARALLEL PLANES.

3. FITTING ALGORITHMS

For the convenience of the reader, the algorithms
themselves are presented in this section, unenaenhiy their
proofs, which appear later.

If a plane is defined by a point on the plane (x,y, z)
and the direction cosines of the normal to the elére., the
unit vector normal to the plan@&) = (a, b, c), then the signed
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orthogonal distance from a poirt = (x;, y;, z;) to the plane
is given by:

di=a-(x;—x)=a(x; —x)+bly; —y) + c(z; — 2).

3.1 Fitting a Single Plane

Given:
1) Data pointsyy, x,, x5,::+, xy, Where eacl; =
(xi, ¥i, z;), and

2) The corresponding weights,, w,, wg, -+, wy,
where all the weights are positive.

Then the weighted total least-squares plane imdéfias the
plane that minimizeEiV:lwidiz, where d; is the orthogonal
distance from thé" data point to the plane.

The weighted total least-squares plane can be fasd
follows:

1) A point on the plane is the weighted centroid, ngme
5 2?1:1 wiXi
zZ) = 5w
The unit vector normal to the plane is the (right)
singular vector corresponding to the smallest dargu
value in the singular-value decomposition (SVD) of
the N x 3 matrix given by:

x=(xy,

2)

[\/W_l(xl_f) Vwi (o = 9) \/W_l(zl_z_)]
\/W_z(x.z_f) \/W_2(3{2_37) \/W_z(z.z_z_)

Vi Gy = 1) RO — ) «w—N(z'N—Z)J

The unweighted case (i.e., the equally weightee)caan
be found by making the value of all the weightsaddo one,
thus removing their appearance from the matrixliSgall the
weights by the any fixed, positive value does nif¢ca the
solution.

There is a close connection between the smallaguksr
value and the root-mean-square (RMS) value betweefitted
plane and the surface (as approximated by the saigaints).
This RMS value is a quantity of interest in futu&O 1101
revisions. As we will later see in the proof of Bhem 1, the
square of the smallest singular value equals thgctbe
function—the weighted sum-of-squares of residudiswe
denote the smallest singular value @sand if the weights
correspond to the discretely partitioned areas atheusampled
points, totalingA, then the (discrete) RMS value can be simply
obtained as:

3.2Two Parallel Planes

Given:

1) Two sets of data points;, x,, -+, x5 and
Xyt Xntzo s Xngms Where eacky; = (x;, v, 2),
where it is knowra priori which points belong to each
plane, and

2) The corresponding weights,, w,, ws, -+, Wy,
where all the weights are positive.

Then the weighted total least-squares fitting ob tparallel
planes (e.g., corresponding to a slot or slab)efindd as the
pair of parallel planes that minimiz€g ;:M w;d?, whered,; is
the orthogonal distance from tiédata point to the first plane
when1l < i < N or to the second plane wh&+1<i <N +
M.

If two parallel planes are defined by a point oe first
plane x4 = (x4,y4,24), @ point on the second planeg =
(xg,¥5, zg), and the unit vector normal to the parallel planes
a = (a,b,c), then the weighted total least-squares parallel
planes can be found as follows:

1) A point on the first plane is the weighted centrofd

the first set of data points, namely,
N
Xa= X Vazy) = %
2) A point on the second plane is the weighted ceatroi
of the second set of data points, namely,
% = (Tg, T, 7p) = Lo
e Zi;]-\l]\fdwi
The unit vector normal to the plane is the singular
vector corresponding to the smallest singular vafue

the(N + M) x 3 matrix given by:

3)

\/Wl(zl —Zy)
Jwa(z5 — 2,)

\/Vl(xl — %)
Jwa (x; — %)

\/Vl(yl —¥a)
\/W_z(yz = Va)

Jwy Gy — X4) Jwy G = ¥a) Jwi(zy — Z4)
VWhs1Oner = %) W1 Onver = V) VWhi1(Zhsr — Z5)
VWha2Ongz = %5) W2 Onvez = V) Y Wha2(Znsz — Z5)

W WhamCovem — X8)  VWhanUnem — VB)  VWran @nam — Z5) ]

The distance between the two planes can be easily
calculated a$a - (x4 — Xp)|.

