

1

Using Attack Graphs in Forensic Examinations

*Changwei Liu,§Anoop Singhal,*Duminda Wijesekera
cliu6@gmu.edu, anoop.singhal@nist.gov, dwijesek@gmu.edu

*Department of Computer Science, Geor e Mason University, Fairfax VA 22030. g

§National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg MD 20899.

Abstract-Attack graphs are used to compute potential attack
paths from a system configuration and known vulnerabilities of a
system. Attack graphs can be used to determine known
vulnerability sequences that were exploited to launch the attacks
and help forensic examiners in identifying many potential attack
paths. After an attack happens, forensic analysis, including
linking evidence with attacks, helps further understand and
refine the attack scenario that was launched. Given that there are
anti-forensic tools that can obfuscate, minimize or eliminate
attack footprints, forensic analysis becomes harder. As a
solution, we propose to apply attack graph to forensic analysis.
We do so by including anti-forensic capabilities into attack
graphs, so that the missing evidence can be explained by using
longer attack paths that erase potential evidence. We show this
capability in an explicit case study involving a Database attack.

Keywords-Attack Graph, Forensic analysis, Anti-forensics,
Anti-forensics vulnerability database

I. INTRODUCTION

Digital forensics uses scientifically validated methods to
collect, validate and preserve digital evidence derived from
digital sources for the purpose of reconstruction of events
found to be criminal or helping to anticipate unauthorized
actions shown to be disruptive to planned operations [1].
Forensic examinations use the process of isolating attacked
system and data, recovery, information collection, forensics
analysis, and presenting evidence [3]. If an forensic examiner
somehow knows the series of actions taken by an attacker,
(s)he can look for digital evidence left behind by the
attacker. Given a system configuration and known
vulnerabilities existing in repositories such as NVD [17],
attack graphs can provide all series of potential actions taken
by any attacker (known as attack paths) to facilitate an
investigation job.

Knowing that forensic examinations may be used to
identify them, attackers take precautionary measures to
minimize traceable information that may be used by
forensics analysts. Such anti-forensics techniques and tools
are now emerging in the arsenal of many attackers [14,15].
Their usages would leave gaps in evidence, which would
make it difficult to link a series of exploits used by an
attacker during a forensics examination.

Independently, attack graphs specify preconditions and
post conditions of each act that can be used to create an
attack. Combining them in a directed graph where the pre-
conditions of a step are enabled by the post-conditions of
prior executed steps, it would create an attack [4, 5, 6].
Therefore, given a set of vulnerabilities in a system, an attack

graph analysis provides investigators with potential attack
scenarios. Finding evidence that matches one or many such
paths would then facilitate re-creating the attack. However, it
would make this linkage problematic, given the fact that anti-
forensics tools would erase some of these evidences. As a
solution, we propose to enhance attack graphs with anti-
forensic activity nodes that can be used to explain the
missing evidence. To the best of our knowledge, combining
anti-forensics techniques with attack graphs for forensic
examinations is novel.

The rest of this paper is organized as follows. Section II
describes related work, including a summary of attack
graphs. Section III presents attack graph application for
forensic analysis. Section IV describes proposed extensions
to attack graphs, and our experiment demonstrating its utility
in performing forensics examinations. Section V concludes
the paper.

II. RELATED WORK

Attack graphs are directed graphs, where the nodes
specify exploits with their pre-conditions and post-
conditions. A directed edge from a source node to a
destination node exists if the post condition of the source
node satisfies a part of the pre-conditions of the destination
node, so that the conjunction of all post conditions of source
nodes imply the pre-condition of the destination node.

Attack graphs have many uses. They can be used to patch
vulnerabilities existing in a system, or help find relevant
attack information after an attack.

Currently, many tools generate attack graphs and use
them to secure systems and networks. For example, the TVA
tool [7] exploits dependency graphs to represent the pre- and
post-conditions [7]. The tool described by Ingols et al. [8]
creates a network model using firewall rules and network
vulnerability scans, and shows the effect of countermeasures
on the system [8].

