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Abstract Measuring the dissimilarity between non-rigid
objects is a challenging problem in 3D shape retrieval. One
potential solution is to construct the models’ 3D canoni-
cal forms (i.e., isometry-invariant representations in 3D Eu-
clidean space) on which any rigid shape matching algorithm
can be applied. However, existing methods, which are typi-
cally based on embedding procedures, result in greatly dis-
torted canonical forms, and thus could not provide satisfac-
tory performance to distinguish non-rigid models.

In this paper, we present a feature-preserved canonical
form for non-rigid 3D watertight meshes. The basic idea
is to naturally deform original models against correspond-
ing initial canonical forms calculated by Multidimensional
Scaling (MDS). Specifically, objects are first segmented into
near-rigid subparts, and then, through properly-designed ro-
tations and translations, original subparts are transformed
into poses that correspond well with their positions and
directions on MDS canonical forms. Final results are ob-
tained by solving nonlinear minimization problems for op-
timal alignments and smoothing boundaries between sub-
parts. Experiments on two non-rigid 3D shape benchmarks
not only clearly verify the advantages of our algorithm
against existing approaches, but also demonstrate that, with
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the help of the proposed canonical form, we can obtain sig-
nificantly better retrieval accuracy compared to the state of
the art.
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1 Introduction

With the ever increasing accumulation of 3D models, how
to accurately and efficiently retrieve these data has become
an important problem in computer vision, pattern recogni-
tion, computer graphics, mechanic CAD, and many other
fields (Shilane et al. 2004; Tangelder and Veltkamp 2008).
One of most challenging issues in this problem is the cal-
culation of dissimilarity between non-rigid objects that are
commonly seen in our surroundings. Take Fig. 1(a) for an
example, a man appears in three distinctive poses, but these
models represent the same object in despite of having differ-
ent appearances. In order to compare non-rigid 3D models
quickly and effectively, it is often desired that the shapes can
be represented by some discriminative signatures which are
invariant or approximately invariant under various isometric
transformations (i.e., rigid-body transformations, non-rigid
bending and articulation).

While a large number of retrieval methods for rigid 3D
shapes have been proposed in the last few years, there has
been considerably less work for non-rigid models. In gen-
eral, existing non-rigid 3D shape retrieval methods can be
roughly classified into algorithms using local features, topo-
logical structures, isometry-invariant global geometric prop-
erties, direct shape matching, or canonical forms. Although
these algorithms are all guaranteed to be isometry-invariant,
they are still not well suited for practical applications in
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Fig. 1 Non-rigid models (a) and their 3D canonical forms obtained
using Classical MDS (b), Least Squares MDS (c) and the proposed
method (d), respectively

non-rigid 3D shape retrieval. This is mainly due to the fact
that typically they are either computationally expensive or
poor in discrimination. Further discussions are provided in
Sect. 2. Perhaps, the utilization of canonical forms (unless
otherwise specified, canonical form mentioned in this pa-
per means the canonical form in 3D Euclidean space) is po-
tentially the most effective way to address the problem of
non-rigid 3D shape matching. As we know, through the cal-
culation of canonical forms, deformable models can be nor-
malized into particular 3D representations which are unique
and isometry-invariant. Then, any shape retrieval approach,
even methods specifically designed for rigid models, can be
applied to measure the similarity between non-rigid models.
For instance, the visual similarity based method (Chen et al.
2003; Lian et al. 2010c), which has been widely acknowl-
edged as the most powerful and practical approach for rigid
3D shape retrieval (Shilane et al. 2004), is essentially un-
suitable for the shape matching of non-rigid objects. This is
because, when a 3D model is articulated or bent, serious oc-

clusions may occur and numerous noises could be generated
in the views captured around the object. Owing to the intro-
duction of canonical forms, the tough problem of non-rigid
shape matching is converted into a simpler and well-studied
rigid shape matching problem. Ideally, state-of-the-art ap-
proaches including many view-based methods can then be
utilized to achieve excellent performance for non-rigid 3D
shape retrieval.

However, existing methods that are typically based on
embedding procedures could inevitably result in canonical
forms with serious distortions (see Figs. 1(b) and (c)). Since
the concept of 3D canonical forms was first proposed by
Elad and Kimmel in 2003 (Elad and Kimmel 2003), no more
progress has been made for the improvement of the qualities
of their canonical forms. To the best of our knowledge, our
work (Lian and Godil 2011) is the first to obtain feature-
preserved 3D canonical forms, and this article is the ex-
tended version of the conference paper. Up to now, the Least
Squares MDS method employed in Elad and Kimmel (2003)
is still considered to be the best way to construct 3D canon-
ical forms with least distortions. Examples of such embed-
ding results are demonstrated in Fig. 1(c). As we can see,
compared to original models, important features like hands,
feet, and heads are significantly distorted on their canoni-
cal forms. It is reasonable to infer that, based on these kinds
of canonical forms, objects with similar topology but varied
details could not be well distinguished. That is the major rea-
son why previous methods using 3D canonical forms could
not obtain satisfactory retrieval performance.

In this paper, a feature-preserved canonical form is pro-
posed for non-rigid 3D watertight meshes. The basic idea
is to consider MDS embedding results as references and
then naturally deform the original meshes against them. In
this manner, our new canonical forms not only have the
isometry-invariant property but also preserve important de-
tails on the original surfaces (see Fig. 1(d) for some exam-
ples). Specifically, features that our method preserves for
3D canonical forms are local structures and surface details
which remain unchanged under isometric transformations.
To achieve this goal, 3D meshes are first automatically seg-
mented into near-rigid subparts using a new approach. Af-
terwards, we translate and rotate these segmented subparts
into new positions and directions that can be matched well
with their corresponding subparts on MDS canonical forms.
Finally, we obtain our feature-preserved results by solving
several energy minimization problems for optimal assem-
bling and smoothing boundaries between subparts.

The main contribution of this paper is the novel idea
of creating feature-preserved canonical forms from MDS
embedding results in 3D Euclidean space. We provide an
intuitive framework to achieve this goal and demonstrate
the advantages of our method against existing canonical
forms by several experiments conducted on the commonly-
used McGill articulated 3D shape benchmark (Siddiqi et al.
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2008) and a specifically-designed database. We also find
that, via the utilization of our canonical forms, some rigid
shape matching algorithms can obtain markedly better per-
formance, in term of searching accuracy, than other non-
rigid 3D shape retrieval methods in the literature.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 describes the mathemat-
ical background of Multidimensional Scaling. Section 4
presents an explicit description of our method. Results of the
feature-preserved canonical form are shown and compared
in Sect. 5, which also demonstrates the application of our
method in non-rigid 3D shape retrieval. Finally, we discuss
and conclude the paper in Sect. 6.