The unweighted case (i.e., the equally weighte@)caan
be found by making the value of all the weightsado one,
thus removing their appearance from the matrixliGgall the
weights (not just the weights for one plane) by shene factor
does not affect the solution.

3.3Arbitrarily Many Paralld Planes
The solution for two planes extends to arbitrantany
planes, where every plane passes through its veslgigntroid,
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and the SVD is performed on the matrix written oot
Theorem 2.

4. PROOFS OF ALGORITHMS

We prove the correctness of the algorithms given in
Section 3 above. Before giving lemmas and theorevasnpote
that the least-squares solutions might not be @nigvhile we
do not rely on uniqueness in the proofs here, niguemess
arises only in pathological cases and is not alprolwhen we
deal with planes in practical measurements on stealparts
[12]. Hence, we proceed, simply speakingtlud least-squares
plane. We start with a lemma related to the locatd the
weighted total least-squares plane.

Lemma 1. Assume that we arggiven data points
X4, Xy, X3,°, Xy, Where x; = (x;, y;, z;), corresponding
positive weightsw;, w,, ws, -+, wy, and an arbitrary unit
normal vector,a = (a,b,c). Then the weighted total least-
squares plane constrained to have normahust pass through
ZIiV:1Wixi
I wi
any plane with norma& but not passing through the weighted
centroid has a weighted sum-of-squares stricthatgethan the
plane passing through the centroid.

Proof: The equation of any plane having normmatan be
written asa - x —d = 0, whered is the signed distance from
the plane to the origin. The signed orthogonalatisé from
any arbitrary pointx; to this plane isa-x; —d. Thus the
weighted sum-of-squares objective function for gutgne of
orientationa is given byF(d) = ¥~ , w;(a - x; — d)?.

Taking the first and second derivatives yields:

N
F'(d) = —ZZ w;(a-x; —d),and
i=1

F'(d) =2¥N,w; > 0, as all weights are positive.

the weighted centroidy = (x,y,2) = . Furthermore,

The fact that the second derivative is a positivastant
implies that the function is strictly convex, andsha unique
minimum if and where its first derivative vanish&sis occurs
when Y. w;(a-x;—d)=0. Distributing the sum and
solving ford yields

_ Z?I:j_wi(a'xi) _ Z?I:j_wixi — -
d_—Z{-V:lWi a-(—z,iilwi>—a-x.
But this means that the distance frafn(the weighted
centroid) to the plane ism-x—d =0, implying that the
weighted centroid must lie on the weighted totalstesquares
plane constrained to have nornaalFurthermore, the objective
function is strictly convex, meaning any other gamt passing
through the weighted centroid must have a greatghted
sum-of-squares.

This result now enables us to prove a more getheraha
involving multiple planes.

Lemma 2. Assume that we argivenK > 2 sets of data

points {xl,ll X1, xN1,1}a {xl,z' X322, xNZ,Z}v cen
{xl'z, erz, *cy xNK’K}, Whel’e eaCth] = (xl,]l yu, ZL])a and
the corresponding positive weights:

Wi 1, Waq, ' Wyy1, W12, Wap, t, Wykx, Where all the weights
are positive. Then a set df parallel planes of weighted total
least-squares has the property that each planegsmafisrough
the weighted centroid of its corresponding data set

Proof: For the sake of simplicity of notation and ease for
the reader, we demonstrate the proof for the ch&e=92. The
proof can be simply extended for cases Ot 2. Using
simpler notation then, we assume two sets of datatg
X1, X3, **+, Xy, @ndxy 1, Xy42, 0, Xyem, and corresponding
weights,wy, w,, Ws,+, Wyium-

The weighted sum-of-squares objective function iieigy
by

F(a,dgdg) =YX wila-x; —dy)? + IV wila - x; — dg]?.