We use MulVAL toolkit, a rule-based toolkit that
generates attack graphs [2, 5, 16] from network
configurations, machine configurations and vulnerabilities
from bug-reports.

Digital forensics analysis focuses on computer and
network data. When performing forensics analysis on the
date in a computer, typically, forensics investigators use
imaging tools to extract a computer’s physical memory or
sectors of a disk to a file, and feed that file into data analysis
tools [9], where either dead or live analysis will be
performed. While live analysis risk getting changing data, a
dead analysis is better but requires terminating all system
processes [12].

2

To perform forensics analysis on data in a network,
investigators extract valuable information from the network
capture files that contain network’s voice and data traffic
since these files are from the users’ environment with real
time network activity or traffic. Some of these network
forensic tools, such as SNORT [19], are well known in
networking community and used as IDS as well.

Currently, most of the digital anti-forensic techniques fall
in two categories of (1) attacking data, (2) attacking tools
[15].

Techniques used to attack data include overwriting data
or metadata in a file system, deleting files or media, hiding
information using obfuscation, steganography and
encryption, hiding data in unallocated spaces or slack space
etc. [15]. Techniques used to attack forensics tools interfere
with or mislead forensic analysis by crafting images or data
that is not usable by tools [13].

An evidence graph takes a time-sequenced collection of
intrusion evidence as nodes and correlation relationship
between them as edges [10]. Evidence graphs facilitate
presenting and reasoning about evidence collected after
attacks, which is different from attack graphs as we
discussed above. Work reported in [10] generates evidence
graphs and attempts to automate the forensic analysis by
using reasoning mechanism on the evidence using pristine
and collected evidence. Liao et al. use expert systems with
fuzzy rules to relax the assumptions on evidence quality to
improve this problem [11]. However, both papers [10] and
[11] focus on how to analyze evidence better in order to
detect attacks. Contrastingly, our objective is to show
investigators where evidence could be found or should be
found but missing or hidden due to the usage of anti-forensic
tools.

III. APPLYING ATTACK GRAPHS TO

FORENSIC ANALYSIS

In this section we show how an attack graph can be used
to search for forensic evidence after an attack. Our method
expects to have two kinds of data, (1) known attack steps
with their pre-conditions and post-conditions, (2) network
and system configuration information, in addition to having
an attack graph generation tool. After an attack occurs, our
method consists of using attack graphs to generate potential
attack paths, the attack steps with dependency relationships,
which lead to the discovered attack and finding evidence to
match the attack. We show how our method works by using
the following example.

A. Experiment network and attack graph

The network we simulated is shown in Figure 1. In our
experiment network, the external firewall controls network
access from the Internet to the enterprise network, and the
internal firewall controls the access to the database server
that can be accessed by the webserver and workstations. The
webserver hosts a webpage at port 8080 using the Tomcat 7
server that provides access to Internet users. The eventual
attack we wish to execute is to gain access to database tables
as an Internet user. We do so by launching a SQL injection

attack that exploits the following java servlet code that does
not sanitize input values:

(theResult = theStatement.executeQuery(
"select * from profiles where name='Alice' AND

password='"+passWord+"'");).
Suppose an internal user Alice uses a workstation that

runs Windows XP SP3 operating system with IE6, which has
vulnerability (CVE-2009-1918) that enables executing any
code on this machine. As an external attacker we use social
engineering to trick Alice to visit a malicious web page to
control Alice’s workstation.

Figure 1: Experiment network

By using MulVAL with the above configuration and

vulnerability information as input, we generated the attack
graph shown in Figure 2, where the bold red line illustrates
one of our attack paths. The square vertices in the graph
represent system configurations including vulnerabilities,
and diamonds represent privileges that an attacker gains by
exploiting existing vulnerabilities. The ovals link
preconditions to post-conditions of each attack step. The
notation n:0 inside diamonds and ovals in Figure 2 are
probabilities used for quantitative analysis that we do not
use.