2 Related Work

Shape-based 3D object retrieval, concentrating on the repre-
sentation and comparison of 3D models based on their in-
trinsic shapes, has been extensively studied in recent years.
Until today, a large amount of 3D shape retrieval meth-
ods have been proposed, including Shape Distribution (D2)
Osada et al. (2002), Spherical Harmonic Descriptor (SHD)
Kazhdan et al. (2003), Light Field Descriptor (LFD) Chen
et al. (2003), etc. However, most of these methods were
specifically designed for rigid models, and how to effec-
tively and efficiently compare non-rigid 3D models is still
considered to be a challenging problem. For more details,
we refer the reader to some good surveys (Tangelder and
Veltkamp 2008; Shilane et al. 2004).

One popular approach for non-rigid 3D shape retrieval
is to compare models based on their local features, which
are robust against isometric transformations. For example,
Liu et al. (2006) made use of the well-known Spin Im-
ages (Johnson and Hebert 1999), and represented a 3D ob-
ject as a word histogram by vector quantizing all local
features extracted from the model. Funkhouser and Shi-
lane (2006) selected distinctive multi-scale local features
yielded by applying Spherical Harmonic transformation on
salient local regions, and then applied a Priority-Driven
search to achieve partial matching. Gal et al. (2007) in-
troduced a pose-oblivious shape descriptor that is actually
a 2D histogram combining the distributions of Euclidean
distances in local regions and the distributions of geodesic
distances for the whole object. Ovsjanikov et al. (2009)
employed the Heat Kernel Signature (HKS) (Sun et al.
2009), which is based on the properties of the heat diffu-
sion process on a 3D shape, and a spatially-sensitive bags
of features approach to solve the problem of searching non-
rigid models in large databases. Ohbuchi et al. (2008) pre-
sented a view-based method using salient local features
(SIFT Lowe 2004). They represented a 3D model as a

word histogram by using bag-of-features for salient lo-
cal descriptors extracted on the depth-buffer views cap-
tured uniformly around the object. Toldo et al. (2009) re-
ported a retrieval algorithm to describe 3D shapes based
on articulation-invariant descriptors derived from segmented
subparts. More recently, Wang et al. (2010) proposed In-
trinsic Spin Images (ISIs) generalizing the traditional spin
images (Johnson and Hebert 1999) from 3D space to N-
dimensional intrinsic shape space, in which ISIs shape de-
scriptors are computed from MDS embedding representa-
tions of original 3D shapes.

Another intuitive solution is to employ topological struc-
tures to quantify the similarity between deformable 3D ob-
jects. Hilaga et al. (2001) proposed the Topology Match-
ing technique to establish the similarity estimation by com-
paring their Multiresolutional Reeb Graphs (MRGs), while
Sundar et al. (2003) compared 3D objects by applying graph
matching techniques to match their skeletons. Recently,
Tam and Lau (2007) achieved better retrieval performance
against (Hilaga et al. 2001) by using topological and geo-
metric features simultaneously.

Isometry-invariant global geometric information has also
been explored for the retrieval of non-rigid 3D shapes.
For instance, Jain and Zhang (2007) proposed to ap-
ply the eigenvalues of geodesic distance matrix, while
Reuter et al. (2005) suggested using the Laplace-Beltrami
spectra to generate isometry-invariant shape descriptors.
Also, Mahmoudi and Sapiro (2009) designed six such sig-
natures based on the distributions of intrinsic distances in-
cluding diffusion distance, geodesic distance, a curvature
weighted distance, etc.

Above-mentioned three kinds of methods typically have
poor discrimination power due to their inaccurate repre-
sentations for 3D shapes. Thereby, some researchers also
tried to address the problem of exact dissimilarity com-
putation between non-rigid models. In Memoli and Sapiro
(2005), the authors presented a theoretical framework to di-
rectly compare non-rigid 3D shapes based on the Gromov-
Hausdorff (GH) distance. Then, Mémoli (2007) approxi-
mated the GH distance by solving a mass transportation
problem that is basically a quadratic optimization problem
with linear constraints. Bronstein et al. (2006) formulated
the GH distance as a MDS-like continuous optimization
problem, leading to a numerically exact calculation of the
GH distance between surfaces. Essentially, matching non-
rigid shapes directly is an ideal and complete solution for the
calculation of their similarity. However, because of its high
computational complexity, direct shape matching is imprac-
tical for real searching engines that require instant responses
for shape comparisons.

As described in Sect. 1, the utilization of canonical forms
is considered to be potentially the best solution for non-rigid
3D shape retrieval. This is because, with the help of canon-
ical forms, we can apply almost any algorithm with respect
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to the feature extraction, shape matching, and object classifi-
cation of 3D models in the retrieval of non-rigid 3D shapes.
As we know, excellent performance, in term of both accu-
racy and efficiency, has been achieved for rigid 3D shape
retrieval. Consequently, the problem of non-rigid 3D shape
retrieval can be well resolved, as soon as it is possible to ef-
ficiently construct canonical forms with well-preserved fea-
tures. The idea of generating canonical forms in 3D domain
was initially proposed in Elad and Kimmel (2003), where
the authors presented an invariant representation for iso-
metric surfaces using MDS embedding of the surface in a
small dimensional Euclidean space in which geodesic dis-
tances are approximated by Euclidean ones. They investi-
gated three MDS techniques to construct such 3D canon-
ical forms. Other approaches, like Locally Linear Embed-
ding (LLE) (Mateus et al. 2007), Global Point Signatures
(GPS) embedding (based on the Laplace-Beltrami opera-
tor) (Rustamov 2007), etc., can also be utilized. To examine
the effectiveness of their canonical forms, Elad and Kim-
mel (2003) extracted a moment-based signature from em-
bedded surfaces and tested it via a simple experiment for ob-
ject classification, while Lian et al. (2010b) developed a non-
rigid 3D shape matching framework using the combination
of Least Squares MDS and a visual similarity based method,
getting a state-of-the-art retrieval accuracy on the McGill ar-
ticulated 3D shape benchmark (Siddiqi et al. 2008). How-
ever, existing methods, which are typically based on em-
bedding procedures, often obtain greatly distorted canonical
forms, and thus could not provide satisfactory performance
to distinguish many non-rigid models. This paper addresses
the problem by proposing a feature-preserved 3D canonical
form. It should be pointed out that, besides shape retrieval,
our canonical forms can also be utilized in many other appli-
cations including the registration (Huang et al. 2008), classi-
fication (Philipp-Foliguet et al. 2011) and recognition (Bron-
stein et al. 2010) of non-rigid 3D objects.

3 Mathematical Background

In this section, we present a review of the Multidimensional
Scaling (MDS) technique that plays an important rule in our
feature-preserved canonical form computing method. We
first introduce the general idea of MDS algorithms, and then
briefly review two MDS methods (i.e., Classical MDS and
Least Squares MDS). Finally, advantages and disadvantages
of those traditional MDS techniques are discussed.