(Here,d, anddy are the distances from the two planes to the
origin.) For a fixed orientationa*, the objective function
becomes:

N N+M
F(dy,dp) =Z Wi[a*'xi—dA]z'l'Z wila® - x; — dg]?.
i=1 i=N+1

But we note thatl, occurs in the first sum only ant} occurs

in the second sum only, allowing us to expressabijective
function as F(d,, dg) = F(d,) + F(dg), where F(d,) and
F(dg) are defined as in the proof of Lemma 1 and each
corresponding to its own set of data. This decortiposallows

us to see that(d,, dg) is minimized when each term in its sum
is minimized. That is,

min min min

dA,dB[F(dA'dB)] = d, [F(dA)] + dg [F(dB)] (3

Thus for the fixed orientation, the parallel plamagimizing
the objective function are in fact the planes thesich
individually minimize the weighted sum-of-squares its own
set of data.

Lemma 1 can be applied then to the two minimization
problems on the right hand side of Eq. (3), yialdthat each
plane must pass through the weighted centroidsahiividual
data set. Since this result is true for any fixéeation a*, it
follows that it holds for the least-squares diraetin particular.

O
Armed with these lemmas, we can prove two theorems
supporting the fitting algorithms presented in 8et8.

Theorem 1. Assume that we argjiven data points
X, X5, X3,°*, Xy, Where each x; = (x;, y;, z), and
corresponding positive weightw,, w,, ws, -+, wy, then a
weighted total least-squares plane can be compuatedhe
plane passing through its weighted centrdigd,and having its
orientation defined by the singular vector corresgimg to the
smallest singular value of thé x 3 matrix
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Multiplying these equations by, b, and ¢ respectively, and
[Vwi(ep —%) Jwi(h—7) Jywi(zi—2)] then summing the equations givegw;[a- (x; —X)]? =
2
M=|\/W2(X2—f) Vw2 (y2 = ¥) \/Wz(Zz—Z_)| Alal” = 1.

| I But the sum on the left is exactly the objectivadiion,

l ’ B ’ B ’ ~ J F(a), hence the correct eigenvector for the solutiamesponds
Jwnlow = %) JwyOn =3 Jwy(zy —2) to the smallest eigenvalue (siné€a) =1, and we seek to
) minimize F). When using the SVD, we choose the singular
Proof: That the weighted least-squares plane passesecior corresponding to the smallest singular vairee under
through the weighted centroid is seen as an immedia these conditions the singular values are the squats of the
consequence of Lemma 1. To find the orientation,see the eigenvalues.]
objective function to be minimized can be writtenF{a) =

Ywila- (x; —X)]*, (where the sum is undersztood to extend While this paper deals with planes, we note tha th
over alli) subject to the constraint thé@fa) = [a|* — 1 = 0. weighted total least-squares line in space canobed in an
We use Lagrange multipliers to note that the mimmof almost identical fashion. The weighted centroics lien the
F—subject to the constraint—occurs wheR = AVG for some  solution line, and the orientation of the line ipase can be
real numbei. When these partial derivatives are calculated, we fgund by choosing the singular vector correspondinghe
find thatVG = 2a, and that largest singular value .
The next theorem deals with fitting parallel plankds a
a_F [Z wila- (e, — 8] (x, — x)] pleasing result that the fitting of parallel plariems out to be
da | L : : | solved by such an easy-to-implement extension efalheady-
oF = _ elegant single plane case.
vr = |20 = 2| Y wila - D1 0e- 9| gant single p
I I i -
l[a_Fjl lz wla- (x; — %)) (2 — Z)J Theorem 2. Assume that we are givéhsets of data points
] ocd {x1,1' X210 s le,l}a {x1,2: X220 ) xNZ,Z}- {x1,2: X2,2)
which can be rewritten as -, Xyg i} wherex;; = (x;;, yi;, z;;), and the corresponding
pOSItIVG WEIghtS Wl,l' W2,1"" WNl,l' erz, Wzlz,"‘, WNK,K'

|r Zwi(xi_f)z Zwi(xi_’_‘)(yi_y) Zwi(xi—f)(zi—f)l . where all the weights are positive. Then a seKoparallel