The 25 steps in Table 1 describe the 25 nodes in the
attack graph of Figure 2, and is an explanation of the attack
scenario. (Appendix 1 provides the full attack graph
generated by MulVAL). In the attack graph, nodes 10 and 11
show that, initially, the attacker from the Internet can only
access a webserver through port 8080. Node 20 and 21 show
that the attacker can find out a workstation that connects to
Internet, say Alice’s machine. Exploring from the initial state
with these pre-conditions, the attackers see two attack paths.
Along the first path, the attacker can take advantage of the
webpage input vulnerability in node 13 to remotely exploit
the webserver by TCP protocol and port 8080 (node 6 and
7). Node 5 shows that the webserver connects to MySQL
server by TCP protocol through port 3306. On the second
path, the attacker can compromise a workstation by tricking
the user to visit a malicious website (node 19, 18, 22, 23,

3

17). The workstation also provides access to the MySQL
server, as shown in node 15 and 16. Either by using the
webserver (node 4) or the compromised workstation (node
14), the attacker can launch the SQL injection attack on the
MySQL server (node 3, 24, 25, 2 and 1).

Figure 2: MulVAL Generated Attack Graph

B. Apply attack graph to forensics analysis

In order to show how attack graphs can be helpful for
forensic analysis, we suppose the attack stated in Figure 2
was successful. Suppose the database general query logging
was also working at that time. Then a forensic investigator
could notice a log entry like “120315 11:44:46 51
Query select * from profiles where name='Alice' and
(password='alice' or '1' = '1')”, which is a typical SQL
injection query without neutralizing the input data to remove
“or ‘1’ =’1’ ”. Our attack graph narrows the investigation to
the webserver and Alice’s workstation. Assume that there
was no evidence found on the workstation. Instead, some IP
addresses were found in the webserver log with a visit time
close to the above malicious entry time in MySQL log file.
For example, the following IP address, an IP address that is
not from the enterprise network, with a timestamp
“15/Mar/2012:11:44:46” was logged in our Apache Tomcat
webserver.
“129.174.92.32 -- [15/Mar/2012:11:44:46-0400] POST
/lab/Test HTTP/1.1" 200 670.”
Considering that the webserver has only port 8080 open to
the Internet, investigators could conclude that this attack

took advantage of the web application string input
vulnerability. In response, the network administrator can fix
the vulnerabilities shown along the attack path of the graph.

TABLE1: ATTACK STEPS IN OUR ATTACK GRAPH

1 execCode(dbServer,user)

2 RULE 2 (remote exploit of a server program)

3 netAccess(dbServer,tcp,3306)

4 RULE 5 (multi-hop access)

5 hacl(webServer,dbServer,tcp,3306)

6 execCode(webServer,apache)

7 RULE 2 (remote exploit of a server program)

8 netAccess(webServer,tcp,8080)

9 RULE 6 (direct network access)

10 hacl(internet,webServer,tcp,8080)

11 attackerLocated(internet)

12
networkServiceInfo(webServer,httpd,tcp,8080,
apache)

13
vulExists(webServer,'CWE89',httpd,
remoteExploit,privEscalation)

14 RULE 5 (multi-hop access)

15 hacl(workStation,dbServer,tcp,3306)

16 execCode(workStation,user)

17 RULE 3 (remote exploit for a client program)

18 accessMaliciousInput(workStation,secretary,'IE')

19 RULE 22 (Browsing a malicious website)

20 hacl(workStation,internet,httpProtocol,httpPort)

21 inCompetent(secretary)

22 hasAccount(secretary,workStation,user)

23
vulExists(workStation,'CVE-2009-
1918','IE',remoteClient,privEscalation)

24
networkServiceInfo(dbServer,mySQL,tcp,3306,
user)

25
vulExists(dbServer,'SQLinjection',mySQL,
remoteExploit,privEscalation)

Table 2 shows the evidence that might be left on log

files, browsers’ history and Temporary Internet files when an
SQL Injection attack is launched. If investigators cannot find
sufficient evidence, they would not be able to assert the
concurrence with the attack suggested by the attack graph.
Moreover, attackers actively hide or overwrite the evidence.
One explanation would be that the attacker has used anti-
forensic techniques described in Section IV.