The basic idea of MDS techniques is to map the dissimi-
larity measure between every two features in a given feature
space into the distance between corresponding pair of points
in a small-dimensional Euclidean space. More specifically,
MDS map each feature Yi , i = 1, . . . ,N to its corresponding
point Xi , i = 1, . . . ,N in a m-dimensional Euclidean space

Rm by minimizing, for example, the following stress func-
tion:

ES(X) =
∑N

i=1
∑N

j=i+1 wij (dF (Yi, Yj ) − dE(Xi,Xj ))
2

∑N
i=1

∑N
j=i+1(dF (Yi, Yj ))2

,

(1)

where dF (Yi, Yj ) denotes the dissimilarity between the fea-
ture Yi and Yj , dE(Xi,Xj ) denotes the Euclidean distance
between two points (i.e., Xi and Xj ) in Rm, and wij is
the weighting coefficient for specific applications. Since the
canonical forms we want should appear as 3D models, the
dimension of the Euclidean space is selected as m = 3. Fur-
thermore, in order to make our canonical forms invariant
against isometric transformations, we choose the geodesic
distance dG(Yi, Yj ) as the dissimilarity measure between
two features.

Essentially, MDS methods all aim to minimize the dif-
ference between dF (Yi, Yj ) and dE(Xi,Xj ), which can be
expressed using functions like ES(X). According to the dif-
ferent minimization algorithms applied, existing MDS tech-
niques can be categorized into Classical MDS (Cox and Cox
1994), Least Squares MDS (Borg and Groenen 1997), Fast
MDS (Faloutsos and Lin 1995), etc. Here we only briefly re-
view the first two MDS methods that are compared and uti-
lized in this paper. For more details about MDS techniques,
we refer the reader to (Cox and Cox 1994; Borg and Groe-
nen 1997; Faloutsos and Lin 1995; Elad and Kimmel 2003;
Bronstein et al. 2008).

3.1 Classical MDS

To implement the Classical MDS method. We first need to
compute the distance (i.e., dissimilarity) dF (Yi, Yj ) between
every two features Yi and Yj in the feature space, and con-
struct the squared feature distance matrix DF by

DF =
⎡

⎢
⎣

d2
F (Y1, Y1) · · · d2

F (Y1, YN)
...

. . .
...

d2
F (YN,Y1) · · · d2

F (YN,YN)

⎤

⎥
⎦ . (2)

DF is a symmetric matrix since dF (Yi, Yj ) = dF (Yj ,Yi).
Then, we get the inner product matrix (i.e., Gram matrix)
GE in the embedded Euclidean space by

GE = −1

2
JDF J, (3)

where

J = I − 1

N
11T (4)

in which I is a N × N identity matrix and 1 is a vec-
tor containing N elements that are all 1, namely, 1N×1 =
[1,1, . . . ,1]T .
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After applying singular value decomposition, the matrix
GE can be expressed as

GE = QΛQT , (5)

where the diagonal matrix ΛN×N = diag(λ1, λ2, . . . , λk,0,

. . . ,0) and the eigenvalues of GE are ordered so that λ1 ≥
λ2 ≥ · · ·λk ≥ 0.

Let the dimension of the embedded Euclidean space be
m and m ≤ k, the inner product matrix GE can be approxi-
mated by

GE = UUT =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

XN

⎤

⎥
⎥
⎥
⎦

[
XT

1 XT
2 · · · XT

N

]
. (6)

Then we have

U =

⎡

⎢
⎢
⎢
⎣

X1

X2
...

XN

⎤

⎥
⎥
⎥
⎦

= QN×mΛ
1
2
m×m, (7)

where Λm×m = diag(λ1, λ2, . . . , λm), QN×m denotes the
matrix consisting of eigenvectors corresponding to the
eigenvalues in Λm×m, and Xi = [x1, x2, . . . , xm], i = 1,2,

. . . ,N are the coordinates of points generated by using the
classical MDS embedding algorithm to map correspond-
ing features in the feature space to the m-dimensional
Euclidean space. Basically, instead of the stress function
ES(X) (Eq. (1)), classical MDS minimizes the following
energy function

ES1(X) = ∥
∥Q(Λ − Λ̃)QT

∥
∥2

, (8)

where ‖•‖ denotes the square root of the sum of the squared
matrix elements, and Λ̃N×N = diag(λ1, λ2, . . . , λm,0,

. . . ,0).

3.2 Least Squares MDS

A standard optimization algorithm to solve the minimiza-
tion problem of cost functions like ES(X) (Eq. (1)) is the
Least Squares technique. However, it is not easy to calculate
the closed expression for the first derivative of this nonlin-
ear function. A simple but effective solution is to use the
numerical computing technique with iterative majorization.
The idea is applied in the SMACOF (Scaling by Maximizing
a Convex Function) (Borg and Groenen 1997) algorithm to
minimize the stress function ES(X). Here, we briefly review
the SMACOF algorithm.

Minimizing the stress function ES(X) is equivalent to
minimizing the following function:

ES2(X) =
N∑

i=1

N∑

j=i+1

wij

(
dF (Yi, Yj ) − dE(Xi,Xj )

)2 (9)

or

ES2(X) = ϕ2
F + ϕ2

E(X) − 2φ(X), (10)

where

ϕ2
F =

N∑

i=1

N∑

j=i+1

wijd
2
F (Yi, Yj ), (11)

ϕ2
E(X) =

N∑

i=1

N∑

j=i+1

wijd
2
E(Xi,Xj ), (12)

φ(X) =
N∑

i=1

N∑

j=i+1

wijdF (Yi, Yj )dE(Xi,Xj ). (13)

Utilizing the Cauchy-Schwartz inequality and several ba-
sic algebraic operations, we have

ES2(X) ≤ ϕ2
F + trace

(
XT Γ X

) − 2trace
(
XT B(X̃)X̃

)

= σ(X, X̃), (14)

where X̃ is the approximation of X, namely, a possible so-
lution to minimize the stress function ES2(X), the elements
of the matrix B(X̃) are defined by

bij =
{

−wij dF (Yi ,Yj )

dE(X̃i ,X̃j )
, i �= j and dE(X̃i, X̃j ) �= 0

0, i �= j and dE(X̃i, X̃j ) = 0,

(15)

bii =
N∑

j=1,j �=i

bij , (16)

and the N × N matrix Γ is given by

Γ =
N∑

i=1

N∑

j=i+1

wijEij , (17)

Eij = (ei − ej )(ei − ej )
T , (18)

where ei is the vector that occupies the ith column of a
N × N identity matrix.

Let the derivative of σ(X, X̃) be 0, that is,

∂σ (X, X̃)

∂X
= 2Γ X − 2B(X̃)X̃ = 0, (19)
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we get the minimum of σ(X, X̃). Finally, the result of the
minimization problem can be computed by

X(k) = Γ +B(X̃)X̃, (20)

where Γ + is the Moore-Penrose inverse of Γ . By setting all
weights wij to 1, Eq. (20) can be rewritten as

X(k) = 1

N
B

(
X(k−1)

)
X(k−1). (21)

In practice, given a threshold ε, calculating Eq. (21) iter-
atively until ES2(X

(k)) − ES2(X
(k−1)) < ε, we obtain the

final solution X(k) for the nonlinear minimization problem
of the stress function ES(X).