AN W — Dy — 7 (v — )2 (v —9)(z -1l planes of weighted total least-squares can be coedpas the

lz (GimD0=Y) Zwl(yl 7 Zwl(yl e Z)j u planes passing through the respective weightedraieistof the
Zwi(xi—f)(zi—i) Zwi(yi—?)(zi—i) ZWL-(ZL-—Z)Z data sets and all sharing the same orientation raefi by the

singular vector corresponding to the smallest slagwalue of

If we denote this3 x3 matrix (without the multiplying the matrix

coefficient 2) aslL, we find that VF = AVG can be written as

the elegant eigen-problem: [ W1,1(x1,1 - f/u) N W1,1(J’1,1 - J_’A1) . W1,1(Z1,1 - ZAl) ]
L [Z] — 1 [Z] N W2,1(x2,1 - f/u) v W2,1(J’2,1 - }_’A1) VW21 (Zz,1 - ZAl)
c c /w_(x._—f) /w_(y._—)’/) /w_(z.,—Z)
The orientation(a, b, ¢), can now be found solving thisx 3 \/%(x:':_&:)l \/WN—;(X;_ y,:) \/%21 (ZN”lll_ 2/:) .
gigen_vector problem by using _vvel! known methodg.(elacobi \/w_'(x' %) \/W_'(y’ ) JW_’(Z ’ 2
iterations) or by using solvers in higher leveldaages. palan A palran T S
However, we note further that the symmetric maatiove e o — Fax) < Wrre e — e (zer o — 7
A ! A ) N L. g g g Yy, g Y, ) w, g V4 g V4 )_
can be written agM™M, where M is defined above in the MR K M e = Za
theorem statement. The eigenvectors MfM are also the Proof: For the sake of simplicity of notation and ease for

singular vectors of¥. This allows us to gain better numerical  the reader, we demonstrate the proof for the cade=e 2, as
results by applying the SVD t&f without ever computing e did in Lemma 2. Using simpler notation then, agsume

M'™™. _ two sets of data pointsx;, x,, *+, Xy, and Xy,q, X2,
Finally, we must determine how to select the cdrrec ... x. .. and corresponding weights,, wy, ws, -, Wy -
eigenvector (i.e., smgul_ar vector) of the threeduced by the That each plane passes through the weighted cerufdis
SVD. The normal equations can be written as follows respective data set is an immediate consequenterofna 2.
Z w;(x; —D[a- (x; —%)] = Aa We de_note _these Weighte_d centro_idigandfg,_ r_espectively.
Knowing this, the objective function to be minimizean be
Z wi (i —Pla- (x; —x)] = 1b written as a function of alone:

i(zi —2)|a- (x; —X)] = Ac. +
Z wilz = Dla- (x; — %) ¢ F(a) = Zj’_l wila- (x; = %0 + Zi::lwi[a' (x; — Xp)]*.
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To solve the orientation problem, we again usentie¢hod
of Lagrange multipliers. The minimum df(a) subject to
G(a) = 0 (whereG(a) = |a|?> — 1) occurs whenvF = AVG.
In this case we have,

which, when expanded becomes:
N N+M
> wila G-l -5+, wila: (- )0 - %)
i=1 I=N+1

2 IZ:;W[- la- (e —X)]i —Ya) + Z::::lwi [a- (x;— %) (v — }73)|

N N+M
1D, wila-Gi=Elz -2+ ). wila- (i~ %)l ~7) |
Similar to the single plane case, computing theligras
yields an eigenvector problem, but the sum in eaatrix entry
is replaced by the two corresponding sums for datad and
B.
As in the proof of Theorem 1, we haw&: = 2a and
VF = 2La = 2(MTM)a, whereL is defined to beM™ M, and
whereM is now defined as th@V + M) x 3 matrix given as

\/Fl(xl —X,) \/E(yl —¥a) \/Vl(zl —Z)
\/Vz(xz — X4) M(J’z - V4 \/W_z(Zz —Z)
\/W_N(XN —X,) \/W_N(yN —¥a) \/W_N(ZN —Z)

N, Wy 41 (Xn41 — Xp) BV, Wys1Un+1 — Ip) N Wy41(Zy+1 — Z5) .
N, Wy 2 (Xn42 — Xp) BV, Wys2Un+2 — Vp) N Wy42(Zy42 — Z5)

|V Whem Conem — X5) N Wy sm Unem — Vg) v Wysm(Zysm — Zg)]

The orientation,(a, b,c), can be found by solving the

a a
3 X 3 eigen-problem given byL [b] =A[b], by using well
c c

known methods .