Conversely, forensics examiners can identify attacks not
revealed in attack graphs. Attack graphs may have missed
some vulnerabilities or configurations, and a careful forensic
analysis could find unknown vulnerabilities, for example, by
using Wang’s [10]. Here, the idea is to use a reasoning
framework to find the correlation between different evidence

4

TABLE2: EXAMPLE SQL INJECTION ATTACK VULNERABILITY FORENSIC ANALYSIS TABLE

ID Attack Software Forensic Tool Data Key Data

SQL1 SQL Injection MySQL 5.1 above General Query log ‘something’ or ‘1’=’1’

SQL2 SQL injection Microsoft SQL server Query Log ‘something’ or ‘1’=’1’
SQL3 SQL injection Microsoft SQL server WFTSQL/Hypnosis Cache Memory ‘something’ or ‘1’=’1’

CVE-2009-1918-1 CVE-2009-1918 Windows/IE 6-8 CSS Wireshark pcap file
suspicious link based on
port like 8080

CVE-2009-1918-2 CVE-2009-1918 Windows/IE 6-8 CSS IE History
suspicious link based on
port like 8080

CVE-2009-1918-3 CVE-2009-1918 Windows/IE 6-8 CSS Local Setting Temp folder VNC executable file

CWE-89-1 CWE-89 Software with MySQL Log file on Software server
IP address combine SQL
log

organized in a time sequence. In order to use Wang’s
hierarchical reasoning framework, evidence should be
normalized and aggregated using a pre-processor. In real
scenario, in some cases, it might be hard for investigators
find valuable un-tainted evidence. Under this situation,
hypotheses testing based on investigators’ expert knowledge
should be used to implement the “missing” evidence in order
to build up the attack path to restore the attack scenario.

IV. ANTI-FORENSIC CAPABILITIES

In order to model anti-forensic activity in attack graphs,
we propose to extend the attack graphs by adding a new type
of nodes called anti-forensics activity and model the
dependency between such a node and its ability to prevent a
forensic tool from being used. This addition shows potential
anti-forensics techniques that can be used to clean up the
evidence left behind by an attack, which is used to identify
an attack in Section III. Our anti-forensic activity nodes
represent a new type of vulnerabilities that can be used
against forensics analysis. When the evidence collected from
the step stone computers or targeted computers cannot prove
an unauthorized activity, our extensions could provide a
potential two-level analysis. The first level explains how the
attacker possibly launched the attack and the second level
describes potential cover-ups. Below is the description of the
details.

a) Adding Anti-forensics Activity Nodes

Based on the original attack graph, we add an extra node
called the anti-forensic activity node along the attack path
with corresponding privilege that might be used by the
attacker to minimize the evidence generation or usage.
Adding anti-forensics nodes to the attack graph has two
advantages. First, our addition does not increase the
complexity of the attack graph. This is relevant, because
attack graph complexity in enterprise networks with lots of
computers and complicated configurations has been a
hindrance to using them commercially. Second, once
attackers launch an attack, it is possible for them to escalate
their privileges to perform anti-forensics activities. If the
current attack path does not sufficiently escalate the
privileges for the attacker to use anti-forensic tools, then

(s)he may use other attack paths that can get to the same
victim computer to gain them. For example, in Figure 2, an
attacker can get to node “3” to execute a SQL query by the
left path through un-sanitized string input vulnerability at the
webpage. If privilege obtained along this path does not allow
executing anti-forensic tools, then the attacker may use
another path, say by hacking Alice’s computer, to exploit the
victim computer’s IE vulnerability following a social-
engineering attack.

One of the main advantages of our addition is that it does
not destroy the causality relationship between attack states,
and therefore one can use the original network configuration,
vulnerability information, and the new escalated privilege to
generate an attack graph with anti-forensic nodes. We
propose that, along every exploit diamond node of the attack
graph, an anti-forensics vulnerability node is added to model
the anti-forensic capabilities.

b) Dependency between anti-forensics nodes and preventing
forensic discovery

Dependency between anti-forensic nodes and their effect
on forensic activity on a specific configuration can be
specified as stated in the anti-forensic table given in Table 3.
We can use this table and the missing evidence to reason
which technique or tool has been used to remove forensic
evidence.