3.3 Discussion

Classical MDS is widely considered as an efficient way to
solve MDS problems. It can be calculated in O(n2), where
n denotes the number of features that are embedded into the
Euclidean space Rm. However, compared to original mod-
els, serious distortions (see Fig. 1(b)) are generated on cor-
responding 3D canonical forms when using the classical
MDS approach. Mainly due to the fact that smaller value
(see Elad and Kimmel 2003) of the stress function (1) can
be obtained by applying Least Squares MDS, the qualities of
their canonical forms can be improved (see Fig. 1(c)) com-
pared to classical MDS. But the complexity of the method
increases to O(n2 ×NIter ), where NIter denotes the number
of iterations. Generally speaking, all these MDS methods
try to use the distance between every two points in the Eu-
clidean space Rm to approximate the dissimilarity between
corresponding pair of features in the feature space. More-
over, they treat all pairs of features in the same manner, no
matter how big or small the dissimilarities between them are.
However, for example, to build a unique 3D canonical form
for a 3D mesh while preserving its important local details,

Euclidean distances between pairs of original points in lo-
cal regions should be equal (or approximately equal) to the
corresponding Euclidean distances on the canonical form,
and every pair of points with a large geodesic distance (e.g.,
above a given threshold) should be transformed so that the
geodesic distance between them on the original mesh can
be approximated by the corresponding Euclidean distance
between the transformed points on the canonical form. To
achieve this goal, one possible solution is to set the weights
wij in the stress function adaptively according to the values
of dF (Yi, Yj ). But that introduces a new challenging prob-
lem about how to dynamically and precisely relate wij to
dF (Yi, Yj ). Another possible solution is to consider MDS
embedded surfaces as references and then naturally deform
the original meshes against them. This paper utilizes the sec-
ond approach to construct feature-preserved canonical forms
for non-rigid 3D watertight meshes.

4 The Feature-Preserved 3D Canonical Form

In this section, we first briefly describe the framework of our
method, and then elaborate on the details of each step in the
corresponding subsection.

The strategy of our method is to construct canonical
forms by naturally deforming original models to the poses
that correspond well with their MDS embedding results. As
depicted in Fig. 2, given a 3D mesh, its feature-preserved
canonical form can be obtained by using our algorithm
which consists of the following three steps:

1. Initialization: Reduce the number of vertices on the orig-
inal surface, and then calculate the initial canonical form
by applying Least Squares MDS embedding on the sim-
plified mesh.

2. Segmentation: Decompose the original mesh into a set of
near-rigid subparts, and then map the segmentation result
to the simplified mesh and its embedded surface.

Fig. 2 Overview of our method that consists of the following three steps: Initialization, Segmentation, and Assembling
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Fig. 3 A demonstration of our mesh segmentation procedure that employs the initial over-segmentation (a) and the voxelized model (b) to generate
final segmentation results for the original model (c) and its initial canonical form (d)

3. Assembling: Register subparts of the original mesh to
corresponding components on the embedded surface, and
then smooth the segmentation boundaries between sub-
parts on the final canonical form.

4.1 Initialization

Due to the fact that geodesic distances on a surface are in-
sensitive to isometric transformations, a bending invariant
representation can be calculated by applying MDS to map
the geometric structure of the original surface to a new 3D
Euclidean space, in which geodesic distances are approx-
imated by Euclidean ones. This idea was originally pre-
sented in Elad and Kimmel (2003), where three MDS tech-
niques were also compared. To calculate the initial canoni-
cal form, here, we choose the Least Squares MDS technique
implemented by the SMACOF algorithm (Borg and Groe-
nen 1997), which results in the least distortions among those
three methods (Elad and Kimmel 2003). A Matlab source
code for the Least Squares MDS method, which is publicly
available on the web site of the book (Bronstein et al. 2008),
is adopted in this paper.

Since the calculation of geodesic distances and the imple-
mentation of Least Squares MDS are both time-consuming,
the 3D mesh should be simplified to some extent before fur-
ther processing. A Matlab function called “reducepatch()”
is utilized in our implementation to reduce the number of
vertices on the mesh to about 2000. To sum up, the aim of
this step is to generate the simplified mesh and the initial
canonical form for a given 3D model.

4.2 Segmentation

Automatic segmentation of 3D models is a fundamental
problem in computer graphics (Chen et al. 2009). Until re-
cently, a large amount of methods have been developed to
segment 3D meshes into a set of disjoint pieces, which
should be either meaningful subparts or ones that satisfy
some specifically desired criteria. For more details, we refer
the reader to the paper (Chen et al. 2009), in which a survey
and comparisons of several mesh segmentation algorithms
are presented.

For our purpose of constructing feature-preserved canon-
ical form, we need to decompose the deformable 3D mesh
into a number of near-rigid subparts that are convex or ap-
proximately convex. To address this problem, we first seg-
ment the surface into a large number (e.g., 200) of patches
(see Fig. 3(a)). And then, we merge two conjunctive patches
in case the convexity of the combined one is above a given
threshold (e.g., 0.85). Iterating this procedure until stable,
small patches are clustered into several large pieces (see
Fig. 3(c)), which can be considered as near-rigid compo-
nents of the mesh.

A random walk based mesh segmentation method pro-
posed by Lai et al. (2008) is utilized in our algorithm to gen-
erate the initial segmentation for the mesh. Here, the original
implementation developed by the authors (Lai et al. 2008)
with default parameters is directly used without modifica-
tion. As described in Zunic and Rosin (2004), the convexity
of a shape S is defined to be the probability that for ran-
domly chosen points E and F from S all points from the
line segment [EF ] also belong to S. However, directly de-
termining whether all points on the line [EF ] are inside the
model is unacceptably time-consuming. Therefore, we vox-
elize the object to accelerate the computation of convexity.
More specifically, given two points on the surface, the line
between them is first voxelized in the same manner as the
voxelization of the mesh. And then, by judging whether all
voxels on the line segment coincide with some voxels of the
mesh, we can determine whether the line segment belong
to the mesh or not. Examples are given in Fig. 3, where
all points on the line segment [BC] belong to the mesh
while [AB] is not completely inside the object. It should
be pointed out that the voxelization of the closed mesh is
accomplished using a reliable source code download from
the web site (Morris 2006) and the long-axis resolution is
experimentally selected as 150.

