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Abstract. Many new systems have been proposed which hide an easily invertible multivariate 
quadratic map in a larger structure by adding more variables and introducing some mixing of a 
random component to the structured system. While many systems which have been formed by 
attempting to hide the hidden structure of equations have been broken by observing symmetric 
properties of the differential of the public key, the dichotomy between the roles of the different types 
of variables, or even the different types of monomials in the systems, have given rise to differential 
invariant attacks which distinguish between subspaces corresponding to one type of variable or the 
other. In this monologue, we take a general approach, and describe a basic construction, TriTon, of 
which several of the above types of systems are special cases. We analyse this system, and conclude 
that such constructions are weak with naive choices of parameters. 
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1 Introduction 

Since 1994, when Peter Shor discovered the key to factoring large composite integers and computing 
discrete logarithms in polynomial time on a quantum computer, see [1], there has been an ongoing 
challenge to develop a secure and practical public key replacement for RSA and Diffie-Hellman. This 
quest to find quantum-resistant mechanisms to replace the current public key infrastructure is wraught 
with difficulties. In addition to the challenges of designing asymmetric schemes which are immune to 
classical attack, the task of the post-quantum cryptographer is to create cryptographic tools which are 
invulerable in a computational model, the understanding of which is constantly evolving. 

As a result of such difficulties, the main approach is to design public key cryptosystems in the classical 
model of computing which do not admit efficient analysis by known quantum techniques. This process 
often results in cryptosystems which suffer from massive public keys. In light of Grover’s search algorithm, 
see [2], it is entirely possible that we may have no other option in this matter. What we can do, however, 
is construct schemes which are extremely fast. 

Speed is one of the motivating factors for the development of a secure Multivariate Public Key 
Cryptosystem (MPKC). In addition to its other virtues— such as extreme parametrizability, the NP-
completeness of the fundamental problem of inverting a system of multivariate equations, and the fact 
that empirically this problem seems difficult in the average case— multivariate systems, and in particular 
the “big field” schemes, are extremely efficient, often having speeds dozens of times faster than RSA, 
[3–5]. 

The big question about these MPKCs is whether we can be assured of the security of a system while 
retaining such desirable properties. Many schemes, such as C∗, SFLASH, PMI, ℓIC-, Oil and Vinegar, 
and the various Square variants, have been broken by uncovering some of the structure inherent to 
the public key. See [6–11]. Although there are some general theoretical results about the security of 
such cryptosystems, see [12, 13], the resistance of these systems against structural attack is not well 
understood. 

In this paper, we analyze an approach to the construction of schemes which involve variables of mul­
tiple types. We call such schemes “TriTon,” because they contain three colors, or flavors, of monomials— 
the structure monomials, the obfuscation monomials, and the mixing monomials. We endeavor to reveal 
some fundamental structural weaknesses of such schemes to further the development of security theory; 
in particular, we break some instances with naive parameters. 

The paper is organized as follows. In the next section we present the TriTon transformation of a 
multivariate cryptosystem and describe why such a modification might seem beneficial. In the subsequent 
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section, we express several well-known schemes as TriTon transformations of more basic systems. The 
following sections describes an attack against certain TriTon schemes with poorly chosen parameters. 
Finally, we draw conclusions about the trustworthiness of systems derived from such a design philosophy. 

2 TriTon Construction 

Let q be a prime power, and let Fq be a finite field with q elements. Given an effectively invertible 
quadratic function, f : Fn → Fm, a quadratic function, g : Fl → Fm, and A : Fn+l → Fm bilinear, the q q q q q q 

TriTon construction produces the function f̃ : Fn+l → Fm as follows: q q 

f̃(x, y) = f(x) + g(y) + A(x, y), 

where x ∈ Fn and y ∈ Fl .q q 

F
n+lTo complete the scheme, we compose two affine transformations, T : Fm → Fm and U : Fn+l → ,q q q q 

to produce: 

P (x) = T ◦ f̃ ◦ U(x), 

F
n+lwhere x ∈ q . 

This construction has a great deal of algebraic structure, as can be seen by determining its differential. 
The discrete differential of an univariate function, f , is the bivariate function Df(a, x) = f(a+x)−f(x)− 
f(a)+f(0). Since we are only interested in encryption functions which are quadratic, the differential will 
always be bilinear, and therefore each coordinate of the differential is a bilinear form. The differential of 
each coordinate of the core map, f̃ , has the following structure: 

  

Dfi Ai
Df̃  i = . 