A. Extending the Example Scenario

Figure 3 shows an attack graph enhanced with anti-forensics
nodes shown as dark rectangles. We use the previous
example and the attack graph shown in Figure 2. In this
example, the specific anti-forensic activity explanation for
each node can be found in Table 3. Take the right path (11-
>18->16->3->1) with its anti-forensics nodes as example. It
shows that an attacker uses the CVE-2009-1918
vulnerability on the windows workstation to fully control
Alice’s machine, in which the attacker is able to use the
escalated root privilege to remove the malicious link sent to
the workstation either by the shell or VNC (we use
TIGHTVNC in our experiment) [18] if no one sits in front
of the computer. VNC is remote control software that can
used to see and interact with desktop application across any
network. Shell commands are stealthier because they have no

5

M4: Change URL
M5: Hide IP
D1: Delete file content
D2: Remove log file
Note: The specific information is in table 3.

Figure 3: Anti-forensics Nodes

any visual effect of the desktop. For the next step of
attacking the MySQL Server, the attacker can either use
command at runtime to turn off MySQL server logging (for
our experiment version MySQL 5.5, “SET GLOBAL
general_log = 'OFF';” can be sent from the webpage in
Appendix 2 to turn off the query log file) or attack the
database server by exploring more vulnerabilities (such as
CVE-2009-2446 for a MySQL version from 4.0.0 to 5.0.83)
to physically delete the log file.

TABLE3: THE ANTI-FORENSIC TECHNIQUE/TOOL VULNERABILITIES DATABASE

ID Category Tool Technique Windows Linux Privilege Access Vulnerability Effect

A1 Attack Tool
Obfuscate
signature

All All User Internet SNORT Rule Bypass being detected by rules

D1 Destroy Data BCWipe
Delete file
content

98 Above All User Computer Delete data permanently

D2 Destroy Data Remove log file All All User Internet
MySQL5.1
above set log
off command

Set general log off

H1 Hide Data Steghide Steganography All All User Computer
Hide data to image or audio
file

H2 Hide Data Slacker.exe
2000

Above
No User Computer Hide data in slack space

H3 Hide Data TrueCrypt Encryption XP Above All User Computer
Encrypt disk or partition and
hide

H4 Hide Data Rootkit
Hide data in
memory

All User Internet Bypass live incident response

H5 Hide Data Evil Maid
Encryption
passphrase

All All User
Physical
Computer

TrueCrypt
bootloader

Capture the key

M1
Minimize
footprint

ShellCode
Memory
injection

All All User Internet
Buffer
Overflow

No code in hard disk

M2
Minimize
footprint

Reverse
Shellcode

Syscall
Proxying

All All User Internet
Buffer
Overflow

Attack without code

M3
Minimize
footprint

Metasploit
meterpreter

Memory
injection

All All User Internet
Metasploit
exploit

Hack the victim machine

M4
Minimize
footprint

random js
toolkit

Change URL All All User Internet Browser Infect webpages

M5
Minimize
footprint

A4Proxy Hide IP All All User Computer
Hide ID when surfing on
internet

T1
Trail
Obfuscation

Obfuscate
payload

All All User Internet SNORT Rule
Obfuscate payload to bypass
SNORT

In an actual scenario, an attacker may not perform anti-
forensic attacks on every attack step. Accordingly, the
investigators do not need to look up the Anti-forensics
database at every step as long as they can find sufficient
evidence left behind by the attacker.