Owing to the discretization error introduced by voxeliza-
tion, there may exist a few small pieces that can not be
merged properly. Thereby, we also set a threshold regard-
ing area to merge those small pieces into large subparts that
share boundaries with them. Figure 3(c) shows the final seg-
mentation result, which, as we can see, corresponds reason-
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Fig. 4 Overview of the assembling procedure

ably well with intuition. At the end of this step, the segmen-
tations of the simplified mesh and the initial canonical form
(see Fig. 3(d)) are also obtained by simply classifying trian-
gle faces into their nearest neighbors (i.e., considering the
distance between centers of two triangles) on the original
model. As demonstrated by experimental results, our mesh
segmentation method provides an adequate solution for our
purpose of constructing feature-preserved canonical forms.
However, we note that it is neither the only, nor necessarily
the best, mesh segmentation method for this task. Better seg-
mentation algorithms can be utilized to further improve the
smoothness of surfaces for the models’ feature-preserved
canonical forms.

4.3 Assembling

The last and the most important step in our method is to as-
semble segmented subparts to create a new 3D model under
the pose that matches well with the initial canonical form
(i.e., the embedded surface calculated in the first step).

An overview of the assembling procedure is illustrated
in Fig. 4. After mesh segmentation, a part tree {Pi,Bj |1 ≤
i ≤ NP ,1 ≤ j ≤ NB} is built, where Pi denotes the sub-
part i, the boundary j is denoted as Bj , and all subparts
are connected through boundaries. We define the subpart
with maximum number of boundaries as core part from
which our assembling starts. Given core parts of the sim-
plified mesh Ms and the embedded surface Me, which are
denoted as CPs and CPe , respectively, we first translate the
mass center of CPs to that of CPe, and then rotate CPs

around its center to find the optimal alignment with CPe .
An intuitive explanation for the registration of subparts is
given in Fig. 4(c), where the simplified mesh is colored in
green, the embedded surface in red, and blue for bound-
aries. More specifically, after translation, let the vertices
of boundaries on the core part CPs and CPe be denoted
by V si and V ei , i = 1,2, . . . ,Nvcp , respectively. By suc-
cessively rotating CPs around x, y, z coordinate axes with

Fig. 5 A perfect torus model and a bent torus model (a), together with
their 3D canonical forms obtained using Least Squares MDS (b) and
our method (c), respectively

angles (α,β, γ ), we get new coordinates, represented as
V s′

i = R(α,β, γ )V si, i = 1,2, . . . ,Nvcp , for vertices on its
boundaries. To achieve the optimal registration between two
core parts, we apply the Gauss-Newton algorithm to solve
the following minimization problem:

min
α,β,γ

Nvcp∑

i=1

∥
∥R(α,β, γ )V si − V ei

∥
∥2

, (22)

where the norm ‖ • ‖ is the square root of the sum of the
squared matrix elements. In other words, the goal of this
non-linear least squares problem is to minimize the sum of
squared distances between vertices on the boundaries of the
simplified mesh and their corresponding vertices on the em-
bedded surface. It should be pointed out that, as shown in
Fig. 5, our method is also able to build feature-preserved
canonical forms for objects with circular part trees. More-
over, different choices of core parts due to varied segmen-
tation results have very little impact on the results of our
method. For example, any segmented subpart of the torus
models shown in Fig. 5(a) can be selected as the core part
for our assembling procedure, and the difference between
final canonical forms we obtained is negligible.

Once the alignment of two core parts is finished, we no
longer need the simplified mesh. The core part of the orig-
inal object is translated and rotated in the same manner as
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Fig. 6 An example of our results without (a) and with (b) the simple
boundary smoothing method

its simplified version, other subparts (named child parts) are
then attached to the registered core part one by one accord-
ing to the structure of the part tree. Generally speaking, the
assembling of a child part is comprised of two steps: coarse
alignment and precise alignment. In the stage of coarse
alignment, the child part of the original model is first trans-
lated to move the center of vertices on one of its boundary
(named fixed boundary), which also belongs to other reg-
istered subparts, to the center of corresponding boundary
on the embedded surface. Next, we rotate the original child
part around the fixed boundary’s center against the embed-
ded child part, so that the direction of the line, which starts
from the center of the fixed boundary and ends at the original
child part’s center, coincides with that of the embedded child
part. For a more intuitive demonstration, we refer the reader
to the second row in Fig. 4(c). During precise alignment, we
aim to find the optimal pose for the original child part such
that the boundary between two subparts could be as smooth
as possible. Specifically, after coarse alignment, given the
child part Pc which is to be assembled and its parent sub-
part Pp whose location has already been fixed, we denote
the vertices on the fixed boundary of Pc and these vertices
on Pp as V ci and Vpi , i = 1,2, . . . ,Nvf b , respectively. In
order to obtain the optimal assembling, the child part Pc is
first rotated by angle δ around the line casting from the cen-
ter of the fixed boundary on Pc to the child part’s mass cen-
ter, and then translated by T = [tx, ty, tz]T . We represent the
transformed coordinates of V ci by

V c′
i = RL(δ)V ci + T , (23)

where RL(δ) stands for the rotation mentioned above, while
T means translating vertices along x, y, and z axes by tx ,
ty , and tz, respectively. Then, the precise alignment can be
formulated as the following minimization problem:

min
tx ,ty ,tz,δ

Nvf b∑

i=1

∥
∥RL(δ)V ci + T − Vpi

∥
∥2

. (24)

Calculating the mean values of vertices V c′
i and Vpi ,

i = 1,2, . . . ,Nvf b , we obtain a new boundary between the
subpart Pc and Pp . However, simply doing so yields a un-
even region (see Figs. 6(a) and 7(a)). To smooth the bound-
ary, our previous paper (Lian and Godil 2011) proposed a
simple method as follows. First, we uniformly divide the
vertices around the boundary into Ng groups based on the
distance value between each vertex and its nearest neigh-
bor on the boundary. More precisely, group 1 contains ver-
tices that are closest to the boundary, group 2 are the second
closest group around the boundary, and so for every group
k, k = 1,2, . . . ,Ng . Next, we move vertices on the classified
groups continuously towards their nearest neighbors on the
boundary. To be specific, given a vertex Vg∗ in group k and
its closest vertex (V c′

i∗ or Vpi∗) on the boundary, the new
coordinate for Vg∗ is defined as

Vg′∗ =
⎧
⎨

⎩

Vg∗ + V c′
i∗−Vpi∗

2k , if Vg∗ ∈ Pc

Vg∗ − V c′
i∗−Vpi∗

2k , if Vg∗ ∈ Pp.
(25)

We show an example of our results using the above sim-
ple boundary smoothing method in Fig. 6(b), which clearly
corresponds better with intuition than the unprocessed re-
sult (Fig. 6(a)). However, as we can see from Fig. 7(b),
for unsmoothed canonical forms that contains large gaps
on the boundaries between subparts, the simple smooth-
ing algorithm does not work well. Although in some cases
(e.g., the plier and human models shown in Fig. 7) re-
sults can be improved reasonably by applying the sim-
ple smoothing method (Fig. 7(b)) compared to unprocessed
ones (Fig. 7(a)), usually they are still unsatisfactory for visu-
alization, shape matching, and many other applications. In-
spired by the ideas of As-Rigid-As-Possible Shape Interpola-
tion (Alexa et al. 2000) and Deformation Transfer (Sumner
and Popovic 2004), we design a new and effective approach
to solve the boundary smoothing problem for all kinds of
objects. As shown in Fig. 7(c), since the deformation from a
mesh to its 3D canonical form is guaranteed to be as-rigid-
as-possible by using our new smoothing algorithm, final re-
sults we obtain are quite natural and smooth.