As in the proof of Theorem 1, the eigenvector3fdM are
also the singular vectors &f. This allows us to gain better
numerical results by applying the SVD M without ever
computingM™ M.

We further mimic the proof of Theorem 1 to selewt t
proper eigenvector (singular vector). The normalagipns can
be written as follows:

N N+M

D win-Dla (-x+ ). wiw - Dl (- %)) = A
N N

D o= Pla =E)+ Y. wi-Dla: (- %)) = b
i=1 i=N+1

N

N+M
D wla-Dla e -E+ Y. wila - Dla - Fp)] = Ac
i=1 i=N+1

Multiplying these equations by, b, and c respectively,
then summing the equations gives

N N+M
Z. Wi[a'(xi_fA)]z‘l‘Z‘ wila - (x; —%p)]* = Alal> = 1
i=1 i=N+1
But the sum on the left is just the objective fimwt F(a),
hence the correct eigenvector for the solution esronds to
the smallest eigenvalue (siné€a) = A, and since we seek to
minimize F). When using the SVD, we choose the singular
vector corresponding to the smallest singular vadirece under
these conditions the singular values are the squents of the
eigenvalues.

5. MATLAB CODE AND NUMERICAL TESTING

Matlab code for the cases of fitting one or twongls is
included here. The function names should be unoedsts
wtlsgPlane = “weighted total least-squares plane,” and
wtlsg2pp = “weighted total least-squares two parallel
planes.” In this codeyl andw2 are column vectors of weights.
ptsl andpts2 are matrices three columns wide containing
the coordinates of the points, one point per s a point on
the single least-squares plang; andg2 are points on the two
parallel least-squares planes. In both cagéds,the unit vector
normal to the least-squares plane(s). The distartween the
least-squares parallel planes can be computed as
abs((q1-g2)*v)

function [q, v] = wtlsgPlane(w1, pts1)

g = sum(bsxfun(@times,w1,ptsl))/sum(w1l);
Al = bsxfun(@minus,pts1,q);

A = [bsxfun(@times,sqrt(wl),A1)];

[U,S,V] = svd(A,0); % Can use [V, S] = eig(A™*A);
[s, i] = min(diag(S));
v=V(,i);

return;

function [g1, g2, v] = wtlsq2pp(w1, ptsl, w2, pts2)

gl = sum(bsxfun(@times,w1,ptsl))/sum(wl);
g2 = sum(bsxfun(@times,w2,pts2))/sum(w2);

Al = bsxfun(@minus,pts1,ql);
A2 = bsxfun(@minus,pts2,g2);

A = [bsxfun(@times,sqrt(w1),Al); ...
bsxfun(@times,sqrt(w2),A2)];

[U, S, V] = svd(A,0); % Can use [V, S] = eig(A*A );
[s, i] = min(diag(S));
v=V(,i);

return;

The algorithms in this paper were also implemerited
Mathematica for the cases of fitting one, two, #née parallel
planes. The Matlab and Mathematica algorithms were
compared with each other to assure they give thee sasults
(up to computational precision limits). The Math¢ice code
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was also used to test the algorithms presentedhign paper
against a brute-force minimization search algorithm

Test data sets were simulated randomly. Planar skt&
were generated having varying aspect ratios, vgrglistances
between them, varying numbers of points per plaagying
weights assigned, varying perturbations of the tsofrom an
exact plane, and varying nominal orientations &f pianes to
one another.

The brute force iterative search was performed gusin
Mathematica’s FindMinimum  function. The options were
tweaked to improve the desired accuracy and inerdhs
working precision beyond machine precision in segki
accurate answers. The required initial guess fer ftmction
was obtained using knowledge of how the test dets were
generated. In contrast to the iterative search odkthhe
algorithms presented in this paper were coded usmwnal
machine precision, purposely not
Mathematica’s ability to increase the precision.