B. The Anti-Forensic Capabilities Database

We now describe the details contained in our anti-
forensics database. As shown, Table 3 has attributes “ID”,
“Category”, “Tool”, “Technique”, “Windows”, “Linux”,
“Privilege”, “Access”, “Vulnerability” and “Effect”. “ID” is
used as a primary key for each record. We use attribute
“category” to categorize the anti-forensics technique and
tools. For example, “destroy data” means that the evidence
data will be destroyed, but the evidence data would probably
be hidden in either memory or hard disk by using different
tools or techniques. The category “Hide data” shows this
latter capability with a list of tools. The attributes “tool” and
“technique” list what tools and technique an attacker might
use for anti-forensics. “Windows” and “Linux” are OS

6

platforms where the tool and technique would be used. The
attribute “privilege” states escalated privilege an attacker
may need in order to perform anti-forensics on the specific
platform using a specific tool or attack. There are three kinds
of access in attribute “Access”, from which the attacker
would launch the specific anti-forensics. Notice that
“physical computer” is different from “computer” here.
While we define “physical computer” as physical access to a
computer, “computer” means that the anti-forensics can also
be done by remote access to the computer through Internet
by using shell or a remote desktop control tool such as
TightVNC [18] to install anti-forensic tool on the victim
computer. Lastly, the attribute “vulnerability” is used to
show the vulnerability exploited by the attacker, and the
attribute “effect” specifies effect of the exploit on the data
record.

By querying different attributes, when we trace the attack
on a machine with a specific configuration and privileges, we
can find anti-forensic capabilities available to a potential
attacker at each step in minimizing the evidence potentially
left behind the attack.

Combining the machine configuration in the attack graph
and the collected evidence for a specific attack investigation,
the forensic investigator can find out what evidence has been
removed by comparing the collected evidence to forensic
analysis database shown in Table 2 that illustrates what
evidence should be left over. Once the investigator has
determined that anti-forensic has been used, with the
collected existing evidence and information obtained from
reading the attack graph, s(he) can query the anti-forensics
table in order to find out what techniques or tools might have
been used by the attacker to clean up potential evidence.
Therefore the investigator can reconstruct potential attack
scenarios even with partial evidence.

Constructing the anti-forensics database requires that
repositories like National Vulnerability Database (NVD)
[17] be enhanced to collect the capabilities of anti-forensic
technique or tools and provide them as a part of the NVD
repository.

V. CONCLUSIONS

We showed how attack graphs could be used to help
forensics investigators narrow down potential attack
scenarios, along with evidence left by attackers. By using
anti-forensic tools and techniques, attackers can prevent such
activities by ensuring that evidence left behind is minimized,
obfuscated or removed completely. In order to recreate
attack scenario in the presence of anti-forensics tools and
techniques, we propose enhancing attack graphs with anti-
forensics nodes and an anti-forensics database. We showed
how these two additions could be used to recreate attack
scenarios from partial evidence. Given that NVD helps in
preventing attacks and detecting attack paths when we find
ourselves attacked, we advocate that NVD be enhanced with
anti-forensics databases. We would also like to enhance
NVD with the capabilities for anti-forensic techniques or
tools.

ACKKNOWLEDGEMENT

We would like to thank the anonymous reviewers for
their valuable feedback and suggestions that helped improve
the last version of the paper.

REFERENCES
[1] A. Jaquith, “Security Metrics: Replacing Fear, Uncertainty, and Doubt”,
Addison Wesley, Mar 26, 2007.

[2] A. Singhal, X. Ou, “Security Risk Analysis of Enterprise Networks
Using Probabilistic Attack Graphs”, NIST InterAgency Report, September
2011.

[3] Adrian T.N. Palmer, “Computer Forensics: The Six Steps”, US-CERT,
2008.

[4] P. Ammann, D. Wijesekera, S. Kaushik. “Scalable, graph-based
network vulnerability analysis”, In Proceedings of 9th ACM Conference
on Computer and Communications Security, Washington, DC, November
2002

[5] X Ou, W. F. Boyer, M. A. McQueen, “A scalable approach to attack
graph generation,” In: 13th ACM Conference on Computer and
Communications Security (CCS), pp. 336–345 (2006).

[6] R. Lippmann, K. Ingols. “An annotated review of past papers on attack
graphs”, Technical report, MIT Lincoln Laboratory, March 2005.

[7] S. Jajodia, S. Noel, B.O.’Berry. “Topological Analysis of Network
Attack Vulnerability”, In Managing Cyber Threats: Issues, Approaches and
Challenges, V. Kumar, J. Srivastava, A. Lazarevic (eds.), Springer, 2005.