The boundary smoothing problem can be stated as fol-
lows: Given a 3D mesh M which consists of Nf trian-
gles {T1, T2, . . . , TNf

} and Nv vertices {V1,V2, . . . , VNv },
after applying the above-mentioned assembling procedure,
its unsmoothed canonical form M ′ can be obtained that
contains Nf triangles {T ′

1, T
′
2, . . . , T

′
Nf

} and 3 · Nf vertices

{V ′
1(1), V ′

2(1), V ′
3(1), V ′

1(2), V ′
2(2), V ′

3(2), . . . , V ′
1(Nf ),

V ′
2(Nf ),V ′

3(Nf )}. With M and M ′, we could like to build
the final canonical form M̃ which is composed of Nf tri-
angles {T̃1, T̃2, . . . , T̃Nf

} and Nv vertices {Ṽ1, Ṽ2, . . . , ṼNv }.
Namely, we want to compute the parameters of the unknown
affine transformation for each pair of triangles {Ti, T̃i} based
on the known affine mapping of the triangle pair {Ti, T

′
i }.
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Fig. 7 A comparison of our feature-preserved canonical forms generated without smoothing (a), and those created using the simple smoothing
method (b) and our new smoothing algorithm (c), respectively

Let the vertices of the original triangle Ti and the target
triangle T̃i be {Vi1,Vi2,Vi3} and {Ṽi1, Ṽi2, Ṽi3}, respectively.
While, the vertices of T ′

i are denoted as {V ′
1(i),V

′
2(i),V

′
3(i)}.

As described in Sumner and Popovic (2004), the three ver-
tices of a triangle before and after deformation do not fully
determine the affine transformation due to the fact that they
can not provide information about how the space perpendic-
ular to the triangle deforms. Thereby, a new vertex is added
for each triangle in the direction perpendicular to it. Specif-
ically, we compute the new vertex for the triangle Ti as

VNv+i = Vi1 + (Vi2 − Vi1) × (Vi3 − Vi1)√|(Vi2 − Vi1) × (Vi3 − Vi1)|
(26)

and employ an analogous calculation to add ṼNv+i for the
triangle T̃i . Also, we define the fourth vertex on the triangle
T ′

i by

V ′
4(i) = V ′

1(i) + (V ′
2(i) − V ′

1(i)) × (V ′
3(i) − V ′

1(i))√
|(V ′

2(i) − V ′
1(i)) × (V ′

3(i) − V ′
1(i))|

.

(27)

An affine transformation that deforms Ti into T ′
i can be

formulated as

AiVp(j) + Li =
⎡

⎣
a1(i) a2(i) a3(i)

a4(i) a5(i) a6(i)

a7(i) a8(i) a9(i)

⎤

⎦

⎡

⎣
xp(j)

yp(j)

zp(j)

⎤

⎦

+
⎡

⎣
lx(i)

ly(i)

lz(i)

⎤

⎦

= V ′
j (i), (28)

where V ′
j (i) = [x′

j (i), y
′
j (i), z

′
j (i)]T and [p(j)]1×4 = [i1, i2,

i3,Nv + i], j ∈ {1,2,3,4}. Similarly, for the affine mapping
from Ti to T̃i , we have

ÃiVf + L̃i =
⎡

⎣
ã1(i) ã2(i) ã3(i)

ã4(i) ã5(i) ã6(i)

ã7(i) ã8(i) ã9(i)

⎤

⎦

⎡

⎣
xf

yf

zf

⎤

⎦ +
⎡

⎣
l̃x (i)

l̃y(i)

l̃z(i)

⎤

⎦

= Ṽf , (29)

where Ṽf = [x̃f , ỹf , z̃f ]T , f ∈ {i1, i2, i3,Nv + i}.
Subtracting the first equation from the other three for

Eq. (28) and Eq. (29), respectively, we get AiDi = D′
i and
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Fig. 8 Examples of mesh segmentations generated manually by a human being (a) and automatically by our method (b), respectively

ÃiDi = D̃i where

Di = [Vi2 − Vi1,Vi3 − Vi1,VNv+i − Vi1 ], (30)

D′
i = [

V ′
2(i) − V ′

1(i),V
′
3(i) − V ′

1(i),V
′
4(i) − V ′

1(i)
]
, (31)

D̃i = [Ṽi2 − Ṽi1, Ṽi3 − Ṽi1, ṼNv+i − Ṽi1 ]. (32)

Trivially, we have Ai = D′
iD

−1
i and Ãi = D̃iD

−1
i . Here,

Ai is the known matrix for the affine transformation that
deforms Ti to T ′

i , while elements of the unknown matrix
Ãi are linear combinations of the coordinates of vertices
on the final canonical form to be constructed. Locations of
those unknown vertices can be determined by minimizing
the quadratic error between the original transformation ma-
trices Ai and the final ones Ãi . We write the minimization
problem as

min
Ṽ1,...,ṼNv ,ṼNv+1,...,ṼNv+Nf

Nf∑

i=1

‖Ai − Ãi‖2. (33)

In order to have a unique solution for Eq. (33), we
treat a vertex, say Ṽ1, as a constant rather than as a free
variable. By setting ŨT = [x̃2, ỹ2, z̃2, . . . , x̃Nv+Nf

, ỹNv+Nf
,

z̃Nv+Nf
] and CT = [c1, c2, . . . , cNf

] where ci = [a1(i),

a2(i), . . . , a9(i)], the minimization problem (Eq. (33)) can
be rewritten as

min
x̃2,ỹ2,z̃2,...,x̃Nv+Nf

,ỹNv+Nf
,z̃Nv+Nf

‖C − HŨ‖2, (34)

in which H is a sparse matrix of size 9Nf × (3Nv +
3Nf − 3) that relates Ũ to C, and the elements of H can

be easily derived according to the following expression:

Ãi = D̃iD
−1
i =

⎡

⎣
x̃i2 − x̃i1 x̃i3 − x̃i1 x̃Nv+i − x̃i1

ỹi2 − ỹi1 ỹi3 − ỹi1 ỹNv+i − ỹi1

z̃i2 − z̃i1 z̃i3 − z̃i1 z̃Nv+i − z̃i1

⎤

⎦D−1
i .