Results are shown here for the cases of two phpdilees
for 100 simulated data sets. Figure 4 shows adnato of the
anglular differences between the normal directioamputed
by the two methods. Figure 5 shows a histogranhefrélative
distances between the two computed parallel plaies.pin
both figures, the deviations are given on a logeb®8 scale,
meaning the greatest deviation shown in Fig. #0is!® radians
and the greatest deviation shown in Fig. 30s** mm. The
magnitudes of these maximum deviations are morepitapt
than the histograms themselves, since they showirthal of
the cases tested, the two methods agreed to wamounts
attributable to machine precision.

50

40l

30

10

I -19 - —18 — -17 ‘ ‘ —-16 ‘ I —15
Figure 4. HISTOGRAM OF ANGULAR DEVIATIONS IN
RADIANS (LOG BASE 10 SCALING).

taking advantage o

80

60 -

-19 —18 -17 -16 —15 —14

Figure 5. HISTOGRAM OF RELATIVE DISTANCE DEVIATIONS
(mm, LOG BASE 10 SCALING).

6. EXTENSIONS TO CONTINUOUS CASES

The preceding work has important extensions to the
continuous case$Ve begin with a lemma before giving the general
theorem for the continuous extension.

Lemma 3. Assume that we agven a bounded, piecewise
continuous surface, S of finite area, and an oaéoh,a. Then
the total least-squares plane constrained to hawenal a must
Jgxds

Jsas '’
. Furthermore, any plane with normal

pass through the centroidy = (%,¥y,2), where x =

_ _ Jsgyas _ Jszas
y= Jsds - W
a but not passing through the centroid has a weigisieah-of-
squares strictly greater than the plane passingotigh the
centroid.

Proof: The equation of any plane having normatan be
written asa - x — d = 0, whered is the signed distance from
the plane to the origin. The orthogonal distancemfrany
arbitrary pointp to this plane isx - p — d. Thus the objective
function for any plane of orientatioa is given byF(d) =
Jla - p—d]*ds.

Taking the first and second derivatives yields:

,andz

F'(d) = —2f [a-p—d]ds,and
s
F'(d) = 2 f,ds > 0.

The fact that the second derivative is a positigastant
implies that the function is strictly convex andsha unique
minimum if and where its first derivative vanish&kis occurs
Whenfs[a -p — d]ds = 0. Distributing the integral and solving
for d yields

d= Jsla-plds —a- (fspds) —a %
Jsds Jsds
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But this means that that the distance frortthe centroid)
to the plane, which ia - x — d, is equal to zero, implying that
the centroid must lie on the total least-squarasgkonstrained
to have normak. Furthermore, the objective function is strictly
convex, meaning any other plane not passing throtgh
centroid must have a greater objective functionieal

Theorem 3. Assume that we are giverK surfaces,
S$.,S,,...,Sk¢, where each surface
continuous, of finite area, and eadhhaving centroidx; =
(%;, ¥, z;). Then a set of K parallel planes of total least-
squares can be computed as the planes passinggthrtwe
respective centroids of the surfaces and all sltatime same
orientation defined by the eigenvector correspogdin the
smallest eigenvalue of thex 3 matrix (written as a sum of
matrices for reasons of space):

[ (x — x;)%ds
Si

(x—%)y—y)ds | x-%)(z— zi)ds]
Si
K

Si

j (x - )0y - §)ds -5z — Z)ds
Si

Si

(y —y)?ds
Si

ll (x —%)(z—2z)ds f O -y)(z—2z)ds
Si Si

(z—z;)%ds
Si

.

Proof: For the sake of simplicity of notation and ease for
the reader, we demonstrate the proof for the chde=e 2, as
we did in Theorem 2. Using simpler notation thee, assume
two surfacesS, andS;.

If two parallel planes have normal orientatiarand pass
through the points, andxg, then he objective function to be
minimized is

F@xnx) = [ la-(p-xpPds+ [

Sy Sp

[a-(p—xp)]%ds.