AT Dgii 

The motivating force behind this transformation strategy is to hide any structure present in f without 
producing any new invariants or rank weaknesses. In addition, the ability to make A, or g, or both maps 
random may provide effective means of hiding the structure of f , and potentially enhance the security 
of the scheme. 

3 Well-known TriTon Systems 

While any system of multivariate equations can be defined using two sets of variables and separating 
the monomials into three categories, it is only reasonable to consider the system a TriTon construction 
if the system relies on this delegation of monomials into the three categories, structure, obfuscation, and 
mixing, for the effective inversion or analysis of the system. Several schemes have been proposed over the 
years fitting this description. Here we express a few well-known schemes which fit the above description, 
and give an example of a scheme which cannot effectively be considered in such a context. 

3.1 Oil and Vinegar 

The prototypical scheme differentiating between two types of variables is Oil and Vinegar, see [14]. In 
this scheme, the central map is defined in such a way that quadratic monomials in one type of variable, 
the oil variables, never occur. Thus the structured component is zero, the obfuscation component is 
comprised of monomials with random coefficients which are quadratic in the vinegar variables, and the 
mixing component is similarly random. Once the values of the vinegar variables have been fixed, the 
system is linear in the oil variables and they can be uniquely determined. 

The differential of each single core map formula has the following form: 

  

0 Dfi1
Dfi = . 

DfT Dfi2i1 

Clearly, any vector of the form:
  

∗ 
0

, 



  

  

  

        

3 TriTon 

that is, in the oil subspace, is mapped by Dfi to a vector of the form: 

0 
,

∗ 

in the vinegar subspace. Therefore, the product of a matrix in the span of the differential coordinate 
forms with the inverse of another such matrix will leave the oil subspace invariant, a fact which was 
exploited to break the balanced oil and vinegar scheme, see [10]. 

One may note that the unbalanced oil and vinegar scheme similarly admits a TriTon structure, as 
do several other vinegar variants of multivariate schemes. The main distinction between such systems 
and the balanced oil and vinegar scheme, is that they never have a trivial quadratic component of such 
a high, detectable dimension. 

3.2 PMI 

The C∗ cryptosystem, developed by Matsumoto and Imai in [15], is the prototypical multivariate public 
key cryptosystem based on the structure of a large extension field. Given a degree n + l extension, k, of 
our scalar field, the scheme expressed the composition of a hidden monomial map, f : Fn+l → Fn+l, of q q 

q 
F
n+lthe form f(x) = x

θ
+1 , where gcd(n + l, θ) = 1, and two affine transformations, U, T : Fn+l → , as a q q 

system of multivariate equations over the base field. The scheme, however, was later broken by Patarin, 
see [16], by virtue of a bilinear relation in the input and output of f . 

The internally perturbed C∗ scheme, PMI, see [17], uses the idea of adding a random summand of 
low dimensional support to the core map. Given the standard parameters of C∗, internal perturbation 
augments the core map, f , with a summand g ◦ L, where g : Fq 

l → Fn+l is a random quadratic map and q 

L : Fq 
n+l → Fl is a random linear map. Thus the entire encryption map is given by: q 

P (x) = T ◦ f ◦ U(x) + T ◦ g ◦ L ◦ U(x). 

The strategy here is to randomize the obfuscation monomials while retaining structure in the majority 
of the function. Once the randomized component is removed, the structure of the entire remaining map 
is utilized to find a preimage. 

Specifically, the map y = P (x) can be “inverted” by computing all possible outputs, z, of the random 
quadratic, g, subtracting T z from P (x), and applying the decryption routine of C∗ to the result. If the 
output, x, of this procedure matches a preimage of z under g ◦L◦U , then P (x) = y and x is legitimately 

lan inverse of y. If none of the q values of z share such a preimage with the C∗ portion of the map, then 
y is not in the image of P . 

With a change of basis we can express L as: 

0 0 
L̃ = . 

0 I 

We then have: 

P (x) = T̃ ◦ f̃ ◦ Ũ(x) + T̃ ◦ g̃ ◦ L̃ ◦ Ũ(x), 

and in this basis the differential of each formula in the central map has the form: 

Df̃  i1 Df̃  i2
Df̃  i + D(g̃iL̃)i = . 