(35)

We solve the minimization problem (Eq. (34)) by setting
the gradient of the objective function over the free variable
Ũ to zero:

HT HŨ = HT C. (36)

In practice, H is typically a large-scale matrix (e.g., for
a mesh with 5000 vertices and 10000 triangles, the size
of H is 90000 × 44997), and thus, the computational cost
for direct calculation of (HT H)−1 is often unacceptable.
Therefore, we apply a sparse QR solver (Davis 2011) to ef-
ficiently solve Eq. (36). Final results of several models us-
ing our new boundary smoothing method are demonstrated
in Fig. 7(c). Compared to the previous results shown in
Figs. 7(a) and (b), complete surfaces of the final canoni-
cal forms are smooth and natural, even if there are uneven
segmentation boundaries and huge gaps between connected
subparts. That makes our feature-preserved canonical form
computing method considerably robust against the quality
of mesh segmentation result. Moreover, experimental results
presented below also demonstrate that the new boundary
smoothing algorithm can help to improve performance for
methods using our feature-preserved canonical forms in the
application of non-rigid 3D shape retrieval.

5 Experimental Results

In order to validate the effectiveness of our method, feature-
preserved 3D canonical forms were calculated for all 255
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Fig. 9 Examples of 3D models (a) and their canonical forms (b) (c) (d) (e) constructed using four methods

models in the McGill articulated 3D shape database (Sid-
diqi et al. 2008), which is classified into 10 categories. We
implemented the algorithm in Matlab R2009 and carried out
experiments run under windows XP on a personal computer
with a 3.19 GHz Intel Xeon CPU, 12.0 GB DDR2 mem-
ory, and a 512 MB NVIDIA Quadro Fx580 graphics card.
The average time to create our canonical form for a model,
which contains 10000 triangle faces on average, is about
243 seconds, in which, approximately, we spent 120 sec-
onds in computing the embedded surface with 4000 triangle
faces, took 63 seconds to segment the mesh, and finished the
assembling step in 60 seconds.

In Fig. 8, our mesh segmentation results are compared
with human-generated segmentations, which are created by
a researcher using the Interactive Segmentation tool devel-
oped by Chen et al. (2009). When doing manual segmenta-
tion, the researcher is required to segment each 3D model
into a number of near-rigid subparts. We find that the auto-
matic segmentation approach generally produces results as
good as the manual one, but some segmentation boundaries

of our approach are still not so even due to the utilization
of patch clustering. As suggested in Lai et al. (2008), simi-
lar boundary smoothing techniques could be applied to fur-
ther improve segmentation results. Thanks to the utilization
of our new smoothing method, we can still obtain satisfac-
tory canonical forms even if the segmentation results contain
some minor errors (see Fig. 7).

Figure 9 shows several examples of our feature-preserved
canonical forms using automatic segmentation (Fig. 9(e)) as
well as manual segmentation (Fig. 9(d)), along with their
original models (Fig. 9(a)) and embedded surfaces calcu-
lated by classical MDS (Fig. 9(b)) and Least Squares MDS
(Fig. 9(c)), respectively. As we can see, results obtained
using MDS embedding techniques are seriously distorted,
while our new canonical forms not only provide isometry-
invariant representations for non-rigid 3D meshes, but also
preserve important features that appear on the original mod-
els. We also observe that, our feature-preserved canonical
forms constructed using the method with automatic segmen-
tation are almost identical with the results generated by the
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Fig. 10 Examples of two kinds of 3D models (a) (c) and their feature-preserved canonical forms (b) (d)

approach with manual segmentation. That again validates
the robustness of our canonical form computing method
against segmentation errors.

We then demonstrate the application of our feature-
preserved canonical form in non-rigid 3D shape retrieval.
Experiments were carried out on the McGill articulated 3D
shape benchmark (Siddiqi et al. 2008). As we can see from
Fig. 10, models in the same class may appear in quite dif-
ferent poses but can still have very similar canonical forms.
Thereby, after the calculation of canonical forms, all feature
extraction methods, which are even specifically designed
for rigid 3D shapes, can be employed to extract isometry-
invariant shape descriptors from non-rigid objects. Figure 11
illustrates the precision-recall plots of several well-known
rigid shape retrieval methods (i.e., D2 Osada et al. 2002,
SHD Kazhdan et al. 2003, LFD Chen et al. 2003, and CM-
BOF Lian et al. 2010a) evaluated on two databases that con-
sist of original models on the McGill database and their
feature-preserved canonical forms, respectively. We observe
that, with the help of our feature-preserved canonical forms,
significant improvements can be achieved for the perfor-
mance of these methods in the application of non-rigid 3D
shape retrieval. In order to take advantage of the preserved
local details on our canonical form as well as its isometry-
invariant global structure, here we adopted two visual simi-

larity based approaches called CM-BOF (Lian et al. 2010a)
and Hybrid (Lian et al. 2010a), respectively, with default
settings. To be specific, CM-BOF utilizes salient local fea-
tures to describe views captured around a 3D model, while
the Hybrid method, which represents 2D views by using
both local and global features, is basically a combination
of the CM-BOF and GSMD (Lian et al. 2010c) methods.
For convenience, the Feature-Preserved Canonical Form
(FPCF) obtained by our method with Automatic mesh seg-
mentation is denoted as AFPCF. Therefore, AFPCF-Hybrid
and AFPCF-CM-BOF stand for the retrieval methods us-
ing the Hybrid and CM-BOF approaches, respectively, with
AFPCF canonical forms. While LSMDS-CM-BOF denotes
the approach using CM-BOF with Least Squares MDS
embedding and CMDS-CM-BOF for the Classical MDS
method. Precision-recall plots as well as four quantitative
measures (NN, 1-Tier, 2-Tier, DCG) (Shilane et al. 2004)
were calculated to compare the searching accuracy of the
proposed approaches (i.e., AFPCF-Hybrid and AFPCF-CM-
BOF) with the following 8 non-rigid 3D shape retrieval
methods: LSMDS-CM-BOF (Lian et al. 2010b), CMDS-
CM-BOF, BF-SIFT (Ohbuchi et al. 2008), Intrinsic Spin
Images (ISI8) (Wang et al. 2010), Heat Kernel Signatures
(HKS) (Ovsjanikov et al. 2009), Spin Images (SI) (John-
son and Hebert 1999), the shape distribution of Geodesic
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Fig. 11 Precision-recall plots of four rigid 3D shape retrieval methods evaluated on two versions of the McGill articulated 3D shape database that
consist of original models and their feature-preserved canonical forms, respectively

distance (G2) (Mahmoudi and Sapiro 2009), and Laplace-
Beltrami Spectrum (LBS) (Reuter et al. 2005). As we can
see from the results demonstrated in Fig. 12 and Table 1,
methods using our feature-preserved canonical form gener-
ally provide more accurate searching results than those using
other canonical forms. Moreover, the AFPCF-Hybrid algo-
rithm that employs the proposed canonical form markedly
outperform the state of the art of non-rigid 3D shape re-
trieval. Yet, in despite of advantages on all other measures,
the 2-Tier value of AFPCF-CM-BOF is 0.9 % less than
LSMDS-CM-BOF. We speculate that the task of search-
ing models in the McGill database is relatively easy and
the searching accuracy of the original CM-BOF method is
already quite high, thus taking account of more local de-
tails in shape matching can only slightly further improve the
retrieval accuracy for the CM-BOF method tested on this
small non-rigid 3D shape database. We show some examples
of queries and their corresponding top 7 retrieved objects