Sincex, occurs in the first integral only, ang; occurs in
the second integral only, then for any fixed oréion a we see
that the minimization problem can be separated into
minimization problems as:

m

M F Gy x5)] = "

min in
X4, Xp X [F(xa)] + . [F(xg)]. (&)

This means that Lemma 3 can be applied to each

minimization on the right hand side of Eq (4) irating to us
that when fitting parallel planes, each least-sgsi@lane passes
through the centroid of its respective surface.diaote these
centroids asx,, and xp, respectively. Knowing this, the
objective function to be minimized can be writtenaafunction
of a alone:

F(a) =f [a-(p—a—cA)]st+f [a- (p — Xp)]2ds.

S Sp

To solve the orientation problem, we again usentie¢hod
of Lagrange multipliers. The minimum df(a) subject to
G(a) =0 (whereG(a) = |a|?> — 1) occurs whenvF = AVG.

is bounded, piecewise

In this case,

f @ (p— XX — X)ds + f [a- (p — Xp)](x — Xp)ds
Sa Sp

~2|], [ (b= x0Iy = F,)ds + L =%y = 7,)ds

|
| |
'j [a-(p—a‘cA)1<z—zA)ds+j [a-(p—%p))z —Zp)ds |
[ Js, S5 |

Let L denote the3 x 3 matrix (written as a sum of two
matrices for reasons of space):

ISA(X —X4)?ds
fsA(x = %)y — Ya)ds
JSA(X — %) (z — Z,)ds
+

fsA(x —X%)(y — Ja)ds fsA(x —x,)(z - Z,)ds
ISA(}’_J_’A)zdS ISA(y_}_/A)(Z_ZA)dS“
fSA(y—f/A)(Z—ZA)dS fsA(Z_ZA)ZdS
fSB(x — %g)?ds
J,, G~ %)y — F)ds
_fSB(x —xg)(z — zp)ds

fsﬂ(x - fa)(y - yB)dS fss(x - J_CB)(Z - ZB)dS]
[0 =Tds [0~z = Z5)ds|
J5, & = ¥6)(z — Z5)ds Js,(z — Z5)*ds |

Then the orientation of the least-squares planesngrfrom
VF = AVG can be written as the elegant eigen-problem:

fi-f

We mimic the proof of Theorem 1 to select the prope
eigenvector. The normal equations can be writtefiolimvs:

f [a- @ —%)](x — %,)ds + f [a- (p — %5)](x — %p)ds = Aa
S S,

A B

J

A

[ 1a- @ -z01G - 20as + |

Sa Sp

la-(p - TDI( — Fa)ds + f

Sp

[a-(p—%xp)](y — yp)ds = Ab

[a-(p—%p)l(z—2p)ds = Ac

Multiplying these equations by, b, and ¢ respectively, then
summing the equations gives

[a- (p—%,)]%ds +f [a- (p - %p)]?ds = Alal2 = 2

Sa S

But the sum on the left is just the objective fimwt F(a),
hence the correct eigenvector for the solution esronds to
the smallest eigenvalue (siné€a) = A, and since we seek to
minimize F). [
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7. CONVERGENCE OF
CONTINUOUS CASE

THE DISCRETE TO

as the points become dense, we then have a sequénce
Riemann sums where the maximum area of a partition

Tolerance specifications according to standards are approaches zero. Then by definition, this must eog to its

considered to apply to the continuous surface.fication of
such specifications is done using discrete poifitsus the
fundamental connection between the discrete andincmus
cases must be assured. Specifically, the discrase should
converge to the continuous case as the sampledsgméicome
dense (under idealized conditions of no measureereot).

We seek to prove convergence for surfaces overhw#iift
degree polynomials (as encountered in the contisgase in
Theorem 3) are Riemann
piecewise smooth, bounded, having finite area—c¢@mrdi that
are reasonable for real workpieéeis order to prove that the
discrete solution converges to the continuous Eoluas the
points become dense (when the weights are asstgredlues
of the areas of the surface corresponding to thiatgoas
shown in Section 2) we show the following two steps

1) Every individual cell value of thg x 3 matrix in the

discrete case (denotédn the proof of Theorem 2)
converges to its corresponding cell value in thérima
in the continuous case (also denakeid the proof of
Theorem 3) as the points become dense.