Df̃T Dg̃i + Df̃  i3i2 

One may note that for n + l odd, without the g component, each differential coordinate form has 
corank 1. If g is truely randomly selected, then often when LUx is nonzero, the rank of the differential 
coordinate form will be smaller. An equivalent observation involving the associated bilinear form of each 
public equation, along with some additional probabilistic methods resulted in an attack discovering the 

[ ]T 
“noise kernel,” effectively removing the obfuscation, see [18]. Notice that for x y ∈ ∩iker(Dg̃i) we 
have for all i: 

Df̃  i1 Df̃  i2 x Df̃  i1 Df̃  i2 x 

Df̃T 
i2 Dg̃i + Df̃  i3 y 

= 
Df̃T 

i2 Df̃  i3 y 
. 
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3.3 pSFLASH - A Non-Example 

pSFLASH is another scheme based on the original C∗ scheme of Matsumoto and Imai, see [15]. After 
the discovery of Patarin’s linearization attack, see [16], a new modification, the idea of discarding public 
equations, was suggested, [19]. This method was later shown to be weak in an attack exploiting a multi­
plicative symmetry exhibited by the differential of the public key by Dubois et al. from [9]. The results 
of this paper, and the subsequent generalization of the attack to other schemes, see [20], for example, 
further popularized differential methods in multivariate cryptanalysis and inspired several theoretical 
veins of inquiry, see [21, 12, 13]. 

The practical suggestion was proposed by Ding et al. in [22], that using the projection modifier, which 
is equivalent to making the affine transformation U singular, may prevent the attack using multiplicative 
symmetry. The resulting scheme is known as pSFLASH. The encryption map is formed as follows: 

P (x) = T ◦ f ◦ S(x), 

where f is a C∗ monomial, and both S and T are singular with corank 1 and r, respectively. 
The system is inverted by choosing a nonsingular map which agrees with T on the range of T , applying 

the inverse of this map, inverting f , and finding a preimage of S. Each of these operations is efficient for 
anyone with the knowledge of T , f , and S. 

We may attempt to view this system as a TriTon scheme by choosing a change of basis which maps 
the image of S to the first n − 1 basis vectors. The resulting scheme looks like: 

T̃ ◦ f̃ ◦ ˜P (x) = S, 

where S̃ is of the form: 
˜ ˜S1 S2S̃ = . 
0 0 

As a result, the input of the hidden monomial map always has zero as the last coordinate, and we 
can equivalently regard the core map as including a projection onto the first n − 1 coordinates, in which 
case the differential of the ith core coordinate formula has the form: 

D(̃f)i1 0 . 
0 0 

In light of this fact, one may choose such a basis and consider the system as having one fewer variables. 
This has the effect of allowing a marginally smaller public key, and since an adversary can easily complete 
this computation there is no reason not to take advantage of this benefit. As a result, however, there is 
no advantage to considering this scheme as a TriTon construction. 

4 Trivial Mixing Method and Analysis 

In the previous section, we witness the strategies of adding a random component for obfuscation and of 
making the structured component trivial so that it does not interfere with the inversion of the mixing 
component. In this section, we describe another strategy called the Hidden Pair of Bijections scheme 
which has been proposed recently by Gotaishi, see [23], and present a cryptanalysis. The approach Go­
taishi advocated requires the obfuscation component, g, to be invertible, and for the mixing component, 
A, to be of full rank. The resulting function defines a signature scheme analogous to the oil and vinegar 
scheme, in that one fixes the values of a set of variables, rendering the mixing component trivial, and 
inverts the resultant expression. The exposition of the scheme mentions that any form of structured 
quadratic components f and g could be used; for example, both f and g could be C∗ monomials. 

Specifically, to sign a message m, one begins by seting z = H(m), a hash of the message. One then 
flips a coin determining which of x and y to fix to zero, and solves either z = f(x)+g(0)+A(x, 0) = f(x), 
or z = f(0) + g(y) + A(0, y) = g(y). 

The claim is that the scheme is secure because for any particular signature an attacker is unaware 
whether the first n variables, x, are set to zero, or the second n variables, y; therefore, given a large 
number of signatures, it cannot be known which ones were signed with x set to zero and which were 
signed with y set to zero. This claim is false. 