Table 1 Comparing retrieval results of our methods (first two rows)
with the state of the art on the McGill articulated 3D shape database

NN 1-Tier 2-Tier DCG

AFPCF-Hybrid 99.6 % 87.5 % 96.5 % 97.8 %

AFPCF-CM-BOF 99.6 % 86.6 % 95.3 % 97.5 %

LSMDS-CM-BOF 99.2 % 84.8 % 96.2 % 97.4 %

CMDS-CM-BOF 96.1 % 74.2 % 88.6 % 93.9 %

BF-SIFT 97.3 % 74.6 % 87.0 % 93.7 %

ISI8 95.3 % 64.2 % 79.9 % 90.0 %

from the McGill database using our AFPCF-CM-BOF algo-
rithm in Fig. 13. As we can see, the retrieved 3D models in
the top 7 positions of the rank lists all belong to the same cat-
egories of their corresponding queries, which again demon-
strates the effectiveness of the proposed feature-preserved
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Fig. 12 Precision-recall plots
of the proposed methods (i.e.,
AFPCF-Hybrid and
AFPCF-CM-BOF) and other
eight approaches evaluated on
the McGill articulated 3D shape
database

canonical form in the application of non-rigid 3D shape re-
trieval.

From Fig. 13, we also observe that different types of
objects in the McGill articulated 3D shape database have
quite different topologies, and thus detailed local features
do not play an important role in the dissimilarity com-
putation between non-rigid 3D models in this database.
That is the major reason why methods using our feature-
preserved canonical forms can only slightly outperform the
approaches that utilize Least Squares MDS embedding. To
demonstrate more clearly the advantages of our feature-
preserved canonical forms against other existing methods,
we built the Peking University Non-rigid 3D Shape Bench-
mark (PKUNSB), on which additional experiments were
carried out. The PKUNSB database contains 90 articulated
3D watertight meshes, which are equally classified into six
categories. Examples of these six kinds of objects are shown
in Fig. 14, from which we can see that they have similar
skeletons but differ in details on surfaces. In order to pre-
cisely distinguish each articulated model from other types of
objects in the PKUNSB database, shape descriptors that we
extract from the object not only should be invariant against
isometric transformations but should also be able to depict
important local features on the surface. In our non-rigid
3D shape retrieval experiments conducted using PKUNSB,
the CM-BOF method was evaluated on five databases that
consist of original models in the PKUNSB database and
their four types of 3D canonical forms, respectively. For
the sake of convenience, we denote the feature-preserved
canonical form with the simple boundary smoothing ap-
proach as S-AFPCF, and we use the above-mentioned nota-
tions including AFPCF, LSMDS, and CMDS for other three

Table 2 Comparing retrieval results of the CM-BOF method evalu-
ated on five versions of the PKUNSB database that consist of original
models (i.e., Original) and their four kinds of 3D canonical forms (i.e.,
AFPCF, S-AFPCF, LSMDS, and CMDS), respectively

NN 1-Tier 2-Tier DCG

AFPCF 98.9 % 89.0 % 99.5 % 97.3 %

S-AFPCF 97.8 % 88.0 % 99.5 % 97.1 %

LSMDS 97.8 % 81.7 % 97.1 % 95.8 %

CMDS 97.8 % 73.4 % 92.2 % 93.8 %

Original 92.2 % 64.9 % 83.2 % 89.2 %

kinds of canonical forms, respectively. From Fig. 15 and
Table 2 where experimental results are shown, we observe
that methods using feature-preserved canonical forms (i.e.,
AFPCF and S-AFPCF) significantly outperform those us-
ing other two types of canonical forms (i.e., LSMDS and
CMDS) and original models (i.e., Original). Furthermore,
the CM-BOF method using our canonical forms with the
improved boundary smoothing algorithm (i.e., AFPCF) per-
forms better than the one with the simple smoothing ap-
proach (i.e., S-AFPCF). This is due to the fact that the pro-
posed feature-preserved canonical form (i.e., AFPCF) com-
puting method not only preserves important local features
on the original model, but also eliminates distortions and er-
rors on the boundaries between segmented subparts.

6 Discussion and Conclusion

In this paper, we introduced a novel method to construct
feature-preserved canonical forms for non-rigid 3D meshes.
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Fig. 13 Examples of queries
(first column) selected from the
McGill articulated 3D shape
database and their
corresponding top 7 retrieved
models using the
AFPCF-CM-BOF method. The
retrieved models are ranked
from left to right based on the
increasing order of dissimilarity

Fig. 14 Examples of models in the PKUNSB database, which con-
tains 90 watertight meshes that are generated by articulating six origi-
nal 3D objects

Experimental results not only validated the advantages of
our method against other existing canonical forms, but also
demonstrated the effectiveness of the algorithm for non-
rigid 3D shape retrieval, in the presence of better perfor-
mance compared to the state of the art.

Nevertheless, there are also limitations in our method.
First, the method can only be applied on 3D watertight
meshes and it is sensitive against topological errors. Sec-
ond, although the method is quite robust against mesh seg-
mentation results, it still relates closely to the segmenta-
tion procedure such that large segmentation errors on some
bad-quality surfaces may lead to distortions on our feature-
preserved canonical forms. Third, the computational cost of
the method we implemented for our experiments is too ex-
pensive to establish instant responses which are required by
real searching engines. That can be solved to some extent by
optimizing our Matlab code and developing more efficient
algorithms to accomplish MDS embedding.
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Fig. 15 Precision-recall plots
of the CM-BOF method
evaluated on five versions of the
PKUNSB database that consist
of original models (i.e.,
Original) and their four kinds of
3D canonical forms (i.e.,
AFPCF, S-AFPCF, LSMDS,
and CMDS), respectively

Four directions we would like to consider in the fu-
ture are listed as follows: (1) Develop more effective and
efficient algorithms to segment 3D meshes into near-rigid
parts; (2) Employ other mesh manipulation methods to nat-
urally deform 3D models; (3) Carry out experiments for
the proposed canonical form on other benchmarks that con-
tain larger numbers of non-rigid 3D objects; (4) Utilize
our feature-preserved canonical form in other applications
for non-rigid 3D shapes including registration (Chui and
Rangarajan 2003), correspondences finding (Wuhrer et al.
2010), object classification (Elad and Kimmel 2003), and so
on.
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