The fact that the individual cell values converge
implies that the eigenvalues and eigenvectors fim
discrete case also converge to their continuous cas
counterparts as the points become dense.

2)

Step 1: That the sum converges to the surface integratdch
of the nine cells is immediate from the definitiamf the
Riemann surface integral (see, e.g., 1.5.1 in [1Specifically
then, if a partition of a surface callé@lis given byS™ =

{sf"),sz("),...,s;")} where these disjoint subsets have well

defined areas, andiifpoints are chosen such thate Si(”), for
i =1,2,..,n, then the Riemann sum for a real valued function
f overSis defined by

R, = ) (84() f(x),

where AA™represents the area of the subsg. If all
sequence§R,,} approach the same linft with
A= maX{Area(Sl(n)), ...,Area(S,gn))} — 0asn - oo, then f
is defined afiemann integrableverS and the surface integral
of fovers is defined by, f(x)dS = R.

In our discrete case, each cell in the maltrigzontains one
or more sums of the forny™,w;f(x;). But since we are

assigning eachw; to have the value of its point’s associated
area, we have in fact a Riemann sum as in EqF(8hermore,

(5)

2 When considering convergence to the continuous,cae treat the
surfaces as mathematical, ignoring the fact thaspeall scales, the molecular
makeup of the material differs from our understagdbf the continuous,
mathematical surface.

corresponding integral when the function is intb{gaoverS.
However, since the functioh is simply a second degree
polynomial, it is uniformily continuous over the egewise
smoothS and thus is integrable. Hence Step 1 is shown.

Step 2: We now show that, since the individual cell value
converge, the smallest eigenvalue and its corralpgn
eigenvector converge as well (when the smallesrsiglue is

integrable—surfaces that are unique, i.e., simple).

We first note that since there are a finite numbkecells
(namely nine) the convergence is uniform. Thatfds, any
€ > 0 the points will become dense enough that everlyiael
the discrete case differs from the continuous bgdess thare.
We look at the sensitivities of the eigenvalues aiggnvectors
in this case. Since the matrix is symmetric, wengtie
advantage of several theorems that bound the change
eigenvalues and eigenvectors under small changeshdo
matrix.

First, in this symmetric case, Stewart shows (© 80
[14]) that the eigenvalues are perfectly conditibréhat
sufficiently smalle-sized perturbations in the cells of the matrix
yield differences in the eigenvalues essentiallygneater than
€. Thus convergence of eigenvalues is assured. éfantire,
this ensures that if the smallest eigenvalue indbetinuous
case is unique, then the smallest eigenvalue idigwete case
will eventually be as well.

It is also shown (p. 310 of [14]; see also,[16]) that the
eigenvector associated with the smallest (unigigenealue A,
is also well conditioned. Specifically, if the ureigenvector
associated with the smallest eigenvalue of the irdhris
denotedv, and the corresponding unit eigenvector of matrix
L + AL isv + Av, then the size v is bounded as follows:

lIAL]l,

M, < ——12
1avll, < min|/1 —/1]-|

+0(llALlI3),

wherel; (j = 1, 2) represents the other two eigenvalues @f th
matrix. Thus (eventually) as the points become éen® can
find a constank such that if every element AL is less tharm,
then ||Av||, < ke. This means that—provided the smallest
eigenvalue is unique—its eigenvector must also eaye/ from
the discrete to continuous case as the points bedamse.

8. CONCLUSIONS
We have presented and proved elegant solutiondié@o t

problems of weighted total least-squares fittingptsfnes and
parallel planes. Furthermore, the solutions aredaoiwe to
implementation in computer algorithms using rekatdnd
readily available linear algebra functions. The gied fitting
cases can be easily simplified to equally-weightigtthg if
desired. The need for such algorithms has been wstnaded
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and is relevant to newer tolerancing standards and
instrumentation.

Furthermore, these fits in the discrete cases agevid
their corresponding continuous cases as the pdiatbmes
dense (independent of the sampling strategy). idsslt is not
generally true in the case of unweighted fitting.
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