[8] K. Ingols, M. Chu, R. Lippmann, S. Webster and S. Boyer. “Modeling
Modern Network Attacks and Countermeasures Using Attack Graphs”,
Proceedings of ACSAC Conference 2009.

[9] SANS Institute InfoSec Reading Room, “an Overview of Disk Imaging
Tool in Computer Forensics”, 2001.

[10] W. Wang, E.D. Thomas, “A graph based approach toward network
forensics analysis”, ACM Transactions on Information and Systems
Security 12 (1) 2008.

[11] N. Liao, S. Tian, T. Wang, “Network forensics based on fuzzy logic
and expert system”, Computer Communication, vol. 32, no. 17, pp. 1881–
1892, 2009.

[12] B. Carrier, “File System Forensic Analysis”, Addison-Wesley
Professional, March 2005.

[13] B. Sullivan, “application-Level Denial of Service Attacks and
Defenses”, Presented in conjunction with the BlackHat DC 2011 talk,
January 2011.

[14] S. Garfinkel. “Anti-Forensics: Techniques, Detection, and
Countermeasures”, In Proceedings of the 2nd International Con- ference on
i-Warfare and Security (ICIW), Naval Postgraduate School, Monterey, CA,
March 2007.

[15] M. Whitteker, "Anti-forensics: Breaking the forensic process",
Information Systems Security Association Journal, pp. 10-16, November
2008.

[16] MulVAL V1.1, Jan 30, 2012, http://people.cis.ksu.edu/~xou/mulval/.

[17] National Vulnerability Database,

http://nvd.nist.gov/.

[18] TightVNC Software,

http://www.tightvnc.com/.

[19] SNORT,

http://www.snort.org/

http://nvd.nist.gov/

7

APPENDIX
1. The attack graph for our experimental network (we amplify a part of the graph for a clearer view)

1:execCode(dbServer,user):0

2:RULE 2 (remote exploit of a server program):0

3:netAccess(dbServer,tcp,3306):0

4:RULE 5 (multi-hop access):0

5:hacl(webServer,dbServer,tcp,3306):1 6:execCode(webServer,apache):0

7:RULE 2 (remote exploit of a server program):0

8:netAccess(webServer,tcp,8080):0

9:RULE 6 (direct network access):0

10:hacl(internet,webServer,tcp,8080):1 11:attackerLocated(internet):1

19:RULE 22 (Browsing a malicious website):0

12:networkServiceInfo(webServer,httpd,tcp,8080,apache):1 13:vulExists(webServer,’CWE-89’,httpd,remoteExploit,privEscalation):1

14:RULE 5 (multi-hop access):0

15:hacl(workStation,dbServer,tcp,3306):116:execCode(workStation,user):0

17:RULE 3 (remote exploit for a client program):0

18:accessMaliciousInput(workStation,secretary,’IE’):0

20:hacl(workStation,internet,httpProtocol,httpPort):1 21:inCompetent(secretary):1

22:hasAccount(secretary,workStation,user):1 23:vulExists(workStation,’CVE-2009-1918’,’IE’,remoteClient,privEscalation):1

24:networkServiceInfo(dbServer,mySQL,tcp,3306,user):1 25:vulExists(dbServer,’SQLinjection’,mySQL,remoteExploit,privEscalation):1

8

2. Experiment webpage that has authentication vulnerability

	Using Attack Graphs in Forensic Examinations
	I. INTRODUCTION
	II. RELATED WORK
	III. APPLYING ATTACK GRAPHS TO FORENSIC ANALYSIS
	A. Experiment network and attack graph
	B. Apply attack graph to forensics analysis

	IV. ANTI-FORENSIC CAPABILITIES
	a) Adding Anti-forensics Activity Nodes
	b) Dependency between anti-forensics nodes and preventing forensic discovery
	A. Extending the Example Scenario
	B. The Anti-Forensic Capabilities Database

	V. CONCLUSIONS
	ACKKNOWLEDGEMENT
	REFERENCES