Consider the collection of all possible signatures, S. S consist of two components: S1, the collection 
of all signatures which were derived from setting x = 0, and S2, the collection of all signatures which 
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were derived from setting y = 0. Both Si have dimension n, and therefore we are guaranteed that once 
an adversary intercepts 2n + 1 signatures, the last signature will be in the span of n of the previous 
signatures, identifying the domain of either f or g. Projecting the entire scheme onto this subspace 
reduces the encryption map to the composition of two affine maps with f or g. Thus the scheme is no 
more difficult to invert than f or g, and it is broken. 

In the rump session of PQCRYPTO ’11, Gotaishi suggested a modification to repair the scheme [24]. 
His suggestion was to add a third type of variable and a third quadratic map, h, which is invertible, but 
which has no mixing with the other types of variables. The problem with this method is that the domain 
of this third quadratic map is a differential invariant, i.e. the differential of the core map has the form: 

  

Dfi Ai 0 
 AT 

i Dgi 0  . 
0 0 Dhi 

Therefore, we can attack the scheme by finding the n-dimensional invariant subspace, and projecting 
onto its cosummand, reducing the scheme to Gotaishi’s original primitive. 

5 Generalization of the Trivial Mixing Method 

The system of the previous section suffers from another fatal flaw. The requirement that the value to 
nwhich x or y is fixed is zero is very restrictive, so that there are only 2q possible signatures, while 

2n 2the domain contains q elements. Therefore the proportion of used bits is only 
qn , indicating that the 

scheme is extremely inefficient. 
This strategy of fixing the values of some of the inputs of the core map to render the mixing component 

trivial can still be used while fixing the inefficiency problem and avoiding the above attack by making 
the mixing component, A, of low rank. Since randomly choosing which affine half-dimensional space on 
which to project did not enhance the security of the hidden pair of bijections scheme, we can remove 
this feature and allow the obfuscation component g to take an arbitrary form. Thus the generalized core 
map takes the form (2) with A of corank k and the quadratic function g of whichever form optimizes 
security. 

To sign a message, one randomly selects an element z ∈ ∩xker(A(x, ∗)), and, given a hash y, returns 
−1f−1(T y − g(z)) 

−1 −1U−1 . One can easily check that T (f(f−1(T y − g(z))) + g(z) + A(f−1(T y − 
z 

g(z)), z)) = y 
Each coordinate of the differential of this core map admits the presentation: 

Dfi Ai 
. 

AT Dgii 

Now, as before, an adversary can collect a maximal collection of linearly independent signatures, revealing 
∩xker(A(x, ∗)). Since no signature is contained in the cokernel, we may project onto this kernel to obtain 
an equivalent map with a smaller domain. In this manner, the the induced map on the differential 
produces the following bilinear form: 

Df̃  i 0 
. 

0 Dg̃i 

Now each of these differential coordinate forms share an n-dimensional invariant subspace and a k-
dimensional invariant subspace. Since the n-dimensional subspace, V , corresponds to the input of f , we 
compose yet another projection with the system and recover a system of equations linearly equivalent 
to T ◦ f ◦ U |V . At this point, the inversion of the entire scheme is reduced to an inversion of the hidden 
map, f , and thus the construction is broken. 

6 Conclusion 

The basic idea of the Triton construction is to combine two disparate quadratic systems, mixing the 
variables together in such a way that the distillation of a single component is difficult. In many instances, 
however, the division of variables into classes and the delegation of particular monomials into certain 
required structures has caused a detectable change in the rank, or invariant structure of the differential 
of the encryption map. 
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In particular, the trivial mixing methodology seems fundamentally flawed, in that we can effectively 
develop a distinguisher which can separate the types of variables based on the properties of each class of 
monomial, regardless of the dimension associated with each type of variable. In comparison to the case 
of oil and vinegar, which resists the standard cryptanalysis when sufficiently unbalanced, trivial mixing 
seems particularly weak. 

As a result of these facts, there is good reason to remain skeptical about techniques involving the 
division of variables into classes, or the introduction of intermediate variables, such as in the case of PMI. 
If rank methods and differential invariant methods continue to prove effective against such schemes, then 
none of these TriTon transformations of cryptosystems will be trusted. 